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< Qverview

* Look at High Performance Computing
today

* A New Benchmark for HPC

* Top 10 Challenges for Extreme
Scale Computing
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< State of Supercomputing in 2014

* Interest in supercomputing is now worldwide, and
growing in many new markets (over 50% of Top500
computers are in industry).

* Pflops computing fully established with 31
systems.

* Exascale projects exist in many countries and
regions.
* Three technology “swim lanes” or architecture
possibilities are thriving.
« Commodity (e.g. Intel)
« Commodity + accelerator (e.g. GPUs)
» Special purpose lightweight cores (e.g. IBM BG)
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H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World
- Yardstick: Rmax from LINPACK benchmark

AX =b, dense problem TPP perf ce

- Updated twice a year —
SC'xy in the States in November
Meeting in Germany in June

Rate

- All data available from www.top500.0rg
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£ Countries Share of Top500
November 2013

US & China Dominate with ~2/3 of the Performance

Absolute Counts

uUsS: 267
China: 63
Japan: 28
UK: 23
France: 22
Germany: 20
% of Flop/s

us: 48.5%
China: 19.4%




¢. Performance Development of HPC
~ QOver the Last 20 Years From Top500

224 PFlop/s
100 Pflop/s
33.9 PFlgp/s
10 Pflop/s
1 Pflop/s SUM
100 Tflop/s
10 Tflop/s 118 TFlop/s
6-8 years ’-’
1 Tflop/s
1.17 TFlop/s
N=500 My Laptop (140 Gflop/s
100 Gflop/s y Laptop ( P ﬁ)f
9.7 GFlop/s
10 Gflop/s
My iPad Air (4 Gflop/s)
1 Gflop/s +
That same iPad has a storage capacity rivaling
400 MFlop/s the text-based content of a major research library.
100 Mflop/s

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013
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t The TOP

10 Systems

Rank Site Computer Country Cores [,,,2 ﬁ;’;] fe:}: /;'m’f/; I’/Ag,/ao’;:
National Super Tianhe-2 NUDT,
1 | Computer Center in | Xeon 12C 2.26Hz + IntelXeon 3,120, 33.9 62 || 17.8 || 1905
Guangzhou [ + —
DOE / Os Titan, Cray XK7 (16C€) + Nvidia |+ e
2 | Oak Ridge Nat Lab Kepler GPU (14c) + Custom | LG oo e b | |
DOE / NNSA Sequoia, BlueGene/Q (16c¢)
3 L Livermore Nat Lab + custom 1,572, 86J 17.2 85 7.9 || 2063
RIKEN Advanced Inst K computer Fujitsu SPARC64
5 for Comp Sci VIIIfx (8c) + Custom 705,024 | 10.5 | 93 IS
DOE / Os Mira, BlueGene/Q (16¢c)
? Argonne Nat Lab + Custom Qe S || ot
. Piz Daint, Cray XC30, Xeon 8C +
6 Swiss CSCS Nvidia Kepler (14c) + Custom Kﬁﬂ 115,984 -’ 2.3 || 2726
Texas Advanced |[Stampede, Dell Intel (8c) + Inte e
/ Computing Center Xeon Phi (61c) + IB #_’A ALBESY | 4.5 )1 1489
Forschungszentrum JUQUEEN, BlueGene/Q, :
8 Juelich (FZT) | Power BQC 16C 1.66Hz+Custom el SEBZRSISUER| | coslt) ||| 27
DOE / NNSA Vulcan, BlueGene/Q, R -
J L Livermore Nat Lab| Power BQC 16C 1.6GHz+Custom Fghs “ HELEE 2 < || B
Leibniz
10 Rechenzentrum SuperMUC, Intel (8c) + IB 147,456 2.90 91* || 3.42 || 848
. H
500 Banking HP USA .118 50




“ Accelerators (53 systems)

60 M Intel MIC (13)
I Clearspeed CSX600 (0)
>0 u ATI GPU (2)
i IBM PowerXCell 8i (0)
. 40
aE; ~I'NVIDIA 2070 (4)
2 30 _INVIDIA 2050 (7)
v
“INVIDIA 2090 (11)
20 M NVIDIA K20 (16)
19 US 1 Australia
10 9 China 2 Brazi
6 Japan 1 Saudi Arabia
0 — 4 Russia 1 South Korea

