
Reproducibility of
Computations and

Distributed Data Structures
William Gropp

www.cs.illinois.edu/~wgropp

2

Reproducibility Issues

•  Different order of evaluation can (but
remember Jim’s talk) lead to different
results – loss of bitwise identical
reproducibility

•  Two contributors to different ordering
♦ Ordering induced by decomposition across

memory domains
♦ Ordering induced to provide maximum

parallelism
•  Not just an issue of MPI_Allreduce

3

Reproducibility and Accuracy

• Reproducibility means getting the
same result bitwise independent of
the number of processors used.

• This is not the same as computing
an accurate solution

• This talk is concerned only with
reproducibility
♦ No claims about accuracy are made J

4

What Kind of Reproducibility?

•  “The same result I got with my serial code”
♦  Always possible, but may not be effectively parallel

or efficient
•  “The same result regardless of the number of

processes”
♦  This is the one I’m targeting, with an additional

caveat:
•  For the different number of processes in which I’m

interested

•  Note: Reproducibility applies to the entire
program

•  Also assuming the same hardware and code
choices by compiler

5

Example: Data
Decomposition

• A typical computation starts with
an expression of the serial
computation:
♦ Do i=1,n

 sum = sum + a(i)*b(i)
• Parallelizing to two processes gives

♦ Do i=1,n/2
 sum = sum + a(i)*b(i)
MPI_Allreduce(MPI_IN_PLACE,sum,…,
 MPI_SUM,comm)

6

Simple Data Decomposition

• This follows the common practice
of decomposing the data from a
single global object (the vectors)
to a collection of single local
objects (the vector elements
belonging to the process)

• This practice changes the order of
evaluation, leading to the loss of
bitwise reproducibility

7

Simple Data Decomposition

• Assumptions:
♦ Data divided into one block per

process
♦ Data processed first locally, then

globally
• E.g., first form local dot product, then

use MPI_Allreduce to get global sum

• Neither of these is necessary or
even a good idea…
♦ Lets look at the sum reduction again

8

Reduction With Different
Process Counts

++ ++++

+
+

+

+

+

Allreduce

Allreduce

Allreduce

1 process

8 processes

4 processes

2 processes

9

Typical Reduction Tree

+

+

+

+

+

+

+

No parallelism, since every operation depends on results
of a previous sum
“Centipede Tree”

10

Balanced Reduction Tree

+

+

++

+

+

+

11

Recursive Doubling Exchange

+

+ +++ ++

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

Offers parallelism, bitwise identical result independent of
number of processes

12

One Approach to Reproducibility

• Define a single schedule for
computing results independent of
the number of processes.
♦ Can always do this

• How will determine efficiency, parallelism

13

A Reproducible Dot Product Can Be
as Fast as a Simple Dot Product

• Strong scaling result to 128k ranks
• N=227=134217728

5.00E-05

5.00E-04

1000 4000 16000 64000

Ti
m

e

Processes

Performance of Allreduce

Allreduce

Reproducible

14

Notes on Reproducible Dot
Product Experiment

•  Example for 2k processes for k=0,…,17
•  Vector length 2j for j>=k+10

♦ Smallest block is 210 elements
•  Reproducible version faster because

uses a more parallel local sum, giving
better performance
♦ Could do for the “Allreduce” one, but used

simplest code
•  Both become communication bound

(vector rather short at a mere 128M)

15

An Alternate Design
Approach

•  Pick a single decomposition,
independent of p
♦ Have a maximum number of processes
♦ May have a set of processes, e.g., 2k

•  Pick a schedule for computation on the
decomposition, independent of p
♦ But choose to maximize available

parallelism
•  With care, computation is now

reproducible for all p (within set)

16

Relaxing the Schedule

• Using a different schedule may
give better performance
♦ Dynamic, adapt to different

computation speeds, especially on
SMP nodes

♦ Some schedules produce bitwise
identical results
• Order of evaluation of blocks does not

affect final result

•  If (mostly) the same code, fewer
places for bugs to reside

17

Comments for (Batched) BLAS

•  Can’t fix reproducibility by only looking at
parallel vector operations
♦  Having a “reproducible allreduce” is not sufficient

•  Data decomposition critical
♦  One block per core/thread/process may not be the

best choice
•  Offers other advantages, such as dynamic load

balancing on SMPs, memory hierarchy optimizations, …
♦  Good fit to using a small-tile approach
♦  Choices span many (often all) routines

•  May make sense to use inspector/executor approaches
•  Requires an API with separate setup and execute

routines

18

Conclusion

•  Reproducibility (in terms of “independent of
parallelism”) should be defined in terms of a
set of # of processes and data decomposition
♦  General case possible but (needlessly?) hard

•  Overdecomposition combined with a
deterministic, parallel-friendly schedule,
provides a way to achieve the same
operations, in the same order
♦  Can relax the schedule requirements to trade

performance for bit-wise reproducibility
•  Overhead can be low

♦  Demonstrated with dot product of distributed vectors

19

Thanks!

• Funding from:
♦ NSF
♦ Blue Waters

• Chris Gropp
♦ For earlier (and more general) work

