Communication avoiding algorithms for iterative methods

Computational Kernels for Preconditioned Iterative Methods

- Sparse matrix set of vectors multiplication
- Sparse low rank approximations

Iterative methods

- Enlarge Krylov methods to reduce communication
- Efficiency on selected applications

Preconditioners

- Robust multilevel preconditioners based on low rank corrections
- Combine with enlarge Krylov methods

Low rank matrix approximation

• Problem: given m x n matrix A, compute rank-k approximation ZW^T , where Z is m x k and W^T is k x n.

- Problem with diverse applications
 - from scientific computing: fast solvers for integral equations, H-matrices
 - to data analytics: principal component analysis, image processing, ...
- Used in iterative process by multiplication with a set of vectors

$$Ax \rightarrow ZW^T x$$
Flops: $2mn \rightarrow 2(m+n)k$

Low rank matrix approximation: trade-offs

Select k cols using tournament pivoting

Partition $A=(A_1, A_2, A_3, A_4)$. Select k cols from each column block, by using QR with column pivoting

At each level i of the tree

At each node j do in parallel

Let $A_{v,i-1}$, $A_{w,i-1}$ be the cols selected by

the children of node jSelect b cols from $(A_{v,i-1}, A_{w,i-1})$,

by using QR with column pivoting

Return columns in A_{ii}

LU_CRTP

• Given LU_CRTP factorization

$$P_r A P_c = \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \overline{A}_{21} \overline{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ & S(\overline{A}_{11}) \end{pmatrix},$$

the rank - k CUR approximation is

$$\tilde{A}_{k} = \begin{pmatrix} I \\ \overline{A}_{21} \overline{A}_{11}^{-1} \end{pmatrix} (\overline{A}_{11} \quad \overline{A}_{12}) = \begin{pmatrix} \overline{A}_{11} \\ \overline{A}_{21} \end{pmatrix} \overline{A}_{11}^{-1} (\overline{A}_{11} \quad \overline{A}_{12})$$

- \overline{A}_{11}^{-1} is never formed, its factorization is used when \tilde{A}_k is applied to a vector
- In randomized algorithms, U = C⁺ A R⁺, where C⁺, R⁺ are Moore-Penrose generalized inverses

Results for image of size 256x707

Original image, 256x707

LUPP: Rank-75 approximation

SVD: Rank-38 approximation Rank-75 approximation, SVD

LU_CRTP: Rank-38 approx. LU_CRTP: Rank-75 approx.

Page 6

Performance results

Selection of 256 columns by tournament pivoting
Edison, Cray XC30 (NERSC) – 2x12-core Intel Ivy Bridge (2.4 GHz)
Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: $n \times n$ $n \times n/32$

• Mac_econ: 206500 x 206500 206500 x 6453

	Time n x 2k	Time n x n/32 SPQR+GEQP3		Nur 32	nber of 64	f MPI p 128	rocess 256	es 512	1024
Parab_fem Mac_econ	0.26	0.26+1129	46.7	24.5	13.7	8.4	5.9	4.8	4.4
	0.46	25.4+510	132.7	86.3	111.4	59.6	27.2	-	-