
Implementing a systolic algorithm for QR factorization on
multicore clusters with PaRSEC

Guillaume Aupy1, Mathieu Faverge2, Yves Robert1,3,
Jakub Kurzak3, Piotr Luszczek3, and Jack Dongarra3

1 Laboratoire LIP, École Normale Supérieure de Lyon, France
2 Laboratoire LaBRI, IPB ENSEIRB-MatMeca, Bordeaux, France

3 University of Tennessee Knoxville, USA

Abstract This article introduces a new systolic algorithm for QR factorization, and its
implementation on a supercomputing cluster of multicore nodes. The algorithm targets
a virtual 3D-array and requires only local communications. The implementation of the
algorithm uses threads at the node level, and MPI for inter-node communications. The
complexity of the implementation is addressed with the PaRSEC software, which takes
as input a parametrized dependence graph, which is derived from the algorithm, and
only requires the user to decide, at the high-level, the allocation of tasks to nodes. We
show that the new algorithm exhibits competitive performance with state-of-the-art QR
routines on a supercomputer called Kraken, which shows that high-level programming
environments, such as PaRSEC, provide a viable alternative to enhance the production of
quality software on complex and hierarchical architectures.

1 Introduction

Future exascale machines are projected be massively parallel architectures, with 105 to 106

nodes, each node itself being equipped with 103 to 104 cores. At the node level, the architec-
ture is a shared-memory machine, running many parallel threads on the cores. At the machine
level, the architecture is a distributed-memory machine. This additional level of hierarchy dra-
matically complicates the design of new versions of the standard factorization algorithms, that
are central to many scientific applications. In particular, the performance of numerical linear
algebra kernels are at the heart of many grand challenge applications, and it is of key impor-
tance to provide highly efficient implementations of these kernels to leverage the potential of
exascale platforms.

This article introduces a new systolic algorithm for QR factorization on clusters of mul-
ticore nodes. The main motivation is to enhance the state-of-the-art algorithms, that use tile
kernels and several elimination domains per panel, that enforce the inter-node communication
between neighbors only. The systolic algorithm targets a 3D torus, which is the underlying in-
terconnection topology of the contemporary and up-coming HPC systems. For instance, Blue
Gene/L is a 3D torus of size 64× 32× 32 [1], Kraken, a Cray XT 5, is a 3D torus of size
25× 16× 24 [2]. In addition, the Cray XT3 and XT4 also are architectures based no a 3D
torus [3]. Our systolic algorithm uses a two-level allocation of tile rows to the faces of the
torus cube, in order to restrict the reduction tree for each panel to only local communication.

Implementing such a complex algorithm with low-level primitives would require non-
trivial and error-prone programming effort. However, using the PaRSEC software [4] has en-
abled us to implement, validate, and evaluate the algorithm on Kraken, within a few weeks of

Algorithm 1: Generic QR algorithm.
begin

for k = 0 to min(m,n)−1 do
for i = k+1 to m−1 do

elim(i,CurPiv(i,k),k)

Algorithm 2: Elimination elim(i,CurPiv(i,k),k).
begin

(a) With TS (Triangle on top of square) kernels
GEQRT(CurPiv(i,k),k)
TSQRT(i,CurPiv(i,k),k)
for j = k+1 to n−1 do

UNMQR(CurPiv(i,k),k, j)
TSMQR(i,CurPiv(i,k),k, j)

(b) With TT (Triangle on top of triangle) kernels
GEQRT(CurPiv(i,k),k)
GEQRT(i,k)
for j = k+1 to n−1 do

UNMQR(CurPiv(i,k),k, j)
UNMQR(i,k, j)

TTQRT(i,CurPiv(i,k),k)
for j = k+1 to n−1 do

TTMQR(i,CurPiv(i,k),k, j)

development. Although we use a high-level environment, we report competitive performance
results with state-of-the-art QR routines, thereby showing that PaRSEC provides a viable al-
ternative to enhance the production of quality software prototypes on complex hierarchical
architectures.

The rest of the paper is organized as follows. Section 2 provides background information
on QR factorization algorithms, and surveys state-of-the-art algorithms in the literature. Sec-
tion 4 presents the new systolic algorithm, while Section 5 provides additional details of its
implementation using the PaRSEC software. Section 6 presents experimental results obtained
on the Kraken supercomputer. Finally, we close with concluding remarks in Section 7.