2006 2007 2008 2009 2010 2011 2012 2013 2 France 1 Spain
2 Germany 2 Switzerland

2 India 1 UK
1 Italy
1 Poland
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Top500 Performance Share of Accelerators

40%

53 of the 500 systems provide 35% of the accumulated performance
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30%

Y 9o
Q 25%
{)

E 20%

rfo

o 15%

P

10%

Fraction of Total TOP500

5%

0%

2006
2007
2008
2009
2010
2011
2012
2013



C For the Top 500: Rank at which Half of Total
Performance 1s Accumulated

100
90
n
S oo \ /|
v M \
P 40 \/\
35 3
30 Top 500 November 2013
25
g.zo IIIIIIIIIIIIII/III
2 *
£ 15 2006 2008 2010 }0/12
1 ﬁ LFirst 16 system have 1/2 the |
5 4 accumulated performance of all 500
! systems.
° 0 100 200 300 400 500
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< Commodity plus Accelerator Today

Commodity Accelerator (GPU) 2688 “Cuda cores”
Intel Xeon Nvidia K20X “Kepler” ‘

Q ~rec 2888 “Ciida carac”

RAN b 1/0 PClexs Infiniband

RAM CPU o= Hub PCle x16
RAM u GPU (6GB)

QP!
RAN I /0 aS22M o)) (6GB)

RAM CPU QPI PCle x16
S Hub

GPU (6GB)

192 Cuda cores/SMX

DMA .
Device Memory

erconnect

PCl-e Gen2/3 16 lane
4 Gb/s (8 GB/s)
1 GWi/s

11
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Linpack Benchmark Started 36 Years Ago

- In the late 70’s the
fastest computer ran

TIME UNIT
H=100 micro- Computer Type Compiler
secs. Eecs.

LINPACK at 14 Mflop/s
- In the late 70’s floating e in e o

0.14  CRAY-1 S CFT, Assembly BLAS
LASL 4467 .148 0.43 CDC 7600 S FIN, Assembly BLAS
. . NCAR 5,5%.192 0.56 CRAY-1 S CFT
oint operations were LASL “;ala 0781 Gc7e0 5 PN
Argonne 2.3/ 297 0.86 IBM 370/195 D H
KCAR 441 .359 1.05 CDC 7600 S Lacal
: Argonne A7 .388 . 1.33  IBM 3033 D H
expenS|Ve con |pare (@) NASA langley \.%.489 1.42 CDC Cyber 175 § FIN
U. 111. Urbana \ 8% .596 1.47 CDC Cyber 175 S Ext. 4.6
. LLL a4 .554 1.61 CDC 7600 S  CHAT, No optimize
Other 0O eratlons and SLAC 149 .579 1.69 IBM 370/168 D I Ext., Fast mult.
Michigan j07.631 1.84 amdahl 470/V6é D R
Toronto 773 8690 2.59 IBM 370/165 D 1 Ext., Fast mult.
Northwestern  #77l.44 4.20 CDC 6600 ] FTH
ata [[love[nent Texas %¢1.93% 5.63 CDC 6600 S RN
China Lake +9621.95% 5.69 Univac 1110 S Vv
Yale _-252,59 7.53 TDEC KL-20 TS F20
M t L] L] 1 OO Bell Labs J,’ gzg 10.1 Honeyuell 6080 S Y
° j— Wisconsin o . 10.1 . Univae 1110 s Vv
a rIX Slze! n Iowa State '3\7 3.54 _10.2 TItel AS/5 mod3I "D H °
u. ‘1111. Chicago ./ 15..%8 g'ﬁﬁr - égn 2;86158 b 61
y g o urdue Y5, . C S FUN
- That’'s what would fit in U, C. San Diegowi?d3.1 38.2 Burroughs 6700 § H
Yale- (W:ml7.1% 49.9  DEC KA-10 S  F40
memory * TIME(LO0) = (100/75)%*%3 SGEFA(75) + (100/75)%*%2 SGESL(75)

- The Benchmark evolved over time and today, the
matrix size is arbitrary; looking at the rate of
execution, make it as fast as possible.
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TOP300

- In 1986 Hans Meuer started a list of
supercomputer around the world, they were
ranked by peak performance.

