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Factorizations for Sparse Matrices
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Factorizations for Sparse Matrices

S
for some sparsity pattern S

S = spy(A)

S = Rn⇥n exact fact.

ILU(0)*{Compute factorization    

*Saad: “Iterative Methods for Sparse Linear Systems (2nd Edition)”. SIAM, 2003. 

Many other choices possible for incomplete factorizations!

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n

(A = LU)



Preconditioner application involves solving triangular systems                   ,                  .
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Factorizations for Sparse Matrices

y = M�1
L z + (I �M�1

L L)y{
= 0 ML = Lfor , i.e. for

Standard approach: exact triangular solves (trsv)
• Inherently sequential, level scheduling often provides little parallelism.
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Factorizations for Sparse Matrices

y = M�1
L z + (I �M�1

L L)y{
= 0 ML = Lfor , i.e. for

Standard approach: exact triangular solves (trsv)
• Inherently sequential, level scheduling often provides little parallelism.
• Over-engineering for incomplete factorization preconditioners with                      ?

Preconditioner benefit limited by ILU quality
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S ( Rn⇥n

(M�1
L L = I)
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Factorizations for Sparse Matrices

Ly = z

L = ML �NL

y = M�1
L z +M�1

L NLy

y = M�1
L z + (I �M�1

L L)y

Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    

For matrix splitting                                      we get

{
for

S⇤⇡ 0 (M�1
L L = I) for some sparsity pattern S⇤

Use similar idea like in the factorization step: Approximate on some sparsity pattern!

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n



Jacobi Iteration
-- More Krylov solver iterations may be needed
+ Faster triangular solves (few SpMVs ) can make solution process faster 1,2

Preconditioner application involves solving triangular systems                   ,                  .
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Factorizations for Sparse Matrices

Ly = z

L = ML �NL

y = M�1
L z +M�1

L NLy

y = M�1
L z + (I �M�1

L L)y

Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    

For matrix splitting                                      we get

{
for with

S⇤⇡ 0 S⇤ = diag(L)

y = D�1
L z +

�
I �D�1

L L
�
y

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. In: SIAM J. on Sci. Comp. (2015).
2Anzt, Chow, and Dongarra. “Iterative Sparse Triangular Solves for Preconditioning”. In: LNCS. 2015.

(M�1
L L = I)

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n



Block Jacobi Iteration
-- Need inverse of diagonal blocks
+ Good for problems with inherent block-structure (e.g. with FEM origin)3

Preconditioner application involves solving triangular systems                   ,                  .
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Factorizations for Sparse Matrices
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L = ML �NL

y = M�1
L z +M�1

L NLy

y = M�1
L z + (I �M�1

L L)y

Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    

For matrix splitting                                      we get

{
for with⇡ 0

3Chow and Scott. “On the use of iterative methods and blocking for solving sparse triangular systems in incomplete factorization 
preconditioning”. Rutherford-Appleton Technical Report RAL-P-2016-006, 2016. 

S⇤ = diagB(L)S⇤(M�1
L L = I)

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n
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13

Factorizations for Sparse Matrices

Ly = z

L = ML �NL

y = M�1
L z +M�1

L NLy

y = M�1
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Ux = y
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S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    

For matrix splitting                                      we get

{
for⇡ 0 (M�1

L L� I) ⇡ 0

, (M�1
L L�M�1

L ML) ⇡ 0

, (M�1
L (L�ML)) ⇡ 0

, (M�1
L (LM�1

L ML �ML)) ⇡ 0

LM�1
L ⇡ I

{

i.e. for some S⇤(LM�1
L = I)S⇤

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n
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Factorizations for Sparse Matrices
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For matrix splitting                                      we get

{
for with, e.g. ⇡ 0 S⇤ = spy(A)(LM�1

L = I)S⇤

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n



SpAI aproach: choose           as sparse approximate inverse for     on pattern
-- Need generation of SpAI matrix
+ One single SpMV for SpAI application
+ Flexibility in choice of the SpAI pattern (CA-Krylov methods…)

Preconditioner application involves solving triangular systems                   ,                  .
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Factorizations for Sparse Matrices
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L NLy
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Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    

For matrix splitting                                      we get

{
for with, e.g. ⇡ 0

4Huckle, Anzt, Dongarra “Parallel Preconditioning”. In: SIAM PP 2016.

