Batched Routines in Preconditioning

The Future of Incomplete Factorization Preconditioners

Hartwig Anzt, Thomas Huckle, Jack Dongarra

Workshop on Batched, Reproducible, and Reduced Precision BLAS
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2016/
Innovative Computing Laboratory
University of Tennessee
May 18th - 19th, 2016

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization
$$(A=LU)_{\!\!\mathcal{S}} \text{ for some sparsity pattern } \mathcal{S} \ \left\{ \begin{array}{ll} \mathcal{S}=\mathbb{R}^{n\times n} & \text{exact fact.} \\ \mathcal{S}=spy(A) & \text{ILU(0)}^* \end{array} \right.$$

Many other choices possible for incomplete factorizations!

^{*}Saad: "Iterative Methods for Sparse Linear Systems (2nd Edition)". SIAM, 2003.

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization $(A=LU)_{\!\!\mathcal{S}} \text{ for some sparsity pattern } \mathcal{S} \ \left\{ \begin{array}{ll} \mathcal{S}=\mathbb{R}^{n\times n} & \text{exact fact.} \\ \mathcal{S}=spy(A) & \text{ILU(0)} \end{array} \right.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

$$y = M_L^{-1}z + M_L^{-1}N_Ly$$
$$y = M_L^{-1}z + (I - M_L^{-1}L)y$$

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems Ly=z , Ux=y.

For matrix splitting $\,L=M_L-N_L\,$ we get

$$y = M_L^{-1} z + M_L^{-1} N_L y$$

Standard approach: exact triangular solves (trsv)

• Inherently sequential, level scheduling often provides little parallelism.

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems Ly=z , Ux=y.

For matrix splitting $\,L=M_L-M_L\,$ we get

$$y=M_L^{-1}z+M_L^{-1}N_Ly$$

$$y=M_L^{-1}z+(I-M_L^{-1}L)y$$

$$=0 \ \text{for} \ M_L=L \ \text{, i.e.} \ (M_L^{-1}L=I)_{\!S^*} \ \text{for} \ S^*=\mathbb{R}^{n\times n}$$

Standard approach: exact triangular solves (trsv)

Inherently sequential, level scheduling often provides little parallelism.

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\begin{cases} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{cases}$

$$\mathcal{S} = \mathbb{R}^{n imes n}$$
 exact fact. $\mathcal{S} = spy(A)$ ILU(0)

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

For matrix splitting $\,L=M_L-N_L\,$ we get

$$y=M_L^{-1}z+M_L^{-1}N_Ly$$

$$y=M_L^{-1}z+(I-M_L^{-1}L)y$$

$$=0 \ \text{for} \ M_L=L \ \text{, i.e.} \ (M_L^{-1}L=I)_{\!\!\!Q^*} \ \text{for} \ S^*=\mathbb{R}^{n\times n}$$

Standard approach: **exact triangular solves** (trsv)

- Inherently sequential, level scheduling often provides little parallelism.
 - exact factorization + exact solve = Sparse direct solver

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{aligned} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{aligned}
ight.$

$$\mathcal{S} = \mathbb{R}^{n imes n}$$
 exact fact.
 $\mathcal{S} = spu(A)$ II U(0)

Preconditioner application involves solving triangular systems Ly=z , Ux=y.

For matrix splitting $\,L=M_L-N_L\,$ we get

$$y = M_L^{-1}z + M_L^{-1}N_Ly$$
$$y = M_L^{-1}z + (I - M_L^{-1}L)y$$

$$\stackrel{\bullet}{=} 0$$
 for $M_L = L$, i.e. $(M_L^{-1}L = I)_{\!\!S^*}$ for $S^* = \mathbb{R}^{n \times n}$

Standard approach: **exact triangular solves** (trsv)

- Inherently sequential, level scheduling often provides little parallelism.
- Over-engineering for incomplete factorization preconditioners with $S \subseteq \mathbb{R}^{n \times n}$? Preconditioner benefit limited by ILU quality

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

For matrix splitting $\,L=M_L-N_L\,$ we get

$$y = M_L^{-1}z + M_L^{-1}N_Ly$$

$$y = M_L^{-1}z + (I - M_L^{-1}L)y$$

$$\approx 0 \ \text{ for } (M_L^{-1}L = I)_{S^*} \text{ for some sparsity pattern } S^*$$

Use similar idea like in the factorization step: Approximate on some sparsity pattern!

