@ Science & Technology
Facilities Council

Do we need to support alternative data formats
for Batched BLAS?

Jonathan Hogg

STFC Rutherford Appleton Laboratory

May 18, 2016

1/17
oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

WARNING

» I've not implemented this stuff personally
» Slightly outside my area of expertise

» Please shout up if you think I'm wrong!

Science & Technolo;
2/17 @ Facilities Council i

oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Starting Point #1

What is the point of B-BLAS if | can do this?

#pragma omp parallel do
for(int i=0; i<n; ++1i)
dgemm (. ..);

Science & Technology
3/17 @ Facilities Council

?oantgt oarrrlnﬁggg?r E%Fgegu%l!l_eArgnrd Appleton Laboratory

Starting Point #1

What is the point of B-BLAS if | can do this?

#pragma omp parallel do
for(int i=0; i<n; ++1i)
dgemm (. ..);

Get rid of overheads?

» Only important for small matrices!

Science & Technology
3/17 @ Facilities Council

?oantgt %rr:nﬁggg?r E%Fgelgu%!l_eArngd Appleton Laboratory

Starting Point #2

Sparse Cholesky

» Not uncommon to have 100s-10,000s small matrices
» Can be treated independently
» Sizes often in range 2 x 1 to 250 x 8.

» Perform partial Cholesky or similar

Science & Technology
4/17 @ Facilities Council

?oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Small matrices

At these sizes keeping FMA port fed is the hard part.

Four enemies:
» Special op throughput (sqrt, div)
» Haswell VDIVPD, VSQRTPD 16+ clocks/op
» Steamroller VDIVPD, VSQRTPD 9+ clocks/op
» Instruction latency / number of avx registers

» Haswell VFMADDPD 5 clocks; 16 registers
» Steamroller VFMADDPD 5-6 clocks; 16 registers

» Memory latency
» Haswell L1=4 cycles, L2=12 cycles, L3=36 cycles,
RAM=L3+57ns ~ 170 cycles
» Memory bandwidth

» Haswell per cache line L1=0.5 cycles, L2=2.2 cycles, L3=4.7
cycles, RAM = 45 cycles

Science & Technology
5/17 @ Facilities Council

oantgt oarrznﬁ%)sgfg?r E%Fgelgu%fll_eAréer Appleton Laboratory

Focus on: memory

Only 16 AVX registers

» Can't have that many operations in flight

» Need most of these registers just to hide instruction latency?
» But L1 cache can (almost) keep up

» Bandwidth = 2 loads/cycle
» 2 FMA ports/cycle

» L2, L3 and main memory can't keep up.

» Need to work with L1-size batches for implement batched
Cholesky etc. on top?

Avoid wasted memory loads

Science & Technology
6 /17 @ Facilities Council

?oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Padding is a poor solution

We could just pad with zeroes to multiple of vector size.
AVX vector length 8 SP or 4 DP
AVX512 vector length 16 SP or 8 DP
Cuda warpSize 32 SP or 32 DP (but loads more flexible?)
DP (useful loads) / (total loads):
m 1 2 3 4 5 6 7 8 129 257

050 0.75 1.00 063 075 0838 1.00 098 0.99
050 063 075 088 1.00 0.95 0.97

AVX
AVX512

CUDA 0.81 0.89

SP (useful loads) / (total loads):
m 4 5 6 7 8 120 257
050 063 0.75 083 1.00 095 0097

AVX512
CUDA

0.50 0.90 0.94

0.81 0.89

FP16 even worse!

Science & Technology
7/17 @ Facilities Council

oantgt %rrrnnﬁgggr E?Feelgu%l-lfeArgnrd Appleton Laboratory

Padding is a poor solution

We could just pad with zeroes to multiple of vector size.
AVX vector length 8 SP or 4 DP

AVX512 vector length 16 SP or 8 DP

Cuda warpSize 32 SP or 32 DP (but loads more flexible?)

