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Singular Value QR (SVQR) can orthonormalize a set of dense vectors with the minimum communication
(one global reduction between the parallel processing units, and BLAS-3 to perform most of its local com-
putation). As a result, compared to other orthogonalization schemes, SVQR obtains superior performance
on many of the current computers, where the communication has become significantly more expensive com-
pared to the arithmetic operations. In this paper, we study the stability and performance of various SVQR
implementations on multicore CPUs with a GPU. Our focus is on the dense triangular solve, which per-
forms half of the total floating-point operations of SVQR. As a part of this study, we examine an adaptive
mixed-precision variant of SVQR, which decides if a lower-precision arithmetic can be used for the triangu-
lar solution at run time without increasing the order of its orthogonality error (though its backward error
is significantly greater). If the greater backward-error can be tolerated, then our performance results with
an NVIDIA Kepler GPU show that the mixed-precision SVQR can obtain a speedup of up to 1.36 over the
standard SVQR.

Categories and Subject Descriptors: G.1.0 [Mathematics of computing]: Numerical Analysis.

General Terms: Algorithms, Reliability, Performance.
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1. INTRODUCTION
Orthogonalizing a set of dense column vectors plays a salient part in many scientific
and engineering computations. For example, it is a critical component in a software
package that solves a large-scale linear system of equations or eigenvalue problem,
having great impacts on both its numerical stability and performance. In many of
these solvers, the input matrix to be orthogonalized is tall-skinny, having more rows
than the columns. This is true, for instance, in a subspace projection method that com-
putes the orthonormal basis vectors of the generated projection subspace [Saad 2003;
Saad 2011]. Other applications of the tall-skinny orthogonalization include the solu-
tion of an overdetermined least-squares problem [Golub and van Loan 2012]. Hence,
an efficient and stable tall-skinny orthogonalization scheme is valuable in many appli-
cations, especially if the scheme is suited for current and emerging computer architec-
tures.

On the current computers, communication has become significantly more expensive
compared to arithmetic operations, where the communication includes data move-
ment or synchronization between parallel processing units, as well as data movement
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between the levels of the local memory hierarchy. This holds in terms of both time
and energy consumptions. It is critical to take this hardware trend into consideration
when designing high-performance software. To orthogonalize a tall-skinny dense ma-
trix, both Cholesky QR (CholQR) and Singular Value QR (SVQR) [Stathopoulos and
Wu 2002] require only one global reduction between the parallel processing units, and
perform most of their local computation using BLAS-3. Hence, compared to other or-
thogonalization schemes, they obtain superior performance on the current computers.
In addition, though the error bound of CholQR or SVQR depends quadratically on the
condition number of the input matrix, with a careful implementation and recursive
application of the procedure, CholQR and SVQR can stably orthogonalize many of the
ill-conditioned matrices in practice [Yamazaki et al. 2015]. As a result, we found that
CholQR is effective in many practical cases [Yamazaki et al. 2014; Yamazaki et al.
2015; Yamazaki et al. 2014; Yamazaki et al. 2015].

Unfortunately, for some ill-conditioned matrices, CholQR may require many re-
orthogonalizations (see Section 5). In this paper, we focus on SVQR which avoids this
numerical difficulty of CholQR and has three advantages over CholQR in our current
context; First, the upper-bound on the orthogonality error of CholQR assumes that the
squared condition number of the input matrix is less than the reciprocal of the machine
precision, while the upper-bound of SVQR does not require this assumption; Second,
for an ill-conditioned matrix, SVQR may be able to quickly identify the ill-conditioned
subspace, while CholQR may require multiple reorthogonalizations; Third, SVQR com-
putes the condition number of the Gram matrix, which may be used to adapt the or-
thogonalization scheme at run time.

We study the various implementations of SVQR on multicore CPUs with multiple
GPUs. Though BLAS-3 kernels are used to performs most of the required flops of
SVQR, they must be carefully implemented to obtain stable and high performance.
In this paper, we focus on the dense triangular solve, which performs half of the to-
tal floating-point operations (flops) of SVQR.1 On a modern computer, lower-precision
arithmetic obtains higher peak-performance. To take advantage of this hardware
trend, as a part of the current study, we examine an adaptive mixed-precision scheme
to improve the performance of SVQR. Our adaptive scheme uses the orthogonality er-
ror bound derived in [Yamazaki et al. 2015] and the computed condition number of
the Gram matrix to adaptively decide if the lower precision can be used for the trian-
gular solution without increasing its orthogonality error bound. The main trade-off is
that the backward-error of the mixed-precision SVQR is much greater. If the greater
backward-error can be tolerated2, then our performance results with an NVIDIA Ke-
pler GPU show that the mixed-precision SVQR can obtain a speedup of up to 1.36 over
the standard SVQR.

The rest of the paper is organized as follows: First, in Section 2, we present our im-
plementation of CholQR and SVQR on multicore CPUs with multiple GPUs, and dis-
cuss the numerical stability of these two algorithms in practice. Then, in Section 3, we
present two different dense triangular solvers: one based on forward substitution and
the other based on matrix inversion. To overcome the potential numerical instability
associated with the matrix inversion, our implementation adaptively adjusts the sizes
of the diagonal blocks to be inverted. Our implementation of the triangular solvers on a
GPU and their performance are shown in Section 4. Finally, in Section 5, we introduce
the adaptive mixed-precision SVQR, and in Sections 6 and 7, we show the numerical

1The symmetric matrix-matrix multiplication, which performs the other half of the total flops, is studied
in [Yamazaki et al. 2015].
2Our preliminary studies indicated that in some cases, the greater backward error of the mixed-precision
SVQR may not significantly affect the solution convergence of some subspace projection methods.
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Step 1: Form Gram matrix B on GPUs
for p = 1, 2, . . . , np do
B(p) := V (p)TV (p) on p-th GPU

end for
B :=

∑np

p=1B
(p) (GPUs to CPU global reduction)

Step 2: Compute upper-triangular matrix R on CPU
with CholQR with SVQR
R := chol(B) [U,Σ, U ] = svd(B)

[W,R] := qr(
√

ΣUT )

Step 3: Compute orthonormal matrix Q on GPUs
copy R to all the GPUs (CPU to local GPUs broadcast)
for p = 1, 2, . . . , np do
Q(p) := V (p)R−1 on p-th GPU

end for
(a) Pseudocode; chol(B), svd(B), and qr(B) compute the
Cholesky, Singular Value, and QR factorization of a matrix B,
respectively. When the the condition number of B is greater than
the reciprocal of the machine epsilon, chol(B) could fail.