2 Background

2.1 Tiled-QR Factorization

The general shape of a tiled QR algorithm for a tiled matrix of m× n tiles, whose rows and
columns are indexed from 0, is given in Algorithm 1. Here i and k are tile indices, and operate
on square b×b tiles, where b is the block size. Thus, the actual size of the matrix is M×N, with
M≡m×b and N ≡ n×b. The first loop index, k, is the panel index, and elim(i,CurPiv(i,k),k)
is an orthogonal transformation that combines rows i and CurPiv(i,k) to zero out the tile in
position (i,k). Each elimination elim(i,CurPiv(i,k),k) consists of two sub-steps: (i) first in
column k, tile (i,k) is zeroed out (or eliminated) by tile (CurPiv(i,k),k), which is called the
pivot; and (ii) in each subsequent column j > k, tiles (i, j) and (CurPiv(i,k), j) are updated;
all these updates are independent and can be triggered as soon as the elimination is completed.

The algorithm is entirely characterized by its elimination list, which is the ordered list of all
the eliminations elim(i,CurPiv(i,k),k) that are executed.

To implement an orthogonal transformation elim(i,CurPiv(i,k),k), we can use either TT
kernels or TS kernels, as shown in Algorithm 2. TT kernels are needed to allow for several
eliminator tiles in a given column, but are less efficient than TS kernels. More detailed infor-
mation on the various kernels is provided elsewhere [5]. In a nutshell, a tile can have three
states: square, triangle, and zero. Transitions between these states occur through the following
kernels:

– GEQRT is the transformation of one square tile to a triangle tile,
– TSQRT(i,CurPiv(i,k),k) is the transformation of a square tile (tile i) into a zero tile, using

a triangle tile (tile CurPiv(i,k)) at step k,
– TTQRT(i,CurPiv(i,k),k) is the transformation of a triangle tile (tile i) into a zero tile

using a triangle tile (tile CurPiv(i,k)) at step k.

3 Related Work

While the advent of multi-core machines is somewhat recent, there is a long line of papers
related to tiled QR factorization. Tiled QR algorithms have first been introduced in Buttari
et al. [6,7] and Quintana-Ortı́ et al. [8] for shared-memory (multi-core) environments, with
an initial focus on square matrices. The sequence of eliminations presented in these papers is
analogous to the prior work [9], and corresponds to reducing each matrix panel with a flat tree:
in each column, there is a unique eliminator, namely the diagonal tile.

The introduction of several eliminators in a given column has a long history [9,10,11,12,13,14].
For shared-memory (multi-core) environments, recent work advocates the use of domain trees [15]
to expose more parallelism with several eliminators while enforcing some locality within do-
mains. A recent paper [16] introduces tiled versions of the Greedy algorithm [17] and the
Fibonacci scheme [10], it shows that these algorithms are asymptotically optimal.

There are recent efforts for distributed-memory environments. The algorithm of [18] uses
a hierarchical approach: for each matrix panel, it combines two levels of reduction trees. First,
several local binary trees are applied in parallel, one within each node, and then a global binary
tree is applied for the final reduction across nodes. Yet another implementation [19] also uses
a hierarchical approach, and it also uses a 1D block distribution. The main difference is that
the first level of reduction is performed with a flat tree within each node. Note that the hier-
archical algorithm (HQR) used previously [5] can be parametrized to implement this original
algorithm [19] as well as a more efficient variant with cyclic layout. The HQR algorithm [5] is
the reference algorithm for multi-level clusters: it provides a flexible approach, and allows one
to use various elimination trees (Flat, Binary, Fibonacci or Greedy) at each level.

4 The SYSTOLIC-3D algorithm

Platform and data layout – We first detail the 3D torus architecture. Within a p× q× r
3D torus, processor Pa,b,c has a direct communication link with processors Pa−1 (mod p,b,c),
Pa+1 (mod p,b,c), with processors Pa,b−1 (mod q,c), Pa,b+1 (mod q,c), and with processors Pa,b,c−1 (mod r),
Pa,b,c+1 (mod r). We have a m× n tile matrix. Tiles are mapped as follows: we use a two-level
cyclic distribution for the rows (directions a and b in the torus) and a cyclic distribution for
the columns (direction c in the torus). The mapping is defined formally as follows: proc Pabc

is assigned all tiles Tr,s such that r ≡ b mod q, r−b
q ≡ a mod p and s ≡ a mod r. We give

an example of the two-level cyclic distribution for the rows in Figure 1a, for a matrix with 27
rows mapped onto a 3×3× r torus.