- Hans approached me in 1992 to merge our
lists into the “TOP500”.

- The first TOP500 list was in June 1993.

®
200

SUPERCOMPUTER SITES

Rank Site System Cores Rmax (GFlopis) Rpeak (GFlop/s) Power (kW)

€D Los Alamos National Laboratory CM-5/1024 1,024 59.7 131.0
United States Thinking Machines Corporation

o Minnesota Supercomputer Cantear CM-5/544 544 304 636
United States Thinking Machines Corporation

€ National Security Agency CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© ncsa CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© nec SX-3/44R ] 232 258
Japan NEC

o Atmospheric Environment Service (AES) SX-3/44 4 20.0 220
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The High Performance Linpack (HPL)
Benchmark has a Number of Problems

- HPL performance of computer systems are no longer so
strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

- Designing a system for good HPL performance can
actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.
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Concerns

- The gap between HPL predictions and real application
performance will increase in the future.

- A computer system with the potential to run HPL at an
Exaflop is a design that may be very unattractive for
real applications.

- Future architectures targeted toward good HPL
performance will not be a good match for most
applications.

- This leads us to a think about a different metric



HPL - Good Things

Easy to run

Easy to understand

Easy to check results

Stresses certain parts of the system

Historical database of performance information
Good community outreach tool
“Understandable” to the outside world

“If your computer doesn’t perform well on the LINPACK
Benchmark, you will probably be disappointed with the
performance of your application on the computer.”



HPL - Bad Things

LINPACK Benchmark is 36 years old
TOP500 (HPL) is 22 years old

Floating point-intensive performs O(n3) floating point
operations and moves O(n?) data.

No longer so strongly correlated to real apps.

Reports Peak F|OpS (although hybrid systems see only 1/2 to 2/3 of Peak)
Encourages poor choices in architectural features
Overall usability of a system is not measured

Used as a marketing tool

Decisions on acquisition made on one number
Benchmarking for days wastes a valuable resource
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Running HPL

- In the beginning to run HPL on the number 1 system
was under an hour.

- On Livermore’s Sequoia IBM BG/Q the HPL run took
about a day to run.

- They ran a size of n=12.7 x 10 (1.28 PB)
- 16.3 PFlop/s requires about 23 hours to run!!

- The longest run was 60.5 hours

- JAXA machine
- Fujitsu FX1, Quadcore SPARC64 VIl 2.52 GHz
- A matrix of size n = 3.3 x 106

- .11 Pflop/s #160 today
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Ugly Things about HPL

- Doesn’t probe the architecture; only one data point

- Constrains the technology and architecture options for
HPC system designers.
- Skews system design.

- Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements
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Many Other Benchmarks
- TOP500 - Livermore Loops
- Green 500 - EuroBen
- Graph 80-160 - NAS Parallel Benchmarks
- Sustained Petascale - Genesis
Performance - RAPS
- HPC Challenge . SHOC
- Perfect - LAMMPS
- ParkBench . Dhrystone
- SPEC-hpc - Whetstone

- Big Data Top100 - 1/0 Benchmarks



Goals for New Benchmark

- Augment the TOPS500 listing with a benchmark that correlates with important
scientific and technical apps not well represented by HPL

Compact
Model

- Encourage vendors to focus on architecture features needed for high
performance on those important scientific and technical apps.

- Stress a balance of floating point and communication bandwidth and latency
- Reward investment in high performance collective ops
- Reward investment in high performance point-to-point messages of various sizes
- Reward investment in local memory system performance
- Reward investment in parallel runtimes that facilitate intra-node parallelism
- Provide an outreach/communication tool
- Easy to understand
- Easy to optimize
- Easy to implement, run, and check results
- Provide a historical database of performance information
- The new benchmark should have longevity



Proposal: HPCG

High Performance Conjugate Gradient (HPCG).
Solves Ax=b, A large, sparse, b known, x computed.

An optimized implementation of PCG contains essential
computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

Patterns:
Dense and sparse computations.
Dense and sparse collective.
Data-driven parallelism (unstructured sparse triangular solves).

Strong verification and validation properties
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Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).

- Single DOF heat diffusion model.

- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain: (n,xn,xn,)

- Process layout; (P, xnp, xnp.)

- Global domain: (. *np)x(n,*np)x(n,*np,)
- Sparse matrix:

- 27 nonzeros/row interior.
- 7 — 18 on boundary.
- Symmetric positive definite.

27-point stencil operator



HPCG Design Philosophy

- Relevance to broad collection of important apps.
- Simple, single number.

- Few user-tunable parameters and algorithms:

- The system, not benchmarker skill, should be primary factor in result.
- Algorithmic tricks don’t give us relevant information.

- Algorithm (PCG) is vehicle for organizing:
- Known set of kernels.

- Core compute and data patterns.
- Tunable over time (as was HPL).

- Easy-to-modify:
- _ref kernels called by benchmark kernels.

- User can easily replace with custom versions.
- Clear policy: Only kernels with _ref versions can be modified.



PCG ALGORITHM
®p, =x,1,:=b-Ap,
®Lloopi=1,2,...
o z;:=M'r,,

oifi=1
u a; = dot_product(?‘i_l, Z)
o else

"a = dot_product(l”l-_l, Z)
" h.:=aja;
— | %
"D =0 pi Tz
o end 1f
O a; .= dot_product(?‘l—_l, Zi) /dot_product(pl-, A*pi)
— %
O Xpyy =X, T a;"p;
S YL
or =r_;—a*A*p,
o 1f ||r]|, < tolerance then Stop
€ ond Loop
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Preconditioner -

- Hybrid geometric/algebraic multigrid: PPy

- Grid operators generated synthetically: AL e
- Coarsen by 2 in each x, y, z dimension (total of 8 .22~

reduction each level).
- Use same GenerateProblem() function for all levels. redium

- Grid transfer operators:
- Simple injection. Crude but...
- Requires no new functions, no repeat use of other

functions.
- Cheap. - Symmetric Gauss-Seidel preconditioner
. SmOOther: - In Matlab that might look like:
- Symmetric Gauss-Seidel [ComputeSymGS()]. LA = tril(A): UA = triu(A); DA = diag(diag(A));

- Except, perform halo exchange prior to sweeps. ‘= LAY.
- Number of pre/post sweeps is tuning parameter.  x1 =y - LA*+ DA*; % Subtract off extra

diagonal contribution

- Bottom solve: x = UAT;
- Right now just a single call to ComputeSymGS().
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Performance “Shock”

(Unoptimized Version)

6000

5000

4000

3000

Gflop/s

2000

1000

Results for Cielo
Dual Socket AMD (8 core) Magny Cour
Each node is 2*8 Cores 2.4 GHz = Total 153.6 Gflops/
LANL's Cray XT3

Mira Partition Peak Gflops Sustained % of peak
Size Gflops

ANL’s IBM BG/Q y Kalyan

n, Argonne

64 nodes 13107.2 73.4 0.56%

128 nodes 26214.4 147.43 0.56%

256 nodes 52428.8 293.8 0.56%

512 nodes 104857.6 587.97 0.56%

1024 nodes 209715.2 1176.69 0.56%
49152 nodes 10066329.6 55177.6 0.55%

@=HPL GFLOP/s
@¥>HPCG GFLOP/s

Nodes

e=(meTheoretical Peak

Courtesy Mahesh
Rajan, Sandia

512 MPI Proce

SSes
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{} Tuning result on the K computer

pnp it

Summary of “as is” code on the K

Measured Time of Kernels * Parallel scalability shouldn’t be
(by HPCG.*.yaml file) obstacle for large scale problem
140.0 * We are focusing on single CPU
190.0 \ ™ Optimization performance improvement
100.0 x10 =ppoT | V
\ / Improvement \
2. 80.0 \ WAXPBY * Total x10 speed up now
-,§ 60.0 * Continuous memory for matrix
\ W SPMV * Multi-coloring for SYMGS
40.0 \ multi-threading
50,0 | "oYMes * Under Studying
o M * Node re-ordering for SPMV
0.0 - Total * Advanced matrix storage way
Asls Tuned
* Andsoon

8 Processes, 8 Threads/Process (Peak 128x8 GFLOPS)

RIKEN
@ Advanced Institute for 4
RIk=H  Computational Science (AICS)

Slide courtesy Naoya Maruyama, RIKEN AICS, and Fujitsu
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Multi-node Scaling

10000

Measured eeesee

1000

100

GFLOP/s

10

1 2 4 8 16 32 64 128 256 512 1024
# of Nodes

Stampede cluster, dual socket of 8-core SNB, 2.7 GHz

2 MPI processes per node (1 MPI process per skt. for NUMA)
1602 input per MPI process

93% parallelization efficiency with 1024 nodes
intel)
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PCG and HPL

- We are NOT proposing to
eliminate HPL as a metric.