V

:=

B V
T

Step 1: Block dot−products

:=

R
T

R B

Step 2: Cholesky factorization

Q

:=

V

R
−1

Step 3: Triangular solve

~100,000

~100,000~10

~10

(b) Illustration of CholQR;
dashed lines show the 1D
block row distribution of the
matrix among the GPUs.

Fig. 1. CholQR and SVQR implementations on multicore CPU with multiple GPUs.

and performance results of the mixed-precision SVQR, respectively. Final remarks are
listed in Section 8.

2. SINGULAR VALUE QR FACTORIZATION WITH GPUS
We consider computing the tall-skinny QR (TSQR) factorization of an m-by-n tall-
skinny dense matrix V (i.e., m� n),

V = QR, (1)

where Q is an m-by-n matrix with orthonormal columns (i.e., QTQ = I), and R is an
n-by-n upper-triangular matrix. In order to utilize multiple GPUs, we distribute the
matrices V and Q in a 1D block row format. Then, our implementation of CholQR
first forms the Gram matrix B := V TV through the local matrix-matrix product
B(p) := V (p)TV (p) on the p-th GPU, followed by the reduction B :=

∑np

p=1B
(p) on the

CPU, where we let np be the number of available GPUs, and V (p) is the block row of
the matrix V distributed to the p-th GPU. We then compute the Cholesky factor R of B
on the CPU (i.e., RTR := B). Finally, each GPU independently orthogonalizes V by the
triangular solve Q(p) := V (p)R−1. Hence, CholQR requires only one global reduction
among the GPUs, while most of the local computation is performed using BLAS-3 on
each GPU. Figure 1 shows these three steps of CholQR. This implementation can be
trivially extended to use the message passing interface (MPI) on a hybrid CPU/GPU
cluster, and CholQR obtains a great performance even on a distributed-memory sys-
tem [Yamazaki et al. 2014].

The condition number of the Gram matrix B is the square of the condition num-
ber of the input matrix V , and CholQR may cause numerical instability, when V is
ill-conditioned. In particular, when the condition number of B is greater than the re-
ciprocal of the machine precision, the Cholesky factorization of the Gram matrix could
fail. When the Cholesky factorization failed (i.e., encountered a non-positive pivot),
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‖A−QR‖2 ‖I −QTQ‖2 κ (Q)
Iter. CholQR SVQR CholQR SVQR CholQR SVQR
0 6.2× 101 6.2× 101 3.9× 103 3.9× 103 4.8× 1016 4.8× 1016

1 1.6× 10−15 (f) 3.5× 10−15 (t) 5.8× 102 (f) 1.0× 100 (t) 1.4× 1016 (f) 6.8× 108 (t)
2 3.5× 10−15 (f) 5.6× 10−15 2.8× 102 (f) 6.7× 10−13 7.1× 1015 (f) 1.0× 100

3 3.9× 10−15 (f) 7.8× 10−15 1.9× 102 (f) 5.9× 10−15 6.6× 1015 (f) 1.0× 100

4 4.2× 10−15 1.2× 10−14 1.5× 102 3.0× 10−15 5.4× 1015 1.0× 100

5 4.4× 10−15 1.1× 10−14 1.0× 100 2.8× 10−15 2.3× 107 1.0× 100

6 4.4× 10−15 1.2× 10−14 4.7× 10−16 2.1× 10−15 1.0× 100 1.0× 100

Fig. 2. Error norms ‖I − QTQ‖2 and ‖A−QR‖2, and condition number κ (Q) of CholQR and SVQR.
We initialized our test matrix as a 1000-by-15 matrix of double precision random numbers from a uniform
distribution on an open interval (0, 1). We then scaled every third column with the machine epsilon and
added the two previous columns. Hence, every third column of the matrix is nearly a linear combination of
the two previous columns. In the table, “f” and “t” indicate that the Cholesky factorization failed or some of
the singular values were truncated, respectively.

our implementation sets the trailing submatrix of the Cholesky factor R to be identity.
Hence, by recursively applying CholQR on the computed matrix Q, we implicitly block
the columns of the input matrix V and orthonormalize the columns block by block such
that the corresponding leading submatrix of the Gram matrix has a condition number
less than the reciprocal of the machine epsilon, and its Cholesky factorization can be
computed. This implementation of CholQR worked especially well for the matrix V
whose column vectors become increasingly linearly dependent (e.g., the Krylov basis
vectors from a communication-avoiding variant of a Krylov method [Yamazaki et al.
2015]). Nevertheless, to orthogonalize an ill-conditioned matrix, CholQR may require
several reorthogonalizations due to the repeated breakdowns of the Cholesky factor-
ization.