DP (useful loads) / (total loads):
m 1 2 3 4 5 6 7 8 129 257

AVX 050 075 1.00 063 075 083 100 098 0.99

AVX512 050 063 075 088 100 095 0.97

CUDA 0.81 0.89
SP (useful loads) / (total loads):

m 4 5 6 7 8 120 257

050 063 075 088 1.00 0.95 0.97

0.50 0.90 0.94
0.81 0.89

AVX512
CUDA

FP16 even worse!
Generally want m > 2.5 x vector length

7/17 & Science & Technology

t ts fo BLA: @ Facilities Council
ata formats for e
onathan ﬁogg, E?Fe Iguthergnrd Appleton Laboratory

The interleaved solution

» If we have vector length operations of same type/size
4 matrices of size 2 x 2:

0) (1) (2) (3) _(0) (1) (2) (3) _(0) (1) _(2) (3) _(0) (1) _(2) (3
3((Jo)ag)o)3(()0)3(()0)5’&0)350)3&0)350)381)381)381)3(()1)‘9&1)3:([1)3&1)3&1)

Science & Technology
8 /17 @ Facilities Council

?oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

The interleaved solution

» If we have vector length operations of same type/size
4 matrices of size 2 x 2:

0) (1) (2) (3) _(0) (1) (2) (3) _(0) (1) _(2) (3) _(0) (1) _(2) (3
a((Jo)ag)o)3(()0)3(()0)5’&0)350)ago)ago)a((n)agn)381)3(()1)‘9&1)3:([1)351)3&1)

v

Easy to load the ajj-th entry of vec-len matrices in one go

v

All oeprations with different vector operations are independent

No need for horizontal reductions

v

v

No wasted loads (if multiple of vector size in batch)

Science & Technology
8 /17 @ Facilities Council

oantgt %rrznﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Sparse Cholesky: can we use it?

fully — e—
partial ==

% small nodes vectorized

0 50 100 150 200
Problem

Science & Technology
9/17 @ Facilities Council

?oantgt oarr:nﬁggg?r E%Fgelgu%!l_eArgnrd Appleton Laboratory

Transform to interleaved?

Just use a more complicated load...

Data set size ~ VMOVAP _mm256_set_pd() VGATHER
234 KB [2.874, 3.271] [4.143,4.869] [10.333, 11.663]
764 MB [3.732,3.954] [4.243,4.934] [10.326, 10.995]
764 MB [7.607, 9.107] [11.280, 14.217] [10.620, 10.644]

» Overhead >40% on L2, >10% on L3
» New VGATHER only worthwhile from Main memory?

Science & Technolo;
10 / 17 @ Facilities Council i

éntgtﬁoarr:nﬁ?gfg?r E%Fgelgu%fll_eAré)rd Appleton Laboratory

Special function units?
Do we need to consolidate DIV, SQRT to be vectorized?
Single TRSM solve XA =B, Ais nx nand X, B are m x n:
» At least n DIVs
> At least mn FMAs
= DTRSM bound on scalar DIV throughput if m < 64.

(64 = 16 clocks/DIV * veclen 4 for FMA)
= Reduced to m < 16 if we can use vector DIV.

Science & Technolo;
11 /17 @ Facilities Council i
a

éntgtﬁorr:nﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Special function units?

Do we need to consolidate DIV, SQRT to be vectorized?
Single TRSM solve XA =B, Ais nx nand X, B are m x n:

> At least n DIVs
» At least mn FMAs

= DTRSM bound on scalar DIV throughput if m < 64.
(64 = 16 clocks/DIV * veclen 4 for FMA)
= Reduced to m < 16 if we can use vector DIV.

» For TRSM can get this within single matrix - but not for
Cholesky (RSQRT is on critical path + also need a DIV per
column).

» Can do this without interleaving - but fiddly!
» Interleaved data makes this trivial.

» But we might be bound on memory loads anyway?

Science & Technolo;
11 /17 @ Facilities Council i
a

éntgtﬁorr:nﬁ?gfg?r E%Fgelgu%fll_eAréer Appleton Laboratory

Why not a separate “microblas”?

» This might be a good idea implementation-wise
» But we're discussing an API specification
» Balance: extra implementation cost vs benefit

If we don't support very small matrices what's the point?
> Clearly batched BLAS are useful on GPUs:
» Can’t write own fast code - need access to physical register
allocation that isn't available without going below PTX.
» Kernel launch overheads.
> Less useful on CPUs if we do the trivial:
» Running multiple matrices with OpenMP not hard.
» DIY is better with existing parallel schemes (eg tasks).
» On CPUs need to deliver a benefit on a single core level
» Only run argument checking overhead once (or not at all!)
» Use multiple matrices to hide memory and instruction latencies
» Above advantages only really significant for very small
matrices?