- The historical importance and
community outreach value is
too important to abandon.

- HPCG will serve as an
alternate ranking of the
Top500.

- Similar perhaps to the Green500
listing.

100 Pflon/s,
10 Pflon/s,
1 Pflop/s
100 Tflop/s
10 Tflon/s,
1 Tflop/s, |
100 Gflop/s
10 Gflop/s,
1 Gflop/s
100 Mflon/s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013
Rmax Rpeak Power HPCG
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
o National Super Computer Tianhe-2 (MilkyWay-2) - 3,120,000 33,862.7 54,902.4 17,808
Center in Guangzhou TH-IVB-FEP Cluster, Intel Xeon
China E5-2692 12C 2.200GHz, TH
Express-2, Intel Xeon Phi 31S1P
NUDT
o DOE/SC/Oak Ridge National Titan - Cray XK7 , Opteron 6274 16C 560,640  17,590.0  27,112.5 8,209
Laboratory 2.200GHz, Cray Gemini interconnect,
United States NVIDIA K20x
Cray Inc.
o DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 1,572,864 17,1732  20,132.7 7,890
United States 16C 1.60 GHz, Custom
IBM
RIKEN Advanced Institute K computer, SPARC64 Vilifx 2.0GHz, 705,024 10,510.0 11,280.4 12,660
for Computational Science  Tofu interconnect
(AICS) Fujitsu
Japan
DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C 786,432 8,586.6  10,066.3 3,945
Laboratory 1.60GHz, Custom
United States I1BM
o Swiss National Piz Daint - Cray XC30, Xeon 115,984 6,271.0 7,788.9 2,325
Supercomputing Centre E5-2670 8C 2.600GHz, Aries
(Cscs) interconnect , NVIDIA K20x
Switzerland Cray Inc.
@ TexasA G - PowerEdge C8220, 462,462 51681  8,520.1 4,510
Center/Univ. of Texas Xeon E5-2680 8C 2.700GHz,
United States Infiniband FDR, Intel Xeon Phi SE10P
Dell
o Forschungszentrum Juelich  JUQUEEN - BlueGene/Q, Power 458,752 5,008.9 5,872.0 2,301
(FZJ) BQC 16C 1.600GHz, Custom
Germany Interconnect

IBM
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Today’s #1 System

Tianhe-2

System peak 55 Pflop/s
Power 18 MW
(3 Gflops/W)
System memory 1.4 PB
(1.024 PB CPU + .384 PB CoP)
Node performance 3.43 TF/s
(2 CPU +3 CoP)
Node concurrency 24 cores CPU +
171 cores CoP
Node Interconnect BW 6.36 GB/s
System size (nodes) 16,000
Total concurrency 3.12 M

12.48M threads (4/core)

MTTF Few / day



¢ Exascale System Architecture
~ with a cap of $200M and 20MW

Tianhe-2

System peak 55 Pflop/s
Power 18 MW
(3 6flops/W)
System memory 1.4 PB
(1.024 PB CPU +.384 PB CoP)
Node performance 3.43 TF/s
(2 CPU +3 CoP)
Node concurrency 24 cores CPU +
171 cores CoP
Node Interconnect BW 6.36 GB/s
System size (nodes) 16,000
Total concurrency 3.12 M

12.48M threads (4/core)