To reduce the number of reorthogonalizations needed by CholQR, SVQR aims to
identify the ill-conditioned subspace of the input matrix V all at once. For this, SVQR
computes the upper-triangular matrix R by first computing the singular value decom-
position (SVD) of the Gram matrix, UΣUT := B, followed by the QR factorization of
Σ

1
2UT . Then, just like CholQR, the column vectors are orthonormalized through the

triangular solve Q(p) := V (p)R−1. Compared to the Cholesky factorization, computing
the SVD and QR factorization of the Gram matrix is computationally more expensive.
However, the dimension of the Gram matrix is much smaller than that of the input ma-
trix V (i.e., n� m). Hence, SVQR performs about the same number of flops as CholQR,
using the same BLAS-3 kernels, and has only one global reduce. Though SVQR has the
same norm-wise upper-bound on the orthogonality error as CholQR [Stathopoulos and
Wu 2002], when the matrix V is ill-conditioned, CholQR may require several reorthog-
onalizations, while SVQR may identify the ill-conditioned subspace more directly. In
addition, SVQR does not suffer from the numerical instability of CholQR associated
with the Cholesky factorization of the Gram matrix. To compare the numerical behav-
iors of CholQR and SVQR in practice, Figure 2 shows their orthogonality errors and
the condition numbers of the computed matrices Q. We see that the Cholesky factor-
ization can fail multiple times (e.g., one for each linearly-dependent column), while
SVQR may directly identify the subspace spanned by these nearly dependent columns
and quickly reduce the orthogonality error.

3. INVERSION BASED TRIANGULAR SOLVE
When solving a lower-triangular system of equations for multiple right-hand-sides, the
performance of the triangular solve may be improved by exploiting the data reuse of
the triangular matrix and the parallelism among the right-hand-sides. However, the
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Fig. 3. Performance of incremental condition estimator during triangular solve for Hilbert matrix.

forward substitution computes one element of the solution vector at a time and can
exploit only a limited amount of parallelism. The amount of the data parallelism may
be increased by first explicitly computing the inverses of the diagonal blocks of the
triangular matrix R and then computing the solution based on the matrix-matrix mul-
tiplies. In addition, though the numerical error of inverting the diagonal block depends
quadratically on the condition number of the diagonal block [Golub and van Loan
2012], this inversion-based solver may be stable for some linear algebra subroutines —
for the third step of SVQR, because the first two steps of the factorization have already
introduced the numerical errors that depend quadratically on the condition number of
the input matrix V .3 Hence, even if the triangular system is solved using the explicit-
inverse of R, the overall orthogonality error of SVQR would be in the same order as
that using the substitution-based triangular solver (i.e., ‖I − QTQ‖ = O(εdκ(V )2),
where εd is the machine epsilon in the working double precision).

However, the inversion-based triangular solve may increase the overall numerical
error of other subroutines (e.g., the mixed-precision SVQR in Section 5). To maintain
the numerical accuracy of the inversion-based triangular solve, we adaptively block
the upper-triangular matrix R such that the condition number of each diagonal block
is less than the condition number of R times the square-root of the machine epsilon,

O
(
κ
(
R(i,i)

))
≤ O (τκ(R)) , (2)

where R(i,i) is the (i, i)-th diagonal block of R, and τ is a numerical threashold (see
Figure 4(e) for the pseudocode of the blocked algorithm and Section 6 for our use of
the adaptive block sizes in the mixed-precision SVQR). In our numerical experiments,
to estimate the condition number of the diagonal blocks, we use the incremental con-
dition estimator (ICE) developed for a triangular matrix [Bischof 1990]. Figure 3(a)
compares the condition number estimated by ICE against the condition number com-
puted by SVD, demonstrating the high accuracy of the estimation. In addition, Fig-
ure 3(b) shows the total time spent in ICE during the orthogonalization based on
SVQR, demonstrating that ICE requires only a small overhead in the total orthogo-
nalization time (e.g., less than 1% of the orthogonalization time).

3The inversion-based triangular solve is also used for the LU factorization in the MAGMA library.
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global void
trsm nb kernel name(int m, int n,

const FloatingPoint t* restrict dA, int ldda,
FloatingPoint t* dB, int lddb)

{
shared FloatingPoint t rA[N*N];

int id = threadIdx.x;
int ind = blockIdx.x * NB + threadIdx.x;

if (id < N) {
#pragma unroll
for (int j=0; j<N; j++) rA(id,j) = dA(id,j);
}

syncthreads();

if (ind < m) {
#pragma unroll
for (int j=0; j<N; j++) {

FloatingPoint t bij = dB(ind,j);
for (int i=0; i<j; i++) bij -= rA(i,j) * dB(ind,i);
dB(ind,j) = bij / rA(j,j);
}
}
}

(a) Base code.

typedef double FloatingPoint t;
#define NB 128

/////////////////////////////////////////////////////////////////
#define N 1

#define trsm nb name \
ztrsm ts nb1

#define trsm nb kernel name \
ztrsm ts nb1 kernel

#include “trsm ts nb.cu”

#undef N
#undef trsm nb name
#undef trsm nb kernel name
/////////////////////////////////////////////////////////////////
#define N 2
...

(b) Specialized kernel generation.

V R
−1

V

:=

(c) Data access by GPU threads.

extern “C”
void dtrsm ts(int m, int n,

double* dA, int ldda,
double* dB, int lddb )

{
switch(n) {

case 1:
dtrsm ts nb1( m, n, alpha,

dA, ldda,
dB, lddb );

break;
case 2:

...

(d) Unblocked code.

for (int i=0; i<n; i+=nb) {
int nbi = min(nb,n-i);
dtrsm ts(m, nbi,

dA(i,i), ldda,
dB(0,i), lddb );

if (i+nb < n) {
dgemm(NoTrans, NoTrans,

m, n-i-nb, nb,
-1.0, dB(0,i), lddb,

dA(i,i+nb), ldda,
1.0, dB(0,i+nb), lddb );

}
}

(e) Blocked code.

Fig. 4. Optimized GPU kernel for triangular solve.