12 /17 & Science & Technology
a

t ts f BLA @ Facilities Council
éngtﬁorr:nﬁcfgg?r E%Fgelguther%rd Appleton Laboratory

Support for memory alignment

Without memory alignment:
» Need “top” and “tail” loops (handle unaligned parts)
» These can be large overhead on small matrices

With memory alignment:

> Users would need to promise aligned vectors

v

Leading dimension multiple of vector size

v

To avoid tail loop, need to zero out unwanted part

v

Users can often meet these conditions cheaply!

v

Probably faster even without explicit exploitation
Notes:

» No native support for memory alignment in Fortran :(

Science & Technolo;
13 /17 @ Facilities Council i
a

éntgtﬁorr:nﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Suggested Changes

Change: support memory alignment
» Add “aligned” flag. User promises:

1. First element of any matrix is aligned
2. 1da is multiple of vector length

» Easily ignored by vendors if no desire to implement

» Easy win?

Science & Technolo;
14 /17 @ Facilities Council i
a

gntgtﬂorr:nﬁfggfgczr E%Fgelgu%fll_eArngd Appleton Laboratory

Suggested Changes
Change: support memory alignment

» Add “aligned” flag. User promises:

1. First element of any matrix is aligned
2. 1da is multiple of vector length

» Easily ignored by vendors if no desire to implement
» Easy win?
Change: support interleaved data format

» Either “interleaved” flag; or
» Add an “1lda-like” variable for the interleaving.
» Easy to detect when this is 1 and run traditional code.

v

Extra work for implementors

v

Lack may drive people to implement own code instead

v

Need to assess cost/benefit?

Science & Technology
14 /17 @ Facilities Council
a

éntgtﬁorr:nﬁi)sgfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

One more thing...

Can we tack a 2d sparse scatter on the end
of _gemm?
> i.e. provide arrays rlist, clist and do
c(rlist(i), clist(j))+ = >, a(i, k) * b(k, j)
» Avoid C falling out of cache
» Hide indirection latency behind arithmetic

» Essential to sparse direct solvers

Science & Technolo;
15 /17 @ Facilities Council i

éntgtﬁoarr:nﬁ?gfg?r E%Fgelgu%fll_eAréer Appleton Laboratory

Discuss.

Science & Technolo;
16 / 17 @ Facilities Council i

gntgtﬁ%rr:nﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

Aligned vs Unaligned Loads
Data set size VMOVAP VMOVUP
aligned unaligned
234 KB [2.897, 3.462] [2.886, 3.427] [3.208, 3.827]
7.64 MB [3.707, 3.968] [3.659, 3.946] [3.991, 4.288]
764 MB [7.967, 7.979] [7.956, 7.969] [8.078, 8.096]
[mean-1sd, mean+1sd]x10~10 per load

=- Alignment of data important, not instruction?

Science & Technolo;
17 /17 @ Facilities Council i

éntgtﬁoarr:nﬁ?gfg?r E%Fgelgu%fll_eAré)rd Appleton Laboratory

Aligned vs Unaligned Loads
Data set size VMOVAP VMOVUP
aligned unaligned
234 KB [2.897, 3.462] [2.886, 3.427] [3.208, 3.827]
7.64 MB [3.707, 3.968] [3.659, 3.946] [3.991, 4.288]
764 MB [7.967, 7.979] [7.956, 7.969] [8.078, 8.096]
[mean-1sd, mean+1sd]x10~10 per load

=- Alignment of data important, not instruction?

BUT: Alignment allows direct load in eg VFMADDPD.

VADDPD
w mem operand
234 KB [6.607, 7.788]
7.64 MB [6.849, 7.349]
764 MB [7.019, 7.153]

Science & Technolo;
17 /17 @ Facilities Council i

gntgtﬁ%rr:nﬁ?gg?r E%Fgelgu%fll_eAré)rd Appleton Laboratory

Summary of results

v

Aligned vs unaligned load instructions does not matter too
much.

v

Alignment of memory does: 5-15% penalty.

v

Transforming to interleaved in registers: 40% overhead.

v

Padding bad solution for small matrices: Need m > 2.5vj, to
be at least 75% efficient. Length 32 vector = m > 72

Science & Technolo;
18 / 17 @ Facilities Council i
a

éntgtﬁorr:nﬁfggfg?r E%Fgelgu%fll_eArngd Appleton Laboratory