MTTF Few / day



¢ Exascale System Architecture
~ with a cap of $200M and 20MW

Systems 2013 Difference
Tianhe-2 Today & Exa

System peak 55 Pflop/s 1 Eflop/s ~20x
[ Power 18 MW ~20 MW 0o(1)
(3 Gflops/W) (50 Gflops/W) ~15x
System memory 1.4 PB 32 -64PB ~50x
(1.024 PB CPU + .384 PB CoP)
Node performance 3.43 TF/s 1.2 or 15TF/s 0o(1)
(2 CPU +3 CoP)
Node concurrency 24 cores CPU + O(1k) or 10k ~Bx - ~50x
171 cores CoP
Node Interconnect BW 6.36 GB/s 200-4006B/s ~40x
System size (nodes) 16,000 O(100,000) or O(1IM) ~6x - ~60x
Total concurrency 312 M O(billion) ~100x

12.48M threads (4/core)

MTTF Few / day Many / day 0o(?)
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<~ Top 10 Challenges to Exascale

In a recent report U.S. Department
of Energy identified ten research
challenges (Google "Top 10 Challenges to Exascale”)

TOp Ten Exa Scale ASCAC Subcommittee for the Top Ten Exascale Research Challenges
Research Challenges

Subcommittee Chair
Robert Lucas (University of Southern California, Information Sciences Institute)

Subcommittee Members

James Ang (Sandia National Laboratories)
Keren Bergman (Columbia University)
Shekhar Borkar (Intel)

William Carlson (Institute for Defense Analyses)
Laura Carrington (UC, San Diego)
George Chiu (IBM)

Robert Colwell (DARPA)

William Dally (NVIDIA)

Jack Dongarra (U. Tennessee)

Al Geist (ORNL)

Gary Grider (LANL)

Rud Haring (IBM)

Jeffrey Hittinger (LLNL)

Adolfy Hoisie (PNLL)

Dean Klein (Micron)

Peter Kogge (U. Notre Dame)

Richard Lethin (Reservoir Labs)

Vivek Sarkar (Rice U.)

Robert Schreiber (Hewlett Packard)
John Shalf (LBNL)

A, Thomas Sterling (Indiana U.)

h Rick Stevens (ANL)
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< Top 10 Challenges to Exascale

1. Energy efficiency:

. Creating more energy efficient circuit,
power, and cooling technologies.
. With current semiconductor

technologies, all proposed exascale
designs would consume ~200 MW of
power.

. 20 - 40 MW, comparable to that used by
commercial cloud data centers
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< Top 10 Challenges to Exascale

1. Energy efficiency:

. Creating more energy efficient circuit,
power, and cooling technologies.

2. Interconnect technology:

. Increasing the performance and energy
efficiency of data movement.

. Cost to move a datum exceeds the cost
of a floating point operation,

. Necessitating very energy efficient low

latency, high bandwidth interconnects
for fine-grained data exchanges among
hundreds of thousands of processors.
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< Top 10 Challenges to Exascale

1. Energy efficiency:

. Creating more energy efficient circuit,
power, and cooling technologies.

2. Interconnect technology:

. Increasing the performance and energy
efficiency of data movement.

3. Memory Technology:

Integrating advanced memory

technologies to improve both capacity
and bandwidth.

. New memory technologies, including
processor-in-memory, stacked memory,
non-volatile memory approaches.

. Memory per node will necessarily be
smaller than in current designs.
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< Top 10 Challenges to Exascale

1. Energy efficiency:

. Creating more energy efficient circuit,
power, and cooling technologies.

2. Interconnect technology:

. Increasing the performance and energy
efficiency of data movement.

3. Memory Technology:

. Integrating advanced memory

technologies to improve both capacity
and bandwidth.

4. Scalable System Software:

. Developing scalable system software that
is power and resilience aware.

. Today failures infrequent.

. At very large scale, systemic resilience in

the face of regular component failures
will be essential.

. Dynamic, adaptive energy management
must become an integral part of system
software, for both economic and
technical reasons.
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< Top 10 Challenges to Exascale

1. Energy efficiency:

. Creating more energy efficient circuit,
power, and cooling technologies.

2. Interconnect technology:

. Increasing the performance and energy
efficiency of data movement.

3. Memory Technology:

. Integrating advanced memory
technologies to improve both capacity
and bandwidth.

4. Scalable System Software:

. Developing scalable system software that
is power and resilience aware.

5. Programming systems:

. Inventing new programming systems that
express massive parallelism, data
locality, and resilience

. The widely used CSP model (i.e. MPI)
places the burden of locality and
parallelization on applications.