General description – As stated in Section 2.1, a tiled-QR algorithm is entirely defined by the
ordered list of eliminations. The algorithm eliminates the tiles using a hierarchical approach,
using the 3D torus to minimize inter-processor communication contention. In order to do this,
pivots should be propagated across physical links in the torus, and only to neighbor nodes,
before each elimination. Figure 1 describes the elimination of the first column of the matrix.

Consider a given step k of the factorization. The k-th tile column is distributed across a face
of the cube, i.e. a square of p×q processors (those whose third index is c0 ≡ k mod r). Let di-
mension a be “horizontal” and dimension b be “vertical”. There are three levels of elimination
in the algorithm:
1. The first level of elimination corresponds to local tiles and uses TS kernels. There are

pq pivots in this step, one for each processor in the square, and they correspond to rows
numbered k,k+1, · · · ,k+ pq−1. These pivots are used to eliminate all local tiles within
each processor, hence they do not require any communication across the square. We use
a flat tree reduction for this step, but other elimination trees could be chosen freely. This
first elimination level is illustrated in Figure 1a when k = 0.

2. The second level of elimination consists of concurrent flat trees along the vertical dimen-
sion, and uses TT kernels (see Figure 1b). There are p pivots for this level, namely the kth

elements of rows k,k+q, · · · ,k+q(q−1). Each of these pivots will sequentially eliminate
the q−1 subsequent tiles, which are located in the corresponding grid column.

3. The third level of the elimination consists of a single flat tree along the horizontal dimen-
sion (see Figure 1c). There remains a single pivot, in row k, that sequentially eliminates
with TT kernels the q−1 remaining tiles.

At the end of step k, row number k will have been routed through at most p+ q− 2 physical
communication links. The communication pattern is the same for the other faces of the cube.
The whole algorithm is summarized in Algorithm 3.

P0,0,0

P0,1,0

P0,2,0

P1,0,0

P1,1,0

P1,2,0

P2,0,0

P2,1,0

P2,2,0

0
9

18

1
10
19

2
11
20

3
12
21

4
13
22

5
14
23

6
15
24

7
16
25

8
17
26

(a) First elimination level

P0,0,0

P0,1,0

P0,2,0

P1,0,0

P1,1,0

P1,2,0

P2,0,0

P2,1,0

P2,2,0

0

1

2

3

4

5

6

7

8

20 23 26

(b) Second elimination level

P0,0,0

P0,1,0

P0,2,0

P1,0,0

P1,1,0

P1,2,0

P2,0,0

P2,1,0

P2,2,0

0 3 6

20 23 26

(c) Third elimination level

Figure 1: Elimination in the first panel (panel 0) of all tiles below the diagonal (rows 1 to 27)
on a 3×3 processor square (face 0 of the 3D-torus).

Algorithm 3: The SYSTOLIC-3D algo-
rithm

begin
for k = 0 to min(m,n)−1 do

define i2← k mod d ;
/* Local FlatTree */

for l = k to k+d2−1 do
GEQRT(l,k);
for x = l +d2 to m−1 by d2 do

TSQRT(x, l,k);
for j = k+1 to n−1 do

UNMQR(l,k, j);
TSMQR(x, l,k, j);

// Note that from now on, we do
not need to use GEQRT
anymore, all the remaining
tiles are triangles.

/* Vertical FlatTree */
for l2 = i2 +1 to d−1 do

TTQRT V(k+(l2− i2),k,k);
for j = k+1 to n−1 do

TTMQR V(k+(l2− i2),k,k, j);

for l2 = 0 to i2−1 do
TTQRT V(k+d2 +(l2− i2),k,k);
for j = k+1 to n−1 do

TTMQR V(k+d2 +(l2−
i2),k,k, j);

for l = k+d to k+d2−1 by d do
for x = l +1 to (l− i2)+d−1 do

TTQRT V(x, l,k);
for j = k+1 to n−1 do

TTMQR V(x, l,k, j);

for x = l− i2 to l−1 do
TTQRT V(x, l,k);
for j = k+1 to n−1 do

TTMQR V(x, l,k, j);

/* Horizontal FlatTree */

for x = k+d to k+d2−1 by d do
TTQRT H(x,k,k);
for j = k+1 to n−1 do

TTMQR H(x,k,k, j);

5 Implementation with PaRSEC

This section details the implementation of
the SYSTOLIC-3D algorithm using PaR-
SEC. With an infinite number of resources,
the scheduling could follow a greedy heuris-
tic: the execution would progress as fast as
possible.