4. TRIANGULAR SOLVE ON A GPU
To solve the triangular system with multiple right-hands-sides on a GPU, we first
developed GPU kernels, each of which is specialized for a specific size of the upper-
triangular matrix R (i.e., n = 1, 2, . . . , 40). This is done using a parametrized GPU
kernel shown in Figures 4(a) and 4(b) (a similar parametrization was previously used
for auto-tuning GPU kernels [Kurzak et al. 2011]). In this kernel, as shown in Fig-
ure 4(c), each GPU thread independently solves the triangular system for a different
right-hand-side (i.e., a row of V ). Since the matrix V is tall-skinny, containing a large
number of right-hand-sides, this implementation exploits the high level of parallelism.
In addition, the matrix V is stored in column-major layout, and the memory access to
read and write V is coalesced among the GPU threads. To reduce the data movement
through the memory hierarchy of the GPU, we integrated a few standard optimization
techniques; we fixed the loop-boundary by having a specialized kernel for the specific
size of R, unrolled the loop using pragma, and loaded the upper-triangular matrix in
the shared-memory. Then, the top-level unblocked solver shown in Figure 4(d) calls the
specialized solver if available, or calls a default solver otherwise. Finally, Figure 4(e)
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(b) n = 40.

Fig. 5. Optimal block sizes for triangular solve among the block sizes among nb = 1, 2, . . . , 40 with nt being
the number of threads in each thread block.

shows a blocked triangular solver that is based on the unblocked solver. Though the
performance of our blocked kernel may be improved by blocking within the CUDA
kernel, we do not investigate that implementation in this paper.

Figure 5 shows the block sizes nb that obtained the best performance of triangular
solution with respect to a different number of right-hand-sides on an NVIDIA Tesla
K20Xm GPU, where we used the CUDA nvcc version 6.0 compiler with the optimiza-
tion flag -O3. These test matrices are extremely tall-skinny, having hundreds of thou-
sands of rows, while having tens of columns. These are the typical dimensions of the
matrices that appear in block or s-step Krylov methods [Saad 2003; Saad 2011; van
Rosendale 1983; Hoemmen 2010], and were used for our previous studies [Yamazaki
et al. 2014; Yamazaki et al. 2015]. We generated two types of specialized kernel; in
the first type of kernel, each GPU thread first stores the computed solution in its local
registers, and then copies to the output matrix after all the elements of the solution
are computed, while the other kernel does not use the registers. There are trade-offs
in using the shared memory or local registers; using the shared memory or local reg-
isters may improve the data locality but reduce the GPU occupancy, and its use must
be tuned for each case. We also experimented using different numbers of threads per
thread block (i.e., nt = 64 and 128), but the performance did not change significantly.
In the figure, we see that for the 20-by-20 upper-triangular matrix, blocking is mostly
not needed, while for the 40-by-40 triangular matrix, the block sizes of 20 and 14 were
good choices for single and double precisions, respectively.

Figure 6 compares the corresponding optimal performance of the triangular solve
(TRSM). The NVIDIA Tesla K20Xm GPU has the memory bandwidth of 249.6GB/s,
while the respective peak performances in double and single precision are 1311.7 and
3935.2Gflop/s. Hence, to obtain the peak performance, we need to at least perform
about 42 or 126 flops for each double or single numerical value read, respectively.
For our implementation of the triangular solve, each GPU thread reads at least its
right-hand-side with n numerical values, and performs n(n + 1)/2 flops, hence on av-
erage, performing about (n + 1)/2 flops for each numerical value read. For instance,
with a 20-by-20 upper-triangular matrix (i.e., n = 20), on average, each GPU thread
performs about 10 flops for each value read. Hence, in theory, we could obtain about
25% and 16% of the peak performance in double and single precision (i.e., about 327.6
and 655.2Gflop/s), respectively. Though for the 20-by-20 upper-triangular matrix, we
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Fig. 6. Performance of triangular solve with R of different dimensions, n, with nt being the number of
threads in each thread block.

obtained only about 17.1% and 18.8% of the peak performance based on the memory
bandwidth in double and single precision, respectively, and 18.6% and 29.1% for the
40-by-40 matrix; the performance of our kernel was still higher than that of CUBLAS.
Also, compared to the double-precision kernel, the single-precision kernel obtained the
higher performance, but the difference was smaller with the 40-by-40 matrix. We also
see that for the triangular solve, the performance of the solver was degraded using the
local registers.

We have also implemented a triangular-matrix matrix multiply (TRMM) in the same
fashion, which can be used for the inversion-based triangular solve. Figures 7 and 8
show the optimal block sizes and performance of TRMM in double and single preci-
sions. The figure shows that while it degraded the performance of TRSM, explicitly
storing the input matrix V in the local registers improved the performance of TRMM
in single precision, and the performance of TRMM was higher than that of TRSM. In
addition, when the registers were used to store V , blocking was not needed for both
20-by-20 and 40-by-40 matrices. The reason for this different behavior of TRSM and
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Fig. 7. Optimal block sizes for triangular multiply among the block sizes of nb = 1, 2, . . . , 40 with nt being
the number of threads in each thread block.

TRMM could be that TRMM accesses the upper-triangular matrix from the last column
to the first column, while TRSM accesses it from the first column to the last column
(see Figure 9(a) for the pseudocode, and Figures 9(b) and 9(c) for illustration). Com-
pared to TRMM, a general matrix-matrix multiply (GEMM) may obtain even higher
performance, taking advantage of more data parallelism. However, while TRMM im-
plements an in-place multiplication, GEMM is based on an out-of-place multiplication,
accumulating the results of the multiplication in another matrix. Hence, implementing
the triangular solve using GEMM requires the m-by-n workspace. In addition, since
we focus on a small dimension of R (e.g., n = 20), the performance of TRSM can be
bounded by the memory bandwidth. As a result, in our experiments, compared with
the substitution-based TRSM or the inversion-based TRSM with TRMM, TRSM based
on CUBLAS GEMM was often slower due to the extra memory copy required by the
out-of-place multiplication.