. More expressive programming models are
needed that can deal with this behavior
and simplify the developer’s efforts.
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< Top 10 Challenges to Exascale

1. Energy efficiency:

Creating more energy efficient circuit,
power, and cooling technologies.

2. Interconnect technology:

Increasing the performance and energy
efficiency of data movement.

3. Memory Technology:

Integrating advanced memory
technologies to improve both capacity
and bandwidth.

4. Scalable System Software:

Developing scalable system software that
is power and resilience aware.

5. Programming systems:

Inventing new programming
environments that express massive
parallelism, data locality, and resilience

>

6. Data management:

Creating data management software that can
handle the volume, velocity and diversity of
data that is anticipated.

Efficient in situ data analysis will require
restructuring of scientific workflows and
applications.

Techniques for data coordinating and mining
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< Top 10 Challenges to Exascale

1. Energy efficiency: 6. Data management:

. Creating more energy efficient circuit, > Creating data management software that can

power, and cooling technologies. handle the volume, velocity and diversity of
. data that is anticipated.
2. Interconnect technology: ,
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efficiency of data movement. > Reformulating science problems and
. refactoring their solution algorithms for
3. Memory TGChﬂOlogy. exascale systems.

. Integrating advanced memory > Adapting them to billion-way parallelism will
technologies to improve both capacity require redesigning, or even reinventing, the
and bandwidth. algorithms, and potentially reformulating the

science problems.
4. Scalable System Software:
. Developing scalable system software that

is power and resilience aware.

5. Programming systems:

. Inventing new programming
environments that express massive
parallelism, data locality, and resilience
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is power and resilience aware. .
> Large-scale computations are themselves
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> Understanding the sensitivity of
computational predictions to model inputs
and assumptions, particularly when involving
complex, multidisciplinary applications is
dependent on new tools and techniques for
application validation and assessment.

. Inventing new programming
environments that express massive
parallelism, data locality, and resilience
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uncertainty quantification for exascale
discovery, design, and decision making.

9. Resilience and correctness:

> Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm
verification challenges.

> With frequent transient and permanent
faults, lack of reproducibility in collective
communication, and new mathematical
algorithms with limited verification,
computation validation and correctness
assurance rise dramatically in importance for
the next generation of massively parallel
systems.

. Developing scalable system software that
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5. Programming systems:

. Inventing new programming
environments that express massive
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. uncertainty quantification for exascale
. Developing scalable system software that
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is power and resilience aware.

5. Programming systems:

. Inventing new programming
environments that express massive
parallelism, data locality, and resilience

9. Resilience and correctness:

> Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm
verification challenges.

10. Scientific productivity:

> Increasing the productivity of computational
scientists with new software engineering
tools and environments.

> Unless researcher productivity increases, the
time to solution may be dominated by
application development, not computation.



Algorithmic and Mathematics Challenges

Advances in mathematical models, algorithms, and analysis for
exascale simulations to enable extreme-scale science

Exascale computing driven by grand-challenge science
— More resources for more complete and sophisticated models

— Answering new scientific questions will require rethinking, reformulating and
developing new mathematical techniques

— New predictive simulation and analysis capabilities

Advances in algorithms synergistic with hardware improvements

Machine improvements Model and algorithm
tend to improve base or —6—6/ \/ pﬁ\ improvements can
coefficient improve exponent

Today’s algorithms will not (are really hard to) run efficiently on future

exascale machines



¢ Major Changes to Software &

IcLOr-

Algorithms

e Must rethink the design of our
models, math, algorithms and
software

= Another disruptive technology

 Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

= Data movement is expense

» Flop/s are cheap, so are provisioned in
excess

47



ICLOr

Summary

" Major Challenges are ahead for extreme computing

> Parallelism O(10°)
> Issues with Math & Algorithm formulation and Programming
> Hybrid
> Peak and HPL may be very misleading
> No where near close to peak for most apps, (5 - 10% of peak)
> Fault Tolerance
> Today Sequoia BG/Q node failure rate is 1.25 failures/day
> Power
> 50 Gflops/w (today at 2 Gflops/w)

" We will need completely new approaches and

technologies to reach the Exascale level

~ International collaboration is more important than

ever.