The elimination list of the algorithm is
the composition of the reduction trees at all
of the different levels. All eliminators are
known before the execution. Each compo-
nent of an elimination is triggered as soon as
possible, i.e., as soon as all dependencies are
satisfied: first we have the elimination of the
tile, and then the updates in the trailing pan-
els. Note that the overall elimination scheme
is complex, and mixes the elimination of tiles
at all levels. However, with a fixed number of
resources, it is necessary to decide an order
of execution of the tasks, hence to schedule
them: this is achieved through the PaRSEC
environment.

5.1 Introduction to PaRSEC

PaRSEC is a high-performance fully-distribu-
ted scheduling environment for systems of
micro-tasks. It takes as input a problem-size-
independent, symbolic representation of a
Direct Acyclic Graph (DAG) of tasks, and
schedules them at runtime on a distributed
parallel machine of multi-cores. Data move-
ments are expressed implicitly by the data
flow between the tasks in the DAG represen-
tation. The runtime engine is then responsi-

ble for actually moving the data from one machine (node) to another, using an underlying com-
munication mechanism such as MPI. A full description of PaRSEC, and the implementation
of classical linear algebra factorizations in this environment, is provided elsewhere [20,21].

To implement any QR algorithm in PaRSEC, it is sufficient to give an abstract represen-
tation of all the tasks (eliminations and updates) that constitute the QR factorization, and how
data flows from one task to the other. Since a tiled QR algorithm is fully determined by its
elimination list, it suffices to provide a function, that the runtime engine is capable of evaluat-
ing, and that computes this elimination list. The PaRSEC object obtained in this way is generic:
when instantiating a PaRSEC QR factorization, the user simply gives the size of the platform

(p× q× r), defining a new DAG at each instantiation. Note that this DAG is not fully gener-
ated: PaRSEC keeps only a parametric representation of the DAG in memory, and interprets
symbolic expressions at runtime to explicitly represent only the ready tasks at any given time.
This technique is similar to the Parametrized Tasks Graphs [20], and to HQR [5].

At runtime, task executions trigger data movements, and create new ready tasks, following
the dependencies defined by the elimination list. Tasks that are ready to compute are scheduled
according to a data-reuse heuristic: each core will try to execute close successors of the last
task it ran under the assumption, that these tasks require data that was recently touched by the
completed task. This policy is tuned by the user through a priority function: among the ready
tasks for a given core, the choice is done by following a hint from this function. To balance
the load between cores, tasks on the same node in the algorithm (residing on the same shared
memory machine) are shared between the computing cores, and a NUMA-aware job stealing
policy is implemented. The user is responsible for defining the affinity between data and tasks,
and to distribute the data between the computing nodes. Thus, he defines which tasks should
execute on which node, and he is responsible for this level of load balancing. In our case, the
data distribution is the data layout given in Section 4. Since all kernel operations modify a
single tile (or a tile and its reflectors, which are distributed in the same way), we chose the
strategy “owner computes” for the tasks: tasks’ affinity is set to the node that owns the data
that is going to be modified, and the input data might need to be transferred from other nodes.

5.2 Implementation Details
The implementation of SYSTOLIC-3D in PaRSEC involves limited effort compared with other
software strategies, that we are aware of. We only implemented a few functions that are used
by PaRSEC to generate the dependency graph. They depend on the current elimination step k
as follows:
1. CurPiv(i,k), returns the pivot to use for the row i at step k;
2. NextPiv(pivot,k,start), returns the next row which will use the row “pivot” as a pivot in

step k after it has been used by row “start”;
3. PrevPiv(pivot,k,start), returns the previous row which used the row “pivot” as a pivot in

step k before it has been used by row “start”;
We have decomposed each one of these functions in two sub-functions: (i) a low-level

function, which takes all the TS operations into account, and which calls the local FlatTree
because operations are local to each node; and (ii) a high-level function, which takes all the TT
operations into account, and where the pivot will “move” across the architecture. Using these
functions, PaRSEC is able to construct a dependency graph between the different tiles in order
to run the algorithm as efficiently as possible.