5. MIXED-PRECISION SINGULAR VALUE QR FACTORIZATION
To improve the performance of SVQR, we examine the potential of using the halved-
precision at the third step of the factorization, while using the working precision for the
first two steps (the numerical error at the first two steps of SVQR depends quadrati-
cally on the condition number of the input matrix, while it depends linearly at the third
step). For the rest of the paper, to simplify our discussion, we focus on the 64-bit double
working precision, and hence the halved-precision is the 32-bit single precision. The
following upper-bound adapts the bound on the orthogonality error [Yamazaki et al.
2015] to our mixed-precision SVQR.

THEOREM 5.1. If single precision is used at the third step of SVQR to compute the
orthonormal vectors Q̂, and εd and εs are the machine epsilons in the working double
and single precision, respectively (i.e., ε2s = εd), then we have

‖I − Q̂T Q̂‖2 ≤ O
(
εsκ(V ) + (εsκ(V ))

2
)
,

and

‖Q̂‖2 = 1 +O
(

(εsκ(V ))1/2 + εsκ(V )
)
.
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Fig. 8. Performance of triangular multiply with R of different dimensions, n, with nt being the number of
threads in each thread block.

In other words, the norm of the orthogonality error is bounded by

if κ(V ) ≤ ε−1s then,
‖I − Q̂T Q̂‖2 ≤ O (εsκ(V )), and hence ‖Q̂‖2 ≤ 1 +O

(
(εsκ(V ))1/2

)
,

otherwise,
‖I − Q̂T Q̂‖2 ≤ O

(
(εsκ(V ))2

)
, and hence ‖Q̂‖2 ≤ 1 +O (εsκ(V )).

PROOF. This is the adaptation of the upper-bound derived for the mixed-precision
CholQR [Yamazaki et al. 2015]. The only difference is that the upper-bound of CholQR
assumes that the Cholesky factorization of the Gram matrix can be computed at Step 2
(i.e., κ(V )2 < εd), while the upper-bound of SVQR does not require this assumption.

Theorem 5.1 implies that when the squared condition number of the input matrix V
is greater than the reciprocal of the the machine epsilon, then the mixed-precision
SVQR has the same error bound as the standard SVQR. In other words, when the
condition number of V is large enough, then the numerical errors introduced at the
first two steps become so large that we can use single precision at the third step with-
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shared FloatingPoint t rA[N*N];
int id = threadIdx.x;
int ind = blockIdx.x * NB + threadIdx.x;

if (id < N) {
#pragma unroll
for (int j=0; j<N; j++) rA(id,j) = dA(id,j);
}

syncthreads();

if (ind < m) {
FloatingPoint t rB[N];
#pragma unroll
for (int j=0; j<N; j++) rB(j) = dB(ind,j);

#pragma unroll
for (int j=N-1; j>=0; j–) {

FloatingPoint t bij = ZERO;

for (int i=0; i<j; i++) bij += rA(i,j) * rB(i);
rB(j) = bij + rA(j,j) * rB(j);
}

#pragma unroll
for (int j=0; j<N; j++) dB(ind,j) = rB(j);
}

(a) Pseudocode using registers to store B.

(b) TRSM’s access to R.

(c) TRMM’s access toR.

Fig. 9. Data access pattern and GPU implementation of triangular matrix multiply.

Step 1: Form Gram matrix B
B := V TV in working precision

Step 2: Compute upper-triangular matrix R
[U,Σ, U ] = svd(B) and
[W,R] := qr(

√
ΣUT ) in working precision

Step 3: Compute orthonormal matrix Q
if σ1/σn ≥ 1/εd then

Q := V (d)R−1 in mixed-precision
else

Q := V (d)R−1 in working precision
end if

(a) Pseudocode.

‖I −QTQ‖ ‖V −QR‖
d-SVQR O(εdκ(V )2) O(εdκ(V ))

ds-SVQR O(εdκ(V )2 + εsκ(V )) O(εsκ(V ))
(b) Error bounds.

Fig. 10. Pseudocode and error bounds of the mixed-precision SVQR.

out increasing the error bound. Hence, our adaptive mixed-precision SVQR uses single
precision for the third step when the condition number of the Gram matrix computed
at Step 2 is greater than the reciprocal of the working machine precision. Figure 10(a)
shows the pseudocode of this adaptive mixed-precision SVQR. Another option could
be to perform the QR factorization of

√
ΣUT in the mixed-precision, but as the perfor-

mance results in Sections 4 and 7 indicate, the time required for computing the QR
factorization and copying the upper-triangular factor R to the GPU is often marginal,
and hence, in this paper, we focus on the adaptive scheme in Figure 10(a).

Figure 10(b) compares the error bounds of the standard and mixed-precision
SVQR, where the standard SVQR is referred to as d-SVQR, and ds-SVQR is the
mixed-precision SVQR. Though ds-SVQR may obtain performance improvement over
d-SVQR, while maintaining the same order of orthogonality error, the trade-off is the
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Name m n V κ(V )

K30(A,1) of 2D Laplacian A 1089 30 [1m, A1m, A21m, . . . , A301m] 3.5× 1019

Hilbert matrix 100 100 vi,j = (i+ j − 1)−1 6.6× 1019

Synthetic matrix 101 100 [1T
n ; diag(rand(n, 1) ∗ ε3d] 7.8× 1018

Fig. 11. Test matrices used for numerical experiments, where Kn(A,v) is the Krylov basis vectors given
the matrix A and the starting vector v; the Laplacian matrix A is of the dimension 1089-by-1089; 1m is the
m-length vector of all ones, vi,j is the (i, j)-th element of V ; rand(m, 1) is them-length vector of random real
numbers from a uniform distribution on the open interval (0, 1); and the condition number κ(V ) is based on
the singular values of V computed using MATLAB.