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \\ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

$$\begin{split} y &= M_L^{-1}z + M_L^{-1}N_Ly\\ y &= M_L^{-1}z + (I - M_L^{-1}L)y\\ &\approx 0 \ \text{ for } (M_L^{-1}L = I)_{S^*} \text{ with } S^* = diag(L) \end{split}$$

$$\Longrightarrow$$
 Jacobi Iteration $y=D_L^{-1}z+\left(I-D_L^{-1}L
ight)y$

- -- More Krylov solver iterations may be needed
- + Faster triangular solves (few SpMVs) can make solution process faster 1,2

²Anzt, Chow, and Dongarra. "Iterative Sparse Triangular Solves for Preconditioning". In: LNCS. 2015.

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \\ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

For matrix splitting $\,L=M_L-N_L\,$ we get

$$y = M_L^{-1}z + M_L^{-1}N_Ly$$

$$y = M_L^{-1}z + (I - M_L^{-1}L)y$$

$$\approx 0 \text{ for } (M_L^{-1}L = I)_{S^*} \text{ with } S^* = diag_B(L)$$

Block Jacobi Iteration

- -- Need inverse of diagonal blocks
- + Good for problems with inherent block-structure (e.g. with FEM origin)³

³Chow and Scott. **"On the use of iterative methods and blocking for solving sparse triangular systems in incomplete factorization preconditioning".** *Rutherford-Appleton Technical Report RAL-P-2016-006, 2016.*

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems $\,Ly=z$, $\,Ux=y$.

$$\begin{split} y &= M_L^{-1}z + M_L^{-1}N_Ly \\ y &= M_L^{-1}z + (I - M_L^{-1}L)y \\ &\approx 0 \text{ for } (M_L^{-1}L - I) \approx 0 \\ &\Leftrightarrow (M_L^{-1}L - M_L^{-1}M_L) \approx 0 \\ &\Leftrightarrow (M_L^{-1}(L - M_L)) \approx 0 \\ &\Leftrightarrow (M_L^{-1}(LM_L^{-1}M_L - M_L)) \approx 0 \\ &\iff LM_L^{-1} \approx I \text{ i.e. } (LM_L^{-1} = I)_{S^*} \text{ for some } S^* \end{split}$$

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems Ly=z , Ux=y.

$$y=M_L^{-1}z+M_L^{-1}N_Ly$$

$$y=M_L^{-1}z+(\underbrace{I-M_L^{-1}L})y$$

$$\approx 0 \ \text{ for } (LM_L^{-1}=I)_{S^*} \text{ with, e.g. } S^*=spy(A)$$

Goal: Find solution to sparse linear problem $Ax = b, A \in \mathbb{R}^{n \times n}$.

Compute factorization

$$(A=LU)_{\mathcal{S}}$$
 for some sparsity pattern \mathcal{S} $\left\{egin{array}{ll} \mathcal{S}=\mathbb{R}^{n imes n} & ext{exact fact.} \\ \mathcal{S}=spy(A) & ext{ILU(0)} \end{array}
ight.$

Preconditioner application involves solving triangular systems Ly=z , Ux=y.

$$y=M_L^{-1}z+M_L^{-1}N_Ly$$

$$y=M_L^{-1}z+(\underbrace{I-M_L^{-1}L})y$$

$$\approx 0 \ \text{ for } (LM_L^{-1}=I)_{S^*} \text{ with, e.g. } S^*=spy(A)$$

- -- Need generation of SpAI matrix
- + One single SpMV for SpAI application
- + Flexibility in choice of the SpAI pattern (CA-Krylov methods...)

⁴Huckle, Anzt, Dongarra "Parallel Preconditioning". *In: SIAM PP 2016*.