M�1
L S⇤L

S⇤ = spy(A)(LM�1
L = I)S⇤

Goal: Find solution to sparse linear problem                                    . 
Ax = b, A 2 Rn⇥n
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Example: ILU - BiCGSTAB

BiCGSTAB Preconditioning Iterations Prec. setup time Solver runtime Total runtime

no 4,752

ILU + cuSPARSE-trisolves 407

ILU + Jacobi-trisolves (3s) 1,696

ILU + Jacobi-trisolves (4s) 905

ILU + Jacobi-trisolves (5s) 645

ILU + SPAI (pattern L) 1,459

ILU + SPAI (pattern L2) 1,022

ILU + SPAI (pattern L3) 693

ILU + SPAI (pattern L4) 531

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) 
Use RCM-reordering
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BiCGSTAB Preconditioning Iterations Prec. setup time Solver runtime Total runtime

no 4,752 8.21 s

ILU + cuSPARSE-trisolves 407 43.72 s

ILU + Jacobi-trisolves (3s) 1,696 13.01 s

ILU + Jacobi-trisolves (4s) 905 8.64 s

ILU + Jacobi-trisolves (5s) 645 7.41 s

ILU + SPAI (pattern L) 1,459 4.65 s

ILU + SPAI (pattern L2) 1,022 4.13 s

ILU + SPAI (pattern L3) 693 4.38 s

ILU + SPAI (pattern L4) 531 3.70 s

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) 
Use RCM-reordering

~ 3x

Example: ILU - BiCGSTAB
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Generating SpAI for triangular factor

Goal is to find            with                                for  M�1
L S⇤ = spy(A)(LM�1

L = I)S⇤



19

Generating SpAI for triangular factor

Goal is to find            with                                for  M�1
L S⇤ = spy(A)(LM�1

L = I)S⇤

L ·M�1
L (i, :) = ei 8 i = 1 . . . nChoose and solve spy(M�1

L ) = spy(L)
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[L U] = ILU(A);
M = spones(L);                      % also possible L2, L3 …
n=length(L); 
for i=1:n

J = find(M(:,i)); % determine nonzero entries 
generate L(J,J); % small triangular system
solve L(J,J) M(J,i) = ei(J); % one trsv per column of M    
insert M(J,i) into M;              % insert data into SpAI matrix M

end 

Generating SpAI for triangular factor

Goal is to find            with                                for  

Same strategy for SpAI matrix approximating upper triangular factor.

M�1
L S⇤ = spy(A)(LM�1

L = I)S⇤

L ·M�1
L (i, :) = ei 8 i = 1 . . . n

Use M for           : M�1
L

Choose and solve spy(M�1
L ) = spy(L)
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor
L(J,J) x M(J,i) = ei(J)

         x       =
J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor
L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor
L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

...

generate set of small systems

J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor
L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

...

trsv for system i ......
batched generation of M(:,i), i=1..n

generate set of small systems

J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor
L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

...

trsv for system i ......
batched generation of M(:,i), i=1..n

insert into M

generate set of small systems

J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating SpAI for triangular factor

Four Batched Routines:
• Find the locations in each row

• store size information for small tri-systems
• store nonzero-locations to find matches

• Generate batch of small triangular systems 
• different sizes in uniformly-sized blocks

• Batched trsv
• different sizes
• non-coalescent in memory (uniform blocks)
• use kernel-switch for hard-coded sizes

• Batched re-insertion into sparse SpAI matrix 
• non-coalescent reads/writes

• Batched trsv will become standard building block.
• Batched routines for extracting/inserting data into sparse structures?
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BiCGSTAB Preconditioning Iterations Prec. setup time Solver runtime Total runtime

no 4,752 0.00 s 8.21 s

ILU + cuSPARSE-trisolves 407 0.67 s 43.72 s

ILU + Jacobi-trisolves (3s) 1,696 0.73 s 13.01 s

ILU + Jacobi-trisolves (4s) 905 0.73 s 8.64 s

ILU + Jacobi-trisolves (5s) 645 0.73 s 7.41 s

ILU + SPAI (pattern L) 1,459 0.87 s 4.65 s

ILU + SPAI (pattern L2) 1,022 1.02 s 4.13 s

ILU + SPAI (pattern L3) 693 1.24 s 4.38 s

ILU + SPAI (pattern L4) 531 1.58 s 3.70 s

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) 
Use RCM-reordering

Example: ILU - BiCGSTAB
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BiCGSTAB Preconditioning Iterations Prec. setup time Solver runtime Total runtime