‖I −QTQ‖2 κ(Q)
Iter. d-CholQR d-SVQR ds-SVQR d-CholQR d-SVQR ds-SVQR
0 1.4× 1012 1.4× 1012 1.4× 1012 1.0× 1019 1.0× 1019 1.0× 1019

1 2.8× 108 (f) 1.0× 100 (t) 2.5× 100 (t) † 7.3× 1017 (f) 2.1× 109 (t) 2.0× 101 (t) †
2 1.4× 102 (f) 1.0× 100 (t) 1.4× 10−13 3.8× 1013 (f) 2.9× 101 (t) 1.0× 100

3 1.0× 100 (f) 3.0× 10−13 2.3× 10−14 1.1× 107 1.0× 100 1.0× 100

4 2.1× 10−12 2.2× 10−14 2.5× 10−14 1.0× 100 1.0× 100 1.0× 100

5 2.0× 10−14 3.3× 10−14 1.8× 10−14 1.0× 100 1.0× 100 1.0× 100

Fig. 12. Error norm ‖I −QTQ‖2 and condition number κ(Q) for K30(A,1) of 2D Laplacian matrix A.

‖I −QTQ‖2 κ(Q)
Iter. d-CholQR d-SVQR ds-SVQR d-CholQR d-SVQR ds-SVQR
0 3.8× 100 3.8× 100 3.8× 100 3.3× 1019 3.3× 1019 3.3× 1019

1 1.0× 100 (f) 1.0× 100 (t) 1.4× 100 (t) † 4.0× 1018 (f) 2.1× 1012 (t) 1.2× 103 (t) †
2 1.0× 100 (f) 1.0× 100 (t) 8.3× 10−11 1.4× 1018 (f) 4.5× 104 (t) 1.0× 100

3 1.5× 100 (f) 1.6× 10−7 1.4× 10−14 1.1× 1018 (f) 1.0× 100 1.0× 100

4 3.8× 100 (f) 1.2× 10−14 1.0× 10−14 1.6× 1018 (f) 1.0× 100 1.0× 100

5 4.5× 10−4 8.2× 10−15 9.5× 10−15 1.0× 100 1.0× 100 1.0× 100

6 1.4× 10−15 8.6× 10−15 9.6× 10−15 1.0× 100 1.0× 100 1.0× 100

7 1.0× 10−15 9.2× 10−15 9.6× 10−15 1.0× 100 1.0× 100 1.0× 100

Fig. 13. Error norm ‖I −QTQ‖2 and condition number κ(Q) for Hilbert matrix.

greater backward error. It may be possible to selectively use single precision on the sub-
set of the columns (e.g., based on the diagonal values of R), or to reduce the backward
error based on iterative refinements or software-emulated higher precision. However,
in this paper, we focus on examining the accuracy and performance of ds-SVQR. We
are studying the effects of the numerical errors on the performance of the solvers for
linear systems of equations and for eigenvalue or singular value problems.

6. NUMERICAL RESULTS OF ADAPTIVE MIXED-PRECISION SVQR
In this section, we study the numerical behavior of the mixed-precision SVQR. Follow-
ing [Stathopoulos and Wu 2002], our SVQR implementation sets the singular values
that are in the same order as or less than O(εdσ1) to be εdσ1, where εd is the ma-
chine epsilon in the working precision and σ1 is the largest singular value of the Gram
matrix. In addition, our implementation implicitly works with the normalized input
matrix V by symmetrically scaling the Gram matrix B such that B := D−1/2BD−1/2,
where the diagonal entries of the diagonal matrix D are those of B [Stathopoulos and
Wu 2002]. With this implementation, the first step of SVQR could introduce a larger
order of numerical error than the second step. Since our adaptive scheme is based on
the condition number of the normalized input matrix, it may miss the cases where sin-
gle precision can be used at the third step due to the large numerical error introduced
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‖I −QTQ‖2 κ(Q)
Iter. d-CholQR d-SVQR ds-SVQR d-CholQR d-SVQR ds-SVQR
0 9.9× 101 9.9× 101 9.9× 101 2.9× 1018 2.9× 1018 2.9× 1018

1 1.0× 100 (f) 1.0× 100 (t) 1.0× 100 (t) † 2.9× 1017 (f) 4.4× 1010 (t) 4.4× 1010 (t) †
2 6.5× 10−15 2.8× 10−8 1.0× 10−13 1.0× 100 1.0× 100 1.0× 100

3 5.4× 10−16 1.6× 10−14 1.1× 10−14 1.0× 100 1.0× 100 1.0× 100

4 4.4× 10−16 9.8× 10−15 8.9× 10−15 1.0× 100 1.0× 100 1.0× 100

5 4.4× 10−16 9.3× 10−15 8.4× 10−15 1.0× 100 1.0× 100 1.0× 100

Fig. 14. Error norm ‖I −QTQ‖2 and condition number κ(Q) for synthetic matrix.

Iter. d-substitution d-inversion ds-substitution ds-inversion ds-adaptive
1 1.0× 100 (t) 1.0× 100 (t) 2.5× 102 (t) † 2.4× 100 (t) † 1.8× 100 † (t)
2 1.0× 100 (t) 1.0× 100 (t) 1.4× 10−13 5.6× 10−12 3.3× 10−13

3 3.0× 10−13 1.4× 10−12 2.3× 10−14 2.1× 10−14 1.9× 10−14

4 2.2× 10−14 2.1× 10−14 2.1× 10−14 2.1× 10−14 2.1× 10−14

5 3.3× 10−14 3.3× 10−14 1.8× 10−14 1.9× 10−14 1.6× 10−14

Fig. 15. Orthogonality error norm ‖I − QTQ‖2 for K30(A,1) of 2D Laplacian matrix A using standard
d-SVQR or mixed-precision ds-SVQR in double precision with substitution-based, or explicit and adaptive
inversion-based TRSM. Initially, ‖I −QTQ‖2 = 3.8× 100.