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) Use RCM-reordering

BiCGSTAB Preconditioning	Iterations	Prec. setup time	Solver runtime	Total runtime
no	4,752			
ILU + cuSPARSE-trisolves	407			
ILU + Jacobi-trisolves (3s)	1,696			
ILU + Jacobi-trisolves (4s)	905			
ILU + Jacobi-trisolves (5s)	645			
ILU + SPAI (pattern L)	1,459			
ILU + SPAI (pattern L ²)	1,022			
ILU + SPAI (pattern L ³)	693			
ILU + SPAI (pattern L4)	531			

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) Use RCM-reordering

BiCGSTAB Preconditioning	Iterations	Prec. setup time	Solver runtime	Total runtime
no	4,752		8.21 s	
ILU + cuSPARSE-trisolves	407		43.72 s	
ILU + Jacobi-trisolves (3s)	1,696		13.01 s	
ILU + Jacobi-trisolves (4s)	905		8.64 s	~ 3x
ILU + Jacobi-trisolves (5s)	645		7.41 s	- 3x
ILU + SPAI (pattern L)	1,459		4.65 s	
ILU + SPAI (pattern L ²)	1,022		4.13 s	
ILU + SPAI (pattern L ³)	693		4.38 s	
ILU + SPAI (pattern L ⁴)	531		3.70 s	

Goal is to find
$$M_L^{-1}$$
 with $(LM_L^{-1}=I)_{S^*}$ for $S^*=spy(A)$

Goal is to find
$$M_L^{-1}$$
 with $(LM_L^{-1}=I)_{S^*}$ for $S^*=spy(A)$

Choose $spy(M_L^{-1}) = spy(L)$ and solve $L \cdot M_L^{-1}(i,:) = e_i \ \forall \ i = 1 \dots n$

Goal is to find
$$M_L^{-1}$$
 with $(LM_L^{-1}=I)_{S^*}$ for $S^*=spy(A)$

Use M for M_L^{-1} :

Same strategy for SpAI matrix approximating upper triangular factor.


```
L(J,J) \times M(J,i) = e_i(J)
```

```
for i=1:n
  J = find(M(:,i));
  generate L(J,J);
  solve L(J,J) M(J,i) = e<sub>i</sub>(J);
  insert M(J,i) into M;
end
```



```
L(J,J) \times M(J,i) = e_i(J)
```

```
for i=1:n
    J = find(M(:,i));
    generate L(J,J);
    solve L(J,J) M(J,i) = e<sub>i</sub>(J);
    insert M(J,i) into M;
end
```



```
for i=1:n
    J = find(M(:,i));
    generate L(J,J);
    solve L(J,J) M(J,i) = e<sub>i</sub>(J);
    insert M(J,i) into M;
end
```



```
L(J,J) \times M(J,i) = e_i(J)
```

```
for i=1:n
  J = find(M(:,i));
  generate L(J,J);
  solve L(J,J) M(J,i) = e_i(J);
  insert M(J,i) into M;
end
```


batched generation of M(:,i), i=1..n

trsv for system i


```
for i=1:n
    J = find(M(:,i));
    generate L(J,J);
    solve L(J,J) M(J,i) = e<sub>i</sub>(J);
    insert M(J,i) into M;
end
```



```
for i=1:n
    J = find(M(:,i));
    generate L(J,J);
    solve L(J,J) M(J,i) = e<sub>i</sub>(J);
    insert M(J,i) into M;
end
```

Four Batched Routines:

- Find the locations in each row
 - store size information for small tri-systems
 - store nonzero-locations to find matches
- Generate batch of small triangular systems
 - different sizes in uniformly-sized blocks
- Batched trsv
 - different sizes
 - non-coalescent in memory (uniform blocks)
 - use kernel-switch for hard-coded sizes
- Batched re-insertion into sparse SpAI matrix
 - non-coalescent reads/writes
- Batched trsv will become standard building block.
- Batched routines for extracting/inserting data into sparse structures?

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) Use RCM-reordering

BiCGSTAB Preconditioning	Iterations	Prec. setup time	Solver runtime	Total runtime
no	4,752	0.00 s	8.21 s	
ILU + cuSPARSE-trisolves	407	0.67 s	43.72 s	
ILU + Jacobi-trisolves (3s)	1,696	0.73 s	13.01 s	
ILU + Jacobi-trisolves (4s)	905	0.73 s	8.64 s	
ILU + Jacobi-trisolves (5s)	645	0.73 s	7.41 s	
ILU + SPAI (pattern L)	1,459	0.87 s	4.65 s	
ILU + SPAI (pattern L ²)	1,022	1.02 s	4.13 s	
ILU + SPAI (pattern L ³)	693	1.24 s	4.38 s	
ILU + SPAI (pattern L ⁴)	531	1.58 s	3.70 s	

