

May 18th - 19th, 2016

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Innovative Computing Laboratory
University of Tennessee
Knoxville, TN

Example of Cholesky’s Efficient Implementations

J. Kurzak
P. Luszczek
M. Gates
H. Anzt

Scope
batched spotrf

precision

IEEE double precision

IEEE single precision

relaxed single precision

size

large (up to 500)

small (up to 100)

ultra small (~20)

technology

composite kernel

monolithic kernel

variable size

fixed size

machine learning

autotuning

Motivation
machine learning

doubts

Are they really so small?

Is there really so many?

Are they fixed size?

Alternating Least Squares

Apache Mahout

Spark MLlib

GraphLab (Dato)

Intel DAAL

Netflix Prize

batch size: 17,000 and 500,000

matrix size: 10 – 100

uniform batch

Techniques
kernel development

coding

C++ templates (parametrization)

#pragma unroll (low level unrolling)

pyexpander (high level unrolling)

algorithmic

LAPACK-style blocking

PLASMA-style tiling

lazy evaluation (left / top looking)

Texture Reads

texture objects

__ldg() intrinsic

Vector Types

double2, float4, …

Tools

nvprof

nvdisasm

basically techniques for optimizing serial performance for

memory efficiency and ILP

BEAST / BONSAI
autotuning

Thank you for your

letters of collaboration!

NVIDIA

Intel

AMD

Cholesky
sportf

N

N

1

N

N

NB

N

N

NB

blocking (LAPACK)

data locality

register reuse

surface to volume effect

lazy evaluation

left-looking

memory efficiency

minimizing writes

canonical

BLAS 2

memory bound

Cholesky
spotrf

lazy evaluation / left-looking / “out of core”

maximizes data reuse

minimizes writes

Cholesky
sportf panel

useful work

actual work

Use right-looking algorithms to maximize SIMT parallelism.

Do wasteful work, but minimum number of conditionals.

Cholesky
autotuning

For each matrix size N tune:

panel width (NB)

thread block shape

(blockDim.x, blockDim.y)

not an exhaustive sweep

Kernels
sposv_batched

Implementation and Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUs
IEEE Transactions on Parallel and Distributed Systems
http://dx.doi.org/10.1109/TPDS.2015.2481890

http://dx.doi.org/10.1109/TPDS.2015.2481890

Cholesky
sportf

Cholesky
relaxing IEEE

Cholesky
spotrs

thread block

Solve

single right hand side

L in lower triangle

LT in upper triangle

multiple solves in each thread block

Cholesky
sposv

ALS
speedup over Spark

Accelerating Collaborative Filtering Using Concepts from High Performance Computing
2015 IEEE International Conference on Big Data
DOI: 10.1109/BigData.2015.7363811

http://dx.doi.org/10.1109/BigData.2015.7363811

Cholesky
one thread per matrix

Pros

zero synchronization

zero load imbalance

no shared memory

Cons

no cache / shared memory reuse

unthinkable on standard layout

basically requires batch-major layout

LAPACKE: column-major / row-major

cuDNN: NCHW / NHWC

N

N

N

N

NBNB

Cholesky
one thread per matrix

algorithmic

PLASMA-style tiling

the laziest evaluation (top-looking)

basically completely serial implementation from the standpoint of each thread

no parallelization or vectorization considerations

tuning parameters

right-looking, left-looking, top-looking

thread block length (blockDim.x)

tile size (NB)

unrolling tile operations of the full factorization

Cholesky
one thread per matrix

Cholesky
performance

Cholesky
performance

Conclusions

For batched on GPUs you have to write specialized routines.

We know how (common DLA wisdom applies).

Autotuning works like a charm.

For the most part on CPUs MKL+OpenMP gets the job done.

Unorthodox layouts?

Layout translation?

On the fly?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