6 Experimental Evaluation

In this section, we the report experimental results we obtained on Kraken. We compare the
SYSTOLIC-3D algorithm with a number of competing implementations such as vendor library
routines and recent algorithms from literature.

6.1 Experimental Setup
All runs were done on the Kraken supercomputer at the National Institute for Computational
Science [2]. The Kraken machine is a Cray XT5 system operated by the University of Ten-

nessee and located in Oak Ridge, Tennessee, U.S.A. The entire system consists of 9048 com-
puting nodes. The experiments presented here used up to 1989 nodes, which is about one fifth
of the machine. Each node contains two 2.6 GHz sixcore AMD Opteron (Istanbul) processors,
16 GB of memory and the Cray SeaStar2+ interconnect.

We have compared SYSTOLIC-3D with several state-of-the-art algorithms, using three ma-
trix sizes: (i) small matrices, of size M = N = 10,368; (ii) medium matrices, of size M = N =
20,736; and large matrices, of size M = N = 41,472. Here is the list of the algorithms used for
comparison:

– SYSTOLIC-3D is the algorithm described in this paper. Table 1 shows the 3D grid config-
uration (p,q,r) used for each matrix size (M = N) and for each total number of nodes T ,
where T = p×q× r. Note, that there is no guarantee, that the nodes assigned to the exper-
iment will indeed form the desired 3D torus. They can be scattered across the machine. To
the best of our knowledge, the only way to guarantee that assigned nodes indeed form a 3D
torus would be to reserve the entire Kraken machine: something beyond our capabilities.

– HQR is the hierarchical QR factorization algorithm [5], which was also implemented us-
ing the PaRSEC software. We compare several variants of HQR, which all use the same
FLAT-TREE low-level reduction tree, but which use different high level (or distributed)
reduction trees [5]:
1. HQR-FLAT uses the FLATTREE reduction;
2. HQR-FIBO uses the FIBONACCI reduction;
3. HQR-BINARY uses the BINARYTREE reduction;
4. HQR-GREEDY uses the GREEDY reduction.

Because HQR uses a 2D-processor grid, we use T nodes configured as a (pq)× r 2D grid.
– SYSTOLIC-2D is a variant of SYSTOLIC-3D where q is set to 1 and then runs on a 2D

grid of size (pq)× r. We introduced it for the sake of comparison with the HQR variants –
SYSTOLIC-2D can be viewed as yet another HQR variant with a new high-level reduction
tree.

We compare all the previous algorithms that were implemented with PaRSEC with the
following algorithms from the literature [22] on the very same hardware:

– SYSTOLIC-1D is the virtual systolic array decomposition [22]. As its name indicates, it
targets a 1D-linear array of processors. Note that SYSTOLIC-1D has been implemented
using a hand-written communication engine over MPI – not PaRSEC.

– HPL 4/3 N3 is the virtual performance of the High Performance Linpack LU factorization
using the flops count of QR: O(4

3 N3).
– LIBSCI QR is the QR factorization from ScaLAPACK used in the Cray Scientific Library.
– HPL 2/3 N3 is the High Performance Linpack LU factorization with the actual flops count

of LU: O(2
3 N3).

For each set of results, we ran the different algorithms ten times, and we take the average
performance over all these executions.

Our decision to include performance numbers for HPL’s LU factorization might seem con-
troversial due to the fundamental differences between the LU and QR factorization algorithms
including their numerical properties, operation-count, and the runtime behavior. However, from
the end-user perspective, both LU and QR solve a system of linear equations, both are back-
ward stable, and only an explicitly stated rule [23] prohibits QR from scoring the entrants to the
TOP500 ranking. With this in mind, we include results for the LU factorization, and include

M = N = 10,368 M = N = 20,736 M = N = 41,472
T p×q× r T p×q× r T p×q× r T p×q× r T p×q× r T p×q× r

4 2×2×1 52 6×3×3 16 4×2×2 210 6×5×7 64 4×4×4 840 10×6×14
12 3×2×2 80 5×4×4 48 4×4×3 320 8×5×8 192 8×4×6 1232 11×7×16
18 3×3×2 96 6×4×4 80 5×4×4 405 9×5×9 336 7×6×8 1632 12×8×17
28 5×2×3 128 8×4×4 112 6×4×5 486 9×6×9 480 8×6×10 1989 13×9×17
42 7×2×3 168 7×4×6 648 9×6×12

