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Abstract—This work tackles two simultaneous challenges faced
by autotuners: the ease of describing a complex, multidimensional
search space, and the speed of evaluating that space, while
applying a multitude of pruning constraints. This article presents
a declarative notation for describing a search space and a
translation system for conversion to a standard C code for
fast and multithreaded, as necessary, evaluation. The notation
is Python-based and thus simple in syntax and easy to assimilate
by the user interested in tuning rather than learning a new
programming language. A large number of dimensions and a
large number of pruning constraints may be expressed with little
effort. The system is discussed in the context of autotuning the
canonical matrix multiplication kernel for NVIDIA GPUs, where
the search space has 15 dimensions and involves application of 10
complex pruning constrains. The speed of evaluation is compared
against generators created using imperative programming style
in various scripting and compiled languages.

I. INTRODUCTION

The BEAST project follows the classic recipe for automated
software tuning. First, a computational kernel is implemented
and parameterized with a set of tunable parameters (tiling sizes,
implementation options, hardware switches), which define the
search space. Then pruning constraints are applied to trim the
search space to a manageable size. Then the variants that pass
the pruning process are compiled, run and benchmarked, and
the best performers are identified.

In the course of working on the matrix multiplication kernel,
known in the HPC community by its GEMM name in the BLAS
library, we discovered that the search space generation and
pruning process poses some serious challenges in terms of ease
of use and speed of evaluation. This led us to the development
of a declarative, Python-based language for describing the
search space, with pruning constraints, and a translation system
that converts that description to a standard C code, which can
then be compiled with a C compiler, executed at high speed,
and multithreaded for extra performance.

We decided to present the language in the context of the
GEMM kernel, which has the largest and most complex
search space, and the largest and most complex set of pruning
constraints, that we have ever encountered in the course of
our work on many different GPU kernels. Also, we discuss
the work in the context of NVIDIA CUDA, which has been
the main vehicle of our implementations so far, and also, for
simplicity, we focus specifically on the Kepler architecture,
which for many months has been the accelerator of note for
High Performance Computing. We assume that the reader has
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some familiarity with CUDA and GPU architecture, as it is
difficult to include these basics due to space limitations.

II. MOTIVATION

The ultimate goal of the BEAST project is to explore the
search space without introducing any arbitrary constraints, but
only those that have sound technical justification. To start
with, we want to have a very large search space, to ensure
that best performing kernels are not missed. We also want to
apply aggressive pruning, to explore that space in the shortest
time, interactively if possible. Thus, we want to make sure that
pruning eliminates only those kernels that have absolutely no
chance of achieving good performance.

Performance engineers commonly apply arbitrary constraints
to the problem dimensions when tuning GPU kernels, for
example, using data sizes and index strides that are a power of
two, and setting upper limits of loops to powers of two. Power-
of-two sizes could be considered reasonable for all kinds of
parameters, because they correlate to hardware specs. What we
strive to accomplish in the BEAST project is to eliminate this
kind of educated guesswork based on the developer’s intuition.

In our view, it is better to replace such arbitrary decisions
with a set of derived constraints that have a direct relation
to performance. One of the best examples here is the GPU
occupancy, which is a function of multiple variables, including:
the number of threads in a block, the number of registers
required by each thread and the amount of shared memory
required by each block. Occupancy threshold is a very effective
and safe pruning constraint, as most kernels have no chance of
achieving good performance at low occupancy levels. One can
think about it as an automated occupancy calculator, which
becomes an integral part of the pruning process, alongside
other constraints.

III. BACKGROUND AND CONTRIBUTIONS

In the past, we used the BEAST methodology to tune
GEMM kernels for the NVIDIA Fermi architecture [1],
[2], and achieved substantial performance improvement over
cuBLAS for the double precision complex case (ZGEMM).
We also tuned GEMM kernels for the NVIDIA GTX 680
consumer card, which was the first available card with the
Kepler architecture [3], and achieved substantial performance
improvement over cuBLAS for the single precision complex
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case (CGEMM). Recently, we used the BEAST approach to
study energy consumption trade-offs of the GEMM kernel [4].

We also used the BEAST system to produce kernels other
than standard BLAS. Recently, we implemented and tuned
the fastest kernels for the batched Cholesky factorization and
triangular solve for large sets of very small matrices [5] and
achieved between 3Xx and 5X performance improvement over
cuBLAS. Finally, we applied the methodology to a much
more exotic kernel, the alternating least square algorithm for
collaborative filtering [6] and achieved significant speedups
over CPU implementations of the same operation.

A related development is our work on visualization of
the search space pruning process. We developed a radial,
space-filling technique that allows the user to gain a better
understanding of how the pruning constraints remove candidates
from the search space [7].