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) Use RCM-reordering

BiCGSTAB Preconditioning	Iterations	Prec. setup time	Solver runtime	Total runtime
no	4,752	0.00 s	8.21 s	
ILU + cuSPARSE-trisolves	407	0.67 s	43.72 s	
ILU + Jacobi-trisolves (3s)	1,696	0.73 s	13.01 s	
ILU + Jacobi-trisolves (4s)	905	0.73	30% 8.64 s	
ILU + Jacobi-trisolves (5s)	645	0.73 s	7.41 s	
ILU + SPAI (pattern L)	1,459	0.87 s	4.65 s	
ILU + SPAI (pattern L ²)	1,022	1.02 s	4.13 s	
ILU + SPAI (pattern L ³)	693	1.24 s	4.38 s	
ILU + SPAI (pattern L ⁴)	531	1.58 s	3.70 s	

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) Use RCM-reordering

BiCGSTAB Preconditioning	Iterations	Prec. setup time	Solver runtime	Total runtime
no	4,752	0.00 s	8.21 s	8.21 s
ILU + cuSPARSE-trisolves	407	0.67 s	43.72 s	44.39 s
ILU + Jacobi-trisolves (3s)	1,696	0.73 s	13.01 s	13.74 s
ILU + Jacobi-trisolves (4s)	905	0.73 s	8.64 s	9.37 s
ILU + Jacobi-trisolves (5s)	645	0.73 s	7.41 s	8.14 s
ILU + SPAI (pattern L)	1,459	0.87 s	4.65 s	5.52 s
ILU + SPAI (pattern L ²)	1,022	1.02 s	4.13 s	5.15 s
ILU + SPAI (pattern L ³)	693	1.24 s	4.38 s	5.62 s
ILU + SPAI (pattern L ⁴)	531	1.58 s	3.70 s	5.28 s

Matrix	cuSP	ARSE	5 Ja	cobi	SPA	N L	SPA	I L ²
Laplace 2D	648	58.04 s	1,263	24.89 s	1,011	4.93 s	743	6.67 s
Laplace 3D	54	4.12 s	85	5.96 s	83	3.64 s	*	*
chipcoolO	63	1.94 s	61	0.16 s	102	0.18 s	*	*
apache2	631	22.52 s	-	-	-	-	-	-
ani7	1,356	76.46 s	-	_	5,873	8.94 s	3,178	5.98 s
shallow_water2	9	0.38 s	109	0.41 s	11	0.15 s	9	0.18 s
chem_master1	83	1.35 s	-	_	244	0.24 s	163	0.18 s
stomach	13	1.36 s	14	0.44 s	23	0.50 s	*	*
airfoil2d	50	2.92 s	52	0.16 s	108	0.17 s	*	*
G3_circuit	862	104.22 s	-	-	-	-	-	-
tmt_unsym	?	>10k s	2,455	71.74 s	3,070	40.04 s	2,665	54.34 s
FEM3Dthermal2	6	1.33 s	-	-	21	0.59 s	-	-
venkat01	13	0.99 s	17	0.23 s	38	0.31 s	*	*
mesh96	54	4.63 s	84	5.42 s	83	3.71 s	*	*

^{*} High memory requirement

- No convergence

Proof-of-concept study:

Large set of general matrices from University of Florida Matrix Collection

UFMC; https://www.cise.ufl.edu/research/sparse/matrices/

- BiCGSTAB as outer solver
- Comparison:
 - exact trsv (cuSPARSE v. 7.5),
 - Jacobi sweeps,
 - SpAI using sparsity pattern of spy(L), spy(L²), spy(L³)
- All computational routines from MAGMA-sparse (Nvidia K40 GPU, CUDA 7.5)

http://www.icl.utk.edu/~hanzt/precond_comparison/

Summary and Outlook

SpAI for solving sparse triangular systems in preconditioning very efficient:

- SpMV much faster than triangular exact solves
- Fast SpAl generation via batched routines
- Flexibility in choosing the SpAI nonzero-structure

Future work

- Optimize nonzero-structure (preconditioner quality vs. performance)
- Interplay with *CA-Krylov methods* (precond. communication pattern...)
- SpAI for efficient ILU preconditioning on distributed systems

This research is based on a cooperation between Hartwig Anzt from the University of Tennessee, and Thomas Huckle from TU Munich, and partly funded by the Department of Energy.