Table 1: Partition of the nodes into a 3D torus for each matrix size and each total number of
nodes T .

the case when we pretend that LU performs as many Flops as QR: O(4
3 N3) (this may be simply

treated as time-to-run comparison) as well as the case where we report the actual performance
rate based on the actual amount of floating point operations LU: O(2

3 N3).

6.2 Performance Results

The first observation is that PaRSEC-based algorithms (SYSTOLIC-3D, SYSTOLIC-2D and all
HQR variants) always perform better than LIBSCI QR and HPL 4/3 N3, the QR factorization
algorithms from Kraken’s standard software stack. This observation holds for all matrix sizes,
and this makes our main point: owing to the PaRSEC system, we have been able to experi-
ment with a variety of complex, hierarchical algorithms, without paying the price of lengthy
development effort.

Note, how SYSTOLIC-3D , HQR variants, and SYSTOLIC-1D compare with each other.
SYSTOLIC-3D has approximatively the same efficiency as HQR-BINARY and HQR-GREEDY
on all matrix sizes. For matrices of size M = N = 10,368, HQR-FLAT is 54% more ef-
ficient on 1536 cores (≈ 1700 GFlops compared to ≈ 1100 GFlops), and SYSTOLIC-1D
(≈ 1900) GFlops is 73% more efficient. This difference increases with the size of the ma-
trix: for M = N = 41,472, HQR-FLAT reaches ≈ 16000 GFlops, and SYSTOLIC-1D reaches
≈ 21000 GFlops on 23868 cores, where SYSTOLIC-3D is bound by≈ 10600 GFlops (half the
performance of SYSTOLIC-1D). However, for M = N = 41,472, and with a small number of
cores, SYSTOLIC-3D performs better than SYSTOLIC-1D.

As mentioned earlier, it is infeasible to guarantee, that the assignment of Kraken nodes
from our batch queue submissions form a true 3D torus. We expected the constraints to be less
stringent when using a 2D torus, and this turns out quite true: SYSTOLIC-2D, the implemen-
tation of SYSTOLIC-3D on a 2D torus, performs very well for all matrix sizes, and is the best
algorithm for larger matrices of size M = N = 41,472.

7 Conclusion

In this article, we have presented a systolic QR factorization algorithm, SYSTOLIC-3D, which
aims to minimize the amount of communication in the reduction trees. We have shown that
mapping this systolic algorithm onto a 3D torus leads to a competitive factorization kernel with
strong scaling capabilities. As of today, the main limitation to fully validate the experiments is

Systolic 3D
Systolic 2D

HQR Flat
HQR Fibonacci

HQR Binary
HQR Greedy

Systolic 1D
HPL 2/3 N^3
HPL 4/3 N^3

LibSci QR 0

 500

 1000

 1500

 2000

 2500

 48 144 216 360 504 648 960 1152 1536

G
Fl

op
s/

s

Number of cores

M = N = 10368

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 192 576 960 1440 2016 2520 3840 4860 5832

G
Fl

op
s/

s

Number of cores

M = N = 20736

 0

 5000

 10000

 15000

 20000

 768 2304 4032 5760 7776 10080 14784 19584 23868

G
Fl

op
s/

s

Number of cores

M = N = 41472

Figure 2: Performance of the various algorithms for different problem sizes.

the lack of possibility to reserve an actual 3D torus architecture on the Kraken supercomputer.
Still, the performance of the new algorithm, together with its 2D counterpart are very encour-
aging. Both versions dramatically outperform LIBSCI QR and HPL 4/3 N3, the vendor QR
factorization implementations on Kraken, and also HPL 2/3 N3, the widely-used LU factor-
ization routine (despite its favorable flop count). This last observation fully demonstrates the
usefulness of the PaRSEC system, which has enabled us to experiment with complex, hierar-
chical QR algorithms, without paying the price of lengthy and complex development effort of
distributed memory software engineering.