Iter. d-substitution d-inversion ds-substitution ds-inversion ds-adaptive
1 1.0× 100 (t) 1.0× 100 (t) 1.4× 100 (t) † 2.9× 100 (t) † 2.9× 100 (t) †
2 1.0× 100 (t) 1.4× 100 (t) 8.3× 10−11 1.2× 10−10 † 7.5× 10−10

3 1.6× 10−6 2.7× 10−7 1.4× 10−14 1.3× 10−14 1.5× 10−14

4 1.2× 10−14 2.1× 10−14 1.0× 10−14 9.0× 10−15 1.1× 10−14

5 8.2× 10−15 9.9× 10−15 9.5× 10−15 9.3× 10−15 9.8× 10−15

Fig. 16. Orthogonality error norm ‖I − QTQ‖2 for Hilbert matrix using standard d-SVQR or mixed-
precision ds-SVQR in double precision with substitution-based, or explicit and adaptive inversion-based
TRSM.

at the first step. However, we found that scaling the Gram matrix often improves the
overall numerical stability of SVQR, especially for ill-conditioned matrices.

Figures 12 through 14 show the orthogonality error and the condition number of the
computed matrixQ in the working 64-bit double precision. In the figure, “f” for CholQR
indicates that the Cholesky factorization failed due to the occurrence of non-positive
diagonal, while for SVQR, “t” indicates that some of the computed singular values
had their magnitudes less than O(εdσ1), and “†” means that the mixed-precision was
used for the third step of ds-SVQR. We used the substitution-based triangular solve
for these experiments. Figure 11 lists properties of our test matrices which were used
to study CholQR and SVQR in [Stathopoulos and Wu 2002]. In all the test cases, the
orthogonality error of ds-SVQR was reduced at about the same or even faster rate than
that of d-SVQR, indicating that our adaptive scheme obtains the desired numerical
properties in practice. In addition, we see that as discussed in Section 2, for the ill-
conditioned matrix, d-SVQR may more quickly identify the ill-conditioned subspace,
requiring fewer iterations than d-CholQR.

Though the overall orthogonality error of the standard d-SVQR would be in the
same order using either the substitution-based or inversion-based triangular solve, the
inversion-based triangular solve increases the orthogonality error bound of the mixed-
precision ds-SVQR which uses the 32-bit single precision for the triangular solve. Fig-
ures 15 through 17 compare the orthogonality errors of d-SVQR and ds-SVQR using
different implementations of the triangular solve. For the adaptive block size, we use
the squared root of the computed condition number of the Gram matrix to estimate
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Iter. d-substitution d-inversion ds-substitution ds-inversion ds-adaptive
1 1.0× 100 (t) 1.0× 100 (t) 1.0× 100 (t) † 6.3× 102 (t) † 1.0× 100 (t) †
2 2.8× 10−8 2.8× 10−8 1.0× 10−13 4.2× 101 (t) † 1.5× 10−13

3 1.6× 10−14 1.5× 10−14 1.8× 10−6 1.8× 10−6 9.0× 10−15

4 9.8× 10−15 9.5× 10−15 8.9× 10−15 2.3× 10−14 9.2× 10−15

Fig. 17. Orthogonality error norm ‖I − QTQ‖2 for synthetic matrix using standard d-SVQR or mixed-
precision ds-SVQR in double precision with substitution-based, or explicit and adaptive inversion-based
TRSM. Initially, ‖I −QTQ‖2 = 9.9× 101.

Matrix d-sub d-inv ds-sub ds-inv ds-adapt
K30(A,1) 2.5× 10−10 3.4× 10−3 7.2× 10−2 1.5× 104 6.5× 10−2

Hilbert 1.2× 10−16 2.4× 10−11 9.1× 10−8 2.6× 10−3 1.5× 10−7

Synthetic 3.2× 10−15 3.5× 10−15 1.2× 10−13 3.7× 10−6 1.2× 10−13

Fig. 18. Backward error norm ‖V −QR‖2 using d-SVQR or ds-SVQR.

the condition number of R. We then set the numerical threshold in (2) to be τ = ε
1/2
s

such that the numerical error introduced by each inversion-based triangular solve with
the diagonal block in single precision is in the same order as that of the inversion-
based triangular solve in double precision (i.e., εsκ(R(i,i))2 ≤ εdκ(R)2). As expected,
the standard SVQR obtained similar error norms using either the substitution-based
or the inversion-based triangular solve. Though the orthogonality errors of the mixed-
precision SVQR increased using the inversion-based triangular solve in some cases
(e.g., synthetic matrix), by adaptively adjusting the diagonal block sizes, the numer-
ical error stayed at the same order as that using the substitution-based triangular
solve. We have also tried computing the inverse of R in double precision, and then per-
forming the matrix multiplication in single precision, but this was not as stable as the
inverse-based triangular solve with the adaptive block size.

These different implementations of the triangular solve lead to different orders of
backward errors in the computed QR factorization, ‖V −QR‖/‖V ‖, which are shown in
Figure 18. In particular, since single precision is used for the third step, the backward-
error of the mixed-precision SVQR is significantly greater than that of the standard
SVQR. We are studying the effects of the backward errors on the solution convergence
of several subspace projection solvers.

7. PERFORMANCE OF MIXED-PRECISION SVQR WITH A GPU
We now study the performance of the mixed-precision triangular solve ds-TRSM,
where the input and out matrices are in double precision, but the arithmetic operations
are internally performed in single precision. To reduce the data movement through
the memory hierarchy of the GPU, our implementation of ds-TRSM first reads the
upper-triangular matrix into the shared-memory in single precision, and then inter-
nally computes its solutions in single precision to improve its performance. However,
if the performance of ds-TRSM is bounded by the memory bandwidth, its performance
can be lower than that of the standard d-TRSM. This is because both the input and out-
put matrices are stored in the working double precision, and even if we only read the
single precision of the input matrix through the local memory hierarchy, we suffer from
the non-contiguous memory access. In addition, we incurs the overhead of type-casting
the matrices to single precision. Hence, the mixed-precision kernel obtains most of its
performance gain not from the reduction in the intra GPU communication volume, but
mainly from the higher-peak performance of the lower-precision arithmetic (e.g., the
peak performance of an NVIDIA K20Xm GPU is 3935.2 and 1311.7Gflop/s in single
and double precisions, respectively).
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(a) without cast/copy of R.
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Fig. 19. Performance of mixed-precision triangular solve, including the time required for casting R on the
CPU and copying the matrix to the GPU, n = 20, nb = 20, nt = 64.
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Fig. 20. Performance of mixed-precision triangular multiply, n = 20, nb = 20, nt = 128.