Our major contributions include: (1) autotuning toolchain
for specifying, building and testing user-defined kernels for
accelerators; (2) use of familiar Python syntax for search space
specification rather than dedicated Domain Specific Language
(DSL); (3) DAG-based pruning of the search space; and (4)
performance analysis of various language backends for our
code generator.

IV. RELATED WORK

The list of prominent autotuning software projects in-
cludes packages such as Automatically Tuned Linear Algebra
Software (ATLAS) [8], and its predecessor, Portable High
Performance ANSI C (PHiPAC) [9] that targeted superscalar
processors with dense linear algebra kernels. Sparse matrix
computations were the main focus of Optimized Sparse
Kernel Interface (OSKI) [10], while FFT and similar trans-
forms were optimized by Fastest Fourier Transform in the
West (FFTW) [11] and Spiral [12]. Spiral also recently
addressed matrix-matrix multiply [13]. None of these projects
address autotuning for accelerators, and they mostly embed the
expert knowledge of tuning inside the code rather than expose
it in the form of stencils as BEAST does. DSLs also exist for
the sole purpose of autotuning parallel scientific codes [14],
[15]. A much more complete survey of recent advances in
autotuning is available elsewhere [16].

In our autotuning work and HPC code design, we follow
two particular examples of successful open source solutions
for very efficient matrix-matrix multiplication. One was done
by Volkov et al. [17] and the other was done by Nath et
al. [18], [19]. These efforts showed how it was possible to
discover the unknown parameters of the GPU hardware and to
autotune the kernels of interest accordingly. Sadly, the era of
autotuning based on open source software and using openly
available information has ended with the introduction of highly
optimized codes inside NVIDIA’s cuBLAS library that use
assembly instructions and binary codes not available to a regular
user [20, Section 5].

Among the science kernels that have been successfully
standardized, only in the case of dense linear algebra have
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r=range(N)
fibonacci = Iterator([ 1, 1,2,3,5,8,13])

Fig. 1. Various forms of iterator definitions in the BEAST language.
@iterator
def inner():

return range( outer )

@iterator
def outer():

if archiecture == Fermi: return range( 32 )
elif archiecture == Kepler: return range( 192 )
elif archiecture == Maxwell: return range( 256 )
ex_outer = range( 100 )
ex_inner = range( ex_outer )

Fig. 2. Deferred iterators that show how dependent iterators are handled in
the BEAST language and their expression-based counterparts.

autotuning techniques been used to achieve reasonable perfor-
mance on new architectures. The performance of the MAGMA
library on GPU-accelerated systems is probably one of the
very few examples of leveraging standards to accelerate legacy
algorithms with moderate recoding/porting effort. But even in
the area of dense linear algebra, the autotuned library offload
model is breaking down. A number of cases can be identified
that arise in the context of hybrid environments but are not
envisioned by the existing standards and not supported by any
libraries, e.g., new matrix layouts, such as the tile layout [21],
higher precision than supported by hardware, such as the
quadruple precision [22], [23], non-IEEE arithmetic, such as
interval arithmetic [24, ch. 9], etc. Consequently, classic library
autotuning approaches (e.g. ATLAS, FFTW) are not addressing
hybrid architectures, and even if they were, the vast majority
of science kernels would be out of their scope as being too
specific to include in a general purpose software library.

A technique called light modular staging [25], [26] recently
was used [27] to port Discrete FFT from the Spiral frame-
work [12] to the Scala’s LMS system [28]. Our approach is
similar in principle in that we use code generation and embed
autotuning DSL (Domain Specific Language) inside the Python
code. Note that we have been doing this before in the context
of the HPC Challenge benchmark [29].

V. ITERATORS

The following parameter iterators exist in the BEAST
language:

« Expression iterators
o Deferred iterators
« Closure iterators (generator-based)

@iterator
def primes():
yield 1
yield 2
n=3
old_primes = list()
while n <= MAX:
for iin old_primes:

ifn%i==0:
break
else:
yield n
old_primes.append(n)
n+=2

Fig. 3. Closure iterator that generates prime numbers smaller than or equal
to MAX with MAX>= 3.



Expression iterators are defined through Python expressions,
most notably the range() builtin as shown in Figure 1. The
figure shows that the builtin function was overloaded and
accepts not only integers but also other iterators, which
is the basic tool for nesting of iterators and making them
depend upon each other. We cover the intricacies of iterators’
dependence analysis and use in Section X-A. Additional forms
of syntax for expression-based definition of iterators are shown
in Figure 1. The expression syntax extends beyond defining
new iterators and also covers the use of iterator values in
intermediary expressions, which is described in Section VIII.
Finally, expressions involving iterators are the primary way of
defining constraints as described in Section VI.

