
 1

Bench-testing Environment for Automated Software Tuning (BEAST)

Programming Autotuners

Presenter: Piotr Luszczek
Collaborators: Jakub Kurzak, Mark Gates, Hartwig Anzt

Students: Yaohung (Mike) Tsai, Blake Haugen

Funded by NSF 1320603

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

2/21

MotivationMotivation

c ij=∑
k
a i kbk j

∀ B i=⋅POTRF (A i)

∀ B i=⋅GEQRF (Ai)

∀ B i=⋅GETRF (Ai)

O n ,k , p ,q=∑
c=0

C−1

∑
r=0

R−1

∑
s=0

S−1

F k , c ,r , sDn ,c , g (p ,u , R ,r ,h)…

S abij=∑
ck (∑

df
(∑

el
Bbef×D cdel) ×C dfjk) ×Aacik

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

3/21

Compilation vs. AutotuningCompilation vs. Autotuning

● Compilation
– Uses very limited autotuning
– Works for all codes
– Finishes in seconds
– Obeys the language syntax
– Optimizes for machine model
– Performs better for fixed sizes

● Autotuning
– Often relies on the compiler
– Works for some codes
– Finishes when optimized
– Delivers correct math
– Optimizes over experimental data
– Specializes in fixed sizes

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

4/21

Example: C = ABExample: C = AB
blk_n

bl
k_

m

blk_k

blk_n_a

bl
k_

m
_a

blk_n_b

bl
k_

m
_b

di
m

_m

bl
k_

k

dim_n

CA

B

c ij=∑
k
a i kbk j

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

5/21

Example: C = AB - ParametersExample: C = AB - Parameters

● dim_m
● dim_n
● blk_m
● blk_n
● blk_k
● blk_m_a
● blk_n_a
● blk_m_b
● blk_n_b
● Vectoriazation
● Use shmem
● ...

● 15 parameters
● Exponential search space
● Many parameter combinations are

invalid due to limitations in
– Hardware
– Software
– Algorithm

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

6/21

Problem with Manual IterationProblem with Manual Iteration

● For dim_m = 32:1024
– For dim_n = 32:1024

● For blk_m = dim_m:dim_m:maxM
– For blk_n = dim_n:dim_n:maxN

● For blk_k = 16:maxK
● For vectorize = “yes”, “no”

● For fetch_A = “yes”, “no”
● For texture = “none”, “1D”, “2D”

● …
● But make sure that:

– dim_m*dim_n doesn't exceed the number of thread blocks for the tested card
– There is enough shared memory
– There is enough registers
– Maintain occupancy levels above threshold
– ...

Constraints

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

7/21

Constraints' BasicsConstraints' Basics

● Constraints allow the code generator to substantially prune the search
space

● There are three categories of constraints
– Hard

● Based on hardware specification
– Total threads
– Maximum threads per block

– Soft
● Based on expected performance

– Occupancy level
– #FMAs per LOAD

– Correctness
● Based on algorithmic formulation

– Divisibility of sizes by blocking factors
– Numerical correctness

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

8/21

Iterator Basics: Declarative ApproachIterator Basics: Declarative Approach
● Expression iterators

– dim_m = range(32, max_threads_dim_x, 32)
blk_m = range(dim_m, maxM, dim_m)

● Function iterators
– @beast.iterator

def blk_n_a():
 x = blk_k
 if trans_a != 0:
 x = blk_m
 return range(x, 0, -1)

● Closure iterators
– @beast.iterator

def fibonacci():
 prev = next = 1
 while next <= largest_number:
 yield next
 next, prev = next+prev, next

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

9/21

Condition BasicsCondition Basics

● Conditions express any of the three kinds of constraints
● Conditions as expressions

– over_max_threads = beast.condition(block_threads>max_threads_per_block)
● Closure conditions

– @beast.condition
def over_max_shmem():

return block_shmem > max_shared_mem_per_block

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

10/21

Performance of Autotuning in PythonPerformance of Autotuning in Python

Python while Python range Python xrange
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

4.5
4.8

6.6

4.5

6.3
6.7

4.6

6.5
6.8

4.4

6.1
6.4

1 loop
2 loops
3 loops
4 loops

M
ill

io
n

ite
ra

tio
ns

 p
er

 s
ec

on
d

Higher is
better.

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

11/21

Performance of Autotuning in LuaPerformance of Autotuning in Lua

Lua while Lua repeat Lua for
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

19.3

22.1

32.4

19.3
21.1

32.3

19.2

22.0

31.8

18.8

21.6

30.0

1 loop
2 loops
3 loops
4 loops

M
ill

io
n

ite
ra

tio
ns

 p
er

 s
ec

on
d

Higher is
better.