no 4,752 0.00 s 8.21 s

ILU + cuSPARSE-trisolves 407 0.67 s 43.72 s

ILU + Jacobi-trisolves (3s) 1,696 0.73 s 13.01 s

ILU + Jacobi-trisolves (4s) 905 0.73 s 8.64 s

ILU + Jacobi-trisolves (5s) 645 0.73 s 7.41 s

ILU + SPAI (pattern L) 1,459 0.87 s 4.65 s

ILU + SPAI (pattern L2) 1,022 1.02 s 4.13 s

ILU + SPAI (pattern L3) 693 1.24 s 4.38 s

ILU + SPAI (pattern L4) 531 1.58 s 3.70 s

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) 
Use RCM-reordering

30%

Example: ILU - BiCGSTAB
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BiCGSTAB Preconditioning Iterations Prec. setup time Solver runtime Total runtime

no 4,752 0.00 s 8.21 s 8.21 s

ILU + cuSPARSE-trisolves 407 0.67 s 43.72 s 44.39 s

ILU + Jacobi-trisolves (3s) 1,696 0.73 s 13.01 s 13.74 s

ILU + Jacobi-trisolves (4s) 905 0.73 s 8.64 s 9.37 s

ILU + Jacobi-trisolves (5s) 645 0.73 s 7.41 s 8.14 s

ILU + SPAI (pattern L) 1,459 0.87 s 4.65 s 5.52 s

ILU + SPAI (pattern L2) 1,022 1.02 s 4.13 s 5.15 s

ILU + SPAI (pattern L3) 693 1.24 s 4.38 s 5.62 s

ILU + SPAI (pattern L4) 531 1.58 s 3.70 s 5.28 s

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0

Test matrix: parabolic_fem (n=525,825 nnz=3,674,625) 
Use RCM-reordering

Example: ILU - BiCGSTAB
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Matrix cuSPARSE 5 Jacobi SPAI L SPAI L2

Laplace 2D 648 58.04 s 1,263 24.89 s 1,011 4.93 s 743 6.67 s

Laplace 3D 54 4.12 s 85 5.96 s 83 3.64 s * *

chipcool0 63 1.94 s 61 0.16 s 102 0.18 s * *

apache2 631 22.52 s - - - - - -

ani7 1,356 76.46 s - - 5,873 8.94 s 3,178 5.98 s

shallow_water2 9 0.38 s 109 0.41 s 11 0.15 s 9 0.18 s

chem_master1 83 1.35 s - - 244 0.24 s 163 0.18 s

stomach 13 1.36 s 14 0.44 s 23 0.50 s * *

airfoil2d 50 2.92 s 52 0.16 s 108 0.17 s * *

G3_circuit 862 104.22 s - - - - - -

tmt_unsym ? >10k s 2,455 71.74 s 3,070 40.04 s 2,665 54.34 s

FEM3Dthermal2 6 1.33 s - - 21 0.59 s - -

venkat01 13 0.99 s 17 0.23 s 38 0.31 s * *

mesh96 54 4.63 s 84 5.42 s 83 3.71 s * *

NVIDIA K40 GPU, CUDA/cuSPARSE v7.0* High memory requirement
- No convergence

Example: ILU - BiCGSTAB
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Example: ILU - BiCGSTAB

Proof-of-concept study:

• Large set of general matrices from University of Florida Matrix Collection

• BiCGSTAB as outer solver

• Comparison: 
• exact trsv (cuSPARSE v. 7.5), 
• Jacobi sweeps, 
• SpAI using sparsity pattern of spy(L), spy(L2), spy(L3)

• All computational routines from MAGMA-sparse (Nvidia K40 GPU, CUDA 7.5)

UFMC; https://www.cise.ufl.edu/research/sparse/matrices/

http://www.icl.utk.edu/~hanzt/precond_comparison/
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Summary and Outlook
SpAI for solving sparse triangular systems in preconditioning very efficient:

• SpMV much faster than triangular exact solves 

• Fast SpAI generation via batched routines

• Flexibility in choosing the SpAI nonzero-structure

Future work

• Optimize nonzero-structure (preconditioner quality vs. performance)

• Interplay with CA-Krylov methods  (precond. communication pattern…)

• SpAI for efficient ILU preconditioning on distributed systems

This research is based on a cooperation between Hartwig Anzt from the University of Tennessee, 
and Thomas Huckle from TU Munich, and partly funded by the Department of Energy.