Figure 19(a) shows the performance of ds-TRSM for the 20-by-20 upper-triangular
matrix without blocking. We see that for the mixed-precision solve, explicitly storing
the solution vector in single precision in the register, which reduces the cost of type-
casting, improved the performance. By internally using single precision, ds-TRSM ob-
tained the speedups of up to 1.56 and the average speedup of 1.41 over the standard
d-TRSM, demonstrating ds-TRSM can obtain a substantial speedups over the stan-
dard algorithm when there are enough columns in the matrix. We also see that the
single-precision s-TRSM obtained the speedups of up to 1.99 over d-TRSM.

In Figure 19(a), we also show the performance of the mixed-precision ds-TRSM when
the upper-triangular matrix R is stored in single precision (e.g., the QR factorization of√

ΣUT is computed in single precision). This may improve the performance by avoid-
ing the type-cast on the GPU and halving the amount of data copied to GPU. How-
ever, Figure 19(b) shows that at least on our particular testbed, this approach did not
improve the performance of ds-TRSM. The performance difference between ds-TRSM
and s-TRSM is due to the cost of type-casting and reading the right-hand-sides in dou-
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Fig. 21. Normalized time of standard and mixed-precision SVQR (n = 20).

ble precision. Finally, instead of d-TRSM at the third step of the standard d-SVQR,
a mixed-precision iterative-refinement with s-TRSM may be an option [Buttari et al.
2007]. However, the residual norms must be computed in double precision using d-
TRMM, and by looking at Figures 6 and 8, on our particular testbed, one substitution
with d-TRSM may be the preferred choice over the mixed-precision iterative refine-
ments. Similarly, using an iterative refinement for reducing the backward-error of the
mixed-precision SVQR is likely to be more expensive than the standard triangular
solve of the standard SVQR.

Figure 20(a) shows the performance of the mixed-precision multiply ds-TRMM. Like
ds-TRSM, ds-TRMM’s input and output matrices are in the double precision, but
the internal arithmetics are performed in single precision. ds-TRMM obtained the
speedups of up to 2.33 over the standard d-TRMM. Then, Figure 20(b) shows the per-
formance of the inversion-based triangular solve. For the mixed-precision ds-TRSM,
we computed the inverse of R in double precision, and then used the mixed-precision
ds-TRMM that takes both input matrices R and V in double precision. We see that
though the performance of the mixed-precision ds-TRMM was higher than that of the
substitution-based ds-TRSM, due to the overhead of computing the matrix inverse,
the inversion-based ds-TRSM was slower than the substitution-based ds-TRSM for
this small size of R (i.e., n = 20).

Finally, in Figures 21 and 22, we compare the performance of the standard d-SVQR
and mixed-precision ds-SVQR on two six-core Intel Xeon CPU with an NVIDIA Tesla
K20Xm GPU. Our mixed-precision SVQR uses the batched symmetric matrix multi-
plication (d-SYRK) developed in [Yamazaki et al. 2015] and the Cholesky factorization
routine of threaded MKL version version xe2013.1.046 (d-POTRF) for the first two
steps of the mixed-precision SVQR, while the substitution-based mixed-precision tri-
angular solve (ds-TRSM) is used for the third step. First, Figure 21 shows the break-
down of the factorization time for orthogonalizing twenty vectors of different lengths
(i.e., n = 20 while m = 32, 000− 80, 000). For this particular case with long enough vec-
tors, the standard d-SVQR spends about 65% of the factorization time in the triangular
solve. Now, Figure 22 compares the performance of d-SVQR with the mixed-precision
ds-SVQR for orthogonalizing the twenty vectors. By internally using single precision
for the triangular solve, the mixed-precision SVQR obtained speedups of up to 1.36 and
the average speedup of 1.28.
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Fig. 22. Performance of standard and mixed-precision SVQR (n = 20).

8. CONCLUSION
To orthogonalize a set of dense column vectors, we studied the numerical stability and
performance of different Singular Value QR (SVQR) implementations. We focused on
the triangular solver which performs about half of the total floating-point operations of
the orthogonalization process. Though we have integrated several optimization tech-
niques into our GPU kernels, to reduce their communication overheads and increase
the benefit of using the mixed-precision kernels, we are looking to further tune their
performance (e.g., using BEAST4). All the BLAS kernels developed for this study will
be released through the MAGMA library5. We are also working on the implementation
of a communication-avoiding variant of Householder QR factorization (CAQR) [Dem-
mel et al. 2012] on a GPU. Our implementation is based on a batched QR and GEMM,
while our CholQR implementation was based on a batched SYRK and TRSM. Though
performing twice more flops, we are investigating how closely CAQR would perform
compared to CholQR on a GPU, especially for tall-skinny matrix when the performance
can be limited by the memory bandwidth of the GPU.

As a part of the studies, we examined a mixed-precision variant that uses the halved-
precision for the triangular solve. Our performance results on multicore CPUs with a
GPU illustrated that though the intra GPU communication volume may not be re-
duced, the mixed-precision variant can improve the performance by taking advantage
of the higher peak-performance of the lower-precision arithmetic. Then, we described
an adaptive mixed-precision scheme to decide if the lower-precision can be used for the
triangular solve at run time. Compared to the standard SVQR, this adaptive mixed-
precision SVQR maintains the same order of the orthogonality error, but significantly
increases its backward error.6 We are currently studying the effects of the backward
errors on various linear and eigenvalue solvers.
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