May 18th - 19th, 2016

Workshop on Batched, Reproducible, and Reduced Precision BLAS

Innovative Computing Laboratory University of Tennessee Knoxville, TN

Example of Cholesky's Efficient Implementations

J. Kurzak

P. Luszczek

M. Gates

H. Anzt

Scope

batched spotrf

precision

- IEEE double precision
- IEEE single precision
- relaxed single precision

- machine learning

size

• large (up to 500)

• variable size

• small (up to 100)

fixed size

• ultra small (~20)

technology

- composite kernel
- monolithic kernel autotuning

Motivation

machine learning

doubts

- Are they really so small?
- Is there really so many?
- Are they fixed size?

Alternating Least Squares

- Apache Mahout
- Spark MLlib
- GraphLab (Dato)
- Intel DAAL

Netflix Prize

- batch size: 17,000 and 500,000
- matrix size: 10 100
- uniform batch

Techniques

kernel development

coding

- C++ templates (parametrization)
- #pragma unroll (low level unrolling)
- pyexpander (high level unrolling)

algorithmic

- LAPACK-style blocking
- PLASMA-style tiling
- lazy evaluation (left / top looking)

basically techniques for optimizing serial performance for memory efficiency and ILP

Texture Reads

- texture objects
- _ldg() intrinsic

Vector Types

double2, float4, ...

Tools

- nvprof
- nvdisasm

BEAST / BONSAI

autotuning

Thank you for your letters of collaboration!

- NVIDIA
- Intel
- AMD

sportf

canonical

- BLAS 2
- memory bound

blocking (LAPACK)

- data locality
- register reuse
- surface to volume effect

lazy evaluation

- left-looking
- memory efficiency
- minimizing writes

spotrf

lazy evaluation / left-looking / "out of core"

- maximizes data reuse
- minimizes writes

sportf panel

useful work

Use right-looking algorithms to maximize SIMT parallelism. Do wasteful work, but minimum number of conditionals.

actual work

Cholesky autotuning

For each matrix size N tune:

- panel width (NB)
- thread block shape (blockDim.x, blockDim.y)
- not an exhaustive sweep

Kernels

sposv_batched

Implementation and Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUsIEEE Transactions on Parallel and Distributed Systems

http://dx.doi.org/10.1109/TPDS.2015.2481890

sportf

Cholesky relaxing IEEE

spotrs

Solve

- single right hand side
- L in lower triangle
- L^T in upper triangle

multiple solves in each thread block

thread block

sposv

ALS speedup over Spark

Accelerating Collaborative Filtering Using Concepts from High Performance Computing 2015 IEEE International Conference on Big Data DOI: 10.1109/BigData.2015.7363811

one thread per matrix

Pros

- zero synchronization
- zero load imbalance
- no shared memory

Cons

- no cache / shared memory reuse
- unthinkable on standard layout
 basically requires batch-major layout

- LAPACKE: column-major / row-major
- cuDNN: NCHW / NHWC

one thread per matrix

algorithmic

- PLASMA-style tiling
- the laziest evaluation (top-looking)

basically completely serial implementation from the standpoint of each thread no parallelization or vectorization considerations

one thread per matrix

tuning parameters

- right-looking, left-looking, top-looking
- thread block length (blockDim.x)
- tile size (NB)
- unrolling tile operations of the full factorization

Cholesky performance

Cholesky performance

Conclusions

- For batched on GPUs you have to write specialized routines.
- We know how (common DLA wisdom applies).
- Autotuning works like a charm.
- For the most part on CPUs MKL+OpenMP gets the job done.
- Unorthodox layouts?
- Layout translation?
- On the fly?

