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MotivationMotivation
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Compilation vs. AutotuningCompilation vs. Autotuning

● Compilation
– Uses very limited autotuning
– Works for all codes
– Finishes in seconds
– Obeys the language syntax
– Optimizes for machine model
– Performs better for fixed sizes

● Autotuning
– Often relies on the compiler
– Works for some codes
– Finishes when optimized
– Delivers correct math
– Optimizes over experimental data
– Specializes in fixed sizes
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Example: C = ABExample: C = AB
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Example: C = AB - ParametersExample: C = AB - Parameters

● dim_m
● dim_n
● blk_m
● blk_n
● blk_k
● blk_m_a
● blk_n_a
● blk_m_b
● blk_n_b
● Vectoriazation
● Use shmem
● ...

● 15 parameters
● Exponential search space
● Many parameter combinations are 

invalid due to limitations in
– Hardware
– Software
– Algorithm
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Problem with Manual IterationProblem with Manual Iteration

● For dim_m = 32:1024
– For dim_n = 32:1024

● For blk_m = dim_m:dim_m:maxM
– For blk_n = dim_n:dim_n:maxN

● For blk_k = 16:maxK
● For vectorize = “yes”, “no”

● For fetch_A = “yes”, “no”
● For texture = “none”, “1D”, “2D”

● …
● But make sure that:

– dim_m*dim_n doesn't exceed the number of thread blocks for the tested card
– There is enough shared memory
– There is enough registers
– Maintain occupancy levels above threshold
– ...

Constraints
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Constraints' BasicsConstraints' Basics

● Constraints allow the code generator to substantially prune the search 
space

● There are three categories of constraints
– Hard

● Based on hardware specification
– Total threads
– Maximum threads per block

– Soft
● Based on expected performance

– Occupancy level
– #FMAs per LOAD

– Correctness
● Based on algorithmic formulation

– Divisibility of sizes by blocking factors
– Numerical correctness
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Iterator Basics: Declarative ApproachIterator Basics: Declarative Approach
● Expression iterators

– dim_m = range( 32, max_threads_dim_x, 32 )
blk_m = range( dim_m, maxM, dim_m )

● Function iterators
– @beast.iterator

def blk_n_a():
    x = blk_k
    if trans_a != 0:
        x = blk_m
    return range(x, 0, -1)

● Closure iterators
– @beast.iterator

def fibonacci():
    prev = next = 1
    while next <= largest_number:
        yield next
        next, prev = next+prev, next
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Condition BasicsCondition Basics

● Conditions express any of the three kinds of constraints
● Conditions as expressions

– over_max_threads = beast.condition( block_threads>max_threads_per_block )
● Closure conditions

– @beast.condition
def over_max_shmem():

return block_shmem > max_shared_mem_per_block
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Performance of Autotuning in PythonPerformance of Autotuning in Python

Python while Python range Python xrange
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Performance of Autotuning in LuaPerformance of Autotuning in Lua
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Performance of Autotuning in C, Java, FotranPerformance of Autotuning in C, Java, Fotran
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Optimizations DetailsOptimizations Details
● The code generator figures out the optimal order of loop nests
● Iterators become loops with proper nesting
● The nesting is determined by the dependence DAG
● Conditions have to be checked as early as possible to prune the search 

space
– Compiler equivalent: loop invariant code motion

● Type inference keeps the generated code fast
– Scripting language iteration may be orders of magnitude slower

Language Performance (MIPS)

Python 7

Lua 32

C 1296

Java 1270

Fortran 1295
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Optimizations: ExampleOptimizations: Example

dim_ndim_n vectorvectordim_mdim_m blk_kblk_k

blk_nblk_n low occupancy shmemlow occupancy shmem

blk_m_ablk_m_a blk_n_ablk_n_a blk_m_bblk_m_b blk_n_bblk_n_b

enough shmemenough shmem enough threadsenough threads sufficient occupancysufficient occupancy dimensions are congruentdimensions are congruent
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Generated Code: This if for the CompilerGenerated Code: This if for the Compiler
for (dim_n = 32; dim_n < 1025; dim_n += 32)
    for (vector = 0; vector < 2; vector += 1)
        for (dim_m = 32; dim_m < 1025; dim_m += 32)
          for (blk_k = 16; blk_k < 64; blk_k += 16)
            for (blk_n = dim_n; blk_n < maxN + 1; blk_n += dim_n)
              for (blk_m = dim_m; blk_m < maxM + 1; blk_m += dim_m) {
                  blk_m_a_type_len = 1;
                  if (vector != 0)
                    blk_m_a_type_len = dim_vec;
                  blk_m_a_x = floor(blk_m / blk_m_a_type_len);
                  if (trans_a != 0)
                    blk_m_a_x = floor(blk_k / blk_m_a_type_len);
                  for (blk_m_a = blk_m_a_x; blk_m_a < 0; blk_m_a += -blk_m_a_type_len) {
                      blk_n_a_x = blk_k;
                      if (trans_a != 0)
                        blk_n_a_x = blk_m;
                      for (blk_n_a = blk_n_a_x; blk_n_a < 0; blk_n_a += -1) {
                          blk_n_b_x = blk_n;
                          if (trans_b != 0)
                            blk_n_b_x = blk_k;
                          for (blk_n_b = blk_n_b_x; blk_n_b < 0; blk_n_b += -1) {
                              blk_m_b_type_len = 1;
                              if (vector != 0)
                                blk_m_b_type_len = dim_vec;
                              blk_m_b_x = floor(blk_k / blk_m_b_type_len);
                              if (trans_b != 0)
                                blk_m_b_x = floor(blk_n / blk_m_b_type_len);
                              for (blk_m_b = blk_m_b_x; blk_m_b < 0; blk_m_b += -blk_m_b_type_len)
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Performance: the Traditional ViewPerformance: the Traditional View
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Data Analysis: Convex HullData Analysis: Convex Hull
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Hierarchical Clustering of GPU MetricsHierarchical Clustering of GPU Metrics
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Future WorkFuture Work

● Apply autotuning to new kernels
● Continue work on parallel code compilation and autotuning

– Multilevel parallelism: OpenMP and MPI
● Add new language features to the code generators
● Integration of the generated code with existing libraries



Workshop on Batched, Reproducible, and Reduced Precision BLAS
Knoxville, TN, USA
May 18-19, 2016

21/21

The Road AheadThe Road Ahead