References

1. Adiga, N.R., Almási, G., Almasi, G.S., Aridor, Y., Barik, R., Beece, D., Bellofatto, R., Bhanot, G.,
Bickford, R., Blumrich, M., et al.: An overview of the BlueGene/L supercomputer. In: Supercom-
puting, ACM/IEEE 2002 Conference, IEEE (2002) 60–60

2. The National Institute for Computational Sciences: Kraken machine size. http://www.nics.
tennessee.edu/computing-resources/machine size

3. Bhatele, A., Kale, L.V.: Application-specific topology-aware mapping for three dimensional topolo-
gies. In: IPDPS’08, the 22nd IEEE Int. Parallel and Distributed Processing Symposium, IEEE Com-
puter Society Press (2008) 1–8

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.: DAGuE: A generic
distributed DAG engine for high performance computing. Parallel Computing 38(1) (2012) 37–51

5. Dongarra, J., Faverge, M., Herault, T., Jacquelin, M., Langou, J., Robert, Y.: Hierarchical QR fac-
torization algorithms for multi-core clusters. Parallel Computing (2013)

6. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel tiled QR factorization for multicore archi-
tectures. Concurrency: Practice and Experience 20(13) (2008) 1573–1590

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms
for multicore architectures. Parallel Computing 35 (2009) 38–53

8. Quintana-Ortı́, G., Quintana-Ortı́, E.S., van de Geijn, R.A., Zee, F.G.V., Chan, E.: Programming ma-
trix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathematical Software
36(3) (2009)

9. Sameh, A., Kuck, D.: On stable parallel linear systems solvers. J. ACM 25 (1978) 81–91
10. Modi, J., Clarke, M.: An alternative Givens ordering. Numerische Mathematik 43 (1984) 83–90
11. Pothen, A., Raghavan, P.: Distributed orthogonal factorization: Givens and Householder algorithms.

SIAM J. Scientific Computing 10(6) (1989) 1113–1134
12. da Cunha, R., Becker, D., Patterson, J.: New parallel (rank-revealing) QR factorization algorithms.

In: Euro-Par 2002. Parallel Processing: Eighth International Euro-Par Conference, Paderborn, Ger-
many, August 27–30. (2002)

13. Demmel, J.W., Grigori, L., Hoemmen, M., Langou, J.: Communication-avoiding parallel and se-
quential QR and LU factorizations: theory and practice. Technical Report 204, LAPACK Working
Note (2008)

14. Langou, J.: Computing the R of the QR factorization of tall and skinny matrices using MPI Reduce.
Technical Report 1002.4250, arXiv (2010)

15. Hadri, B., Ltaief, H., Agullo, E., Dongarra, J.: Tile QR factorization with parallel panel processing
for multicore architectures. In: IPDPS’10, the 24st IEEE Int. Parallel and Distributed Processing
Symposium. (2010)

16. Bouwmeester, H., Jacquelin, M., Langou, J., Robert, Y.: Tiled QR factorization algorithms. In:
SC’2011, the IEEE/ACM Conference on High Performance Computing Networking, Storage and
Analysis, ACM Press (2011)

17. Cosnard, M., Robert, Y.: Complexity of parallel QR factorization. Journal of the A.C.M. 33(4)
(1986) 712–723

18. Agullo, E., Coti, C., Dongarra, J., Herault, T., Langou, J.: QR factorization of tall and skinny ma-
trices in a grid computing environment. In: IPDPS’10, the 24st IEEE Int. Parallel and Distributed
Processing Symposium. (2010)

19. Song, F., Ltaief, H., Hadri, B., Dongarra, J.: Scalable tile communication-avoiding QR factorization
on multicore cluster systems. In: SC’10, the 2010 ACM/IEEE conference on Supercomputing, IEEE
Computer Society Press (2010)

20. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.: DAGuE: A generic
distributed DAG engine for high performance computing. In: 16th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (HIPS’11). (2011)

21. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T., Kurzak, J., Langou, J.,
Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., Dongarra, J.: Flexible development of dense
linear algebra algorithms on massively parallel architectures with DPLASMA. In: 12th IEEE Inter-
national Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC’11).
(2011)

22. Kurzak, J., Luszczek, P., Gates, M., Yamazaki, I., Dongarra, J.: Virtual systolic array for QR decom-
position. In: IPDPS’13, the 27st IEEE Int. Parallel and Distributed Processing Symposium, IEEE
Computer Society Press (2013)

23. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past, present, and future. Con-
currency and Computation: Practice and Experience 15 (2003) 1–18