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

12/21

Performance of Autotuning in C, Java, FotranPerformance of Autotuning in C, Java, Fotran

C Java Fortran

200

400

600

800

1000

1200

1400

948 925
997

1296 1269 12951294 1270 1292
1254 1227

1281

1 loop
2 loops
3 loops
4 loops

M
ill

io
n

ite
ra

tio
ns

 p
er

 s
ec

on
d

Higher is
better.

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

13/21

Optimizations DetailsOptimizations Details
● The code generator figures out the optimal order of loop nests
● Iterators become loops with proper nesting
● The nesting is determined by the dependence DAG
● Conditions have to be checked as early as possible to prune the search

space
– Compiler equivalent: loop invariant code motion

● Type inference keeps the generated code fast
– Scripting language iteration may be orders of magnitude slower

Language Performance (MIPS)

Python 7

Lua 32

C 1296

Java 1270

Fortran 1295

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

14/21

Optimizations: ExampleOptimizations: Example

dim_ndim_n vectorvectordim_mdim_m blk_kblk_k

blk_nblk_n low occupancy shmemlow occupancy shmem

blk_m_ablk_m_a blk_n_ablk_n_a blk_m_bblk_m_b blk_n_bblk_n_b

enough shmemenough shmem enough threadsenough threads sufficient occupancysufficient occupancy dimensions are congruentdimensions are congruent

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

15/21

Generated Code: This if for the CompilerGenerated Code: This if for the Compiler
for (dim_n = 32; dim_n < 1025; dim_n += 32)
 for (vector = 0; vector < 2; vector += 1)
 for (dim_m = 32; dim_m < 1025; dim_m += 32)
 for (blk_k = 16; blk_k < 64; blk_k += 16)
 for (blk_n = dim_n; blk_n < maxN + 1; blk_n += dim_n)
 for (blk_m = dim_m; blk_m < maxM + 1; blk_m += dim_m) {
 blk_m_a_type_len = 1;
 if (vector != 0)
 blk_m_a_type_len = dim_vec;
 blk_m_a_x = floor(blk_m / blk_m_a_type_len);
 if (trans_a != 0)
 blk_m_a_x = floor(blk_k / blk_m_a_type_len);
 for (blk_m_a = blk_m_a_x; blk_m_a < 0; blk_m_a += -blk_m_a_type_len) {
 blk_n_a_x = blk_k;
 if (trans_a != 0)
 blk_n_a_x = blk_m;
 for (blk_n_a = blk_n_a_x; blk_n_a < 0; blk_n_a += -1) {
 blk_n_b_x = blk_n;
 if (trans_b != 0)
 blk_n_b_x = blk_k;
 for (blk_n_b = blk_n_b_x; blk_n_b < 0; blk_n_b += -1) {
 blk_m_b_type_len = 1;
 if (vector != 0)
 blk_m_b_type_len = dim_vec;
 blk_m_b_x = floor(blk_k / blk_m_b_type_len);
 if (trans_b != 0)
 blk_m_b_x = floor(blk_n / blk_m_b_type_len);
 for (blk_m_b = blk_m_b_x; blk_m_b < 0; blk_m_b += -blk_m_b_type_len)

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

16/21

extract
hardware

information

NVIDIA Kepler

AMD Fiji

Intel Xeon Phi

generation
& pruning

engine

extract
compilation
information

nvcc

Open 64

icc

CUDA

OpenCL

C

kernel
stencil

Distributed benchmarking
engine

Extract performance

information

workstation

MPP

server

Machine learning
engine

Adjust tuning
parameters

pruning
constraints

principal components

genetic algorithms

decision trees

analysis
and

reporting

profiles

projections

charts

verification

BEAST DesignBEAST Design

Bench-testing
Environment for
Automated
Software
Tuning

Bench-testing
Environment for
Automated
Software
Tuning

http://icl.utk.edu/beast/

http://icl.utk.edu/beast/

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

17/21

Performance: the Traditional ViewPerformance: the Traditional View

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

18/21

Data Analysis: Convex HullData Analysis: Convex Hull

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

19/21

Hierarchical Clustering of GPU MetricsHierarchical Clustering of GPU Metrics

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

20/21

Future WorkFuture Work

● Apply autotuning to new kernels
● Continue work on parallel code compilation and autotuning

– Multilevel parallelism: OpenMP and MPI
● Add new language features to the code generators
● Integration of the generated code with existing libraries

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

21/21

The Road AheadThe Road Ahead