Deferred iterators may be considered an extension of expres-
sion iterators that allow the developer to use a much broader
set of Python’s constructs in order to achieve more advanced
semantics. This primarily includes operators that cannot be
overloaded in a generic way such as the boolean operators.
Also permitted are the if-elif-else statements that cannot be
achieved through Python’s ternary operator. This extended
syntax possibilities are shown in Figures 2. Another advantage
of deferred iterators is that the order of definitions of iterators is
relaxed. This avoids the requirement that expression iterators
need to be defined in the order that puts the independent
iterators first, the iterators that depend on those second, and
so on. Figure 2 shows two deferred iterators: outer and inner.
The former does not depend on any external variables and
will become the outer loop in the generated code. The latter
depends on the former and needs to become the inner loop
in the generated code. However, the order of definitions of
these iterators in the code can be arbitrary. This is not the
case for the two expression iterators in the figure: ex_outer
and ex_inner; they have to be defined in the order shown
in the figure or otherwise will cause either NameError or
UnboundLocalError exception because the iterator variable is
used before definition.

Closure iterators are based on Python’s generators and allow
the user to define the most complex iterators as required by
the search space. Figure 3 shows an example of a closure
iterator that iterates over prime numbers smaller than or equal
to MAX. The new values are generated with the Python yield
statement. The return statement or reaching the end of the
function terminates the iteration just as is the case in any
standard Python code. The closure iterators may be thought of
as inheriting the functionality available in expression iterators
and deferred iterators with addition of ability to hold on to
the internal state between executions of the yield statement.
In the figure, this is represented by the old_primes list of
previously generated primes. One example of when such a
prime number generator would be useful is autotuning an FFT
implementation for hard-to-optimize problem sizes [30].

With the iterators described so far, it is possible to express
virtually any iteration behavior and in that sense we consider
the BEAST language to be functionally complete. The re-
maining issue is the object-oriented interface promoted by the
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dim = range( WARP_SIZE, MAX_THREADS+1, WARP_SIZE )
blk_m = range( dim_m, MAX_M+1, dim_m)
Fig. 4. Global lexical scope in the BEAST language.
@iterator
def blk_n_a(blk_m, blk_k):
x = blk_k
if trans_a |= 0:
x = blk_m
return range(x, 0, -1)
Fig. 5. Local lexical scope in the BEAST language.

Python’s standard library and the wider Python community.
Such interfaces are generally considered more Pythonic and,
consequently, we reserve the possibility to develop them in the
future.

VI. ITERATOR CONSTRAINTS

Iterator constraints prune the search space define by the
iterator(s); sometime by as much as 99% [14]. Constraints’
code executes during the iteration and evaluates (or is cast) to a
boolean value. In other words, the True/False value indicates
whether a particular tuple of iterator values should/shouldn’t
be considered in the tuning process. The constraints allow
the user to express conditions known to yield good results
from the performance engineering standpoint. Because these
conditions might involve an interplay between not just one but
multiple iterators, and because the conditions could involve
non-trivial expressions/statements, sometimes they might be
the only means of defining a non-affine search space for the
autotuning.

In a similar fashion to the iterators, the iterator constraints
come in two types as expression and deferred constraints. The
former constraints allow for very casual definition of simple
conditions that prune the search space and often drastically
reduce the execution time of the autotuner. Due to the fact that
the syntax is limited to Python expressions, certain semantics
are not available and require the latter type of constraints. The
deferred constraints require a Python function definition with
the appropriate annotation, which obviously requires more
typing and could be prone to errors much more so than
simple definitions of expression constraints. But the deferred
constraints offer additional functionality that is harder or even
impossible to achieve otherwise. Additionally, the deferred
constraints can be specified in any order. In particular, the use
of a deferred constraint can precede its definition.

VII. ITERATOR TYPES AND THEIR LEXICAL SCOPES
A. Lexical Scopes

The language for defining autotuning parameter space is
meant for convenience, and, as such, it needs to provide
flexibility of programming patterns and expressiveness to

@iterator
def fibonacci():
k=n=1
while n <= MAX:
yield n
n, k =n+k, n

Fig. 6. Closure lexical scope in the BEAST language.



deal with more complicated iteration spaces that call for
better structuring of code. Consequently, the BEAST language
supports three main iterator types and corresponding lexical
scopes:

« global scope,
« local scope, and
« closure scope

The global scope allows the user to conveniently define
parameter iterators that can be used throughout all the available
scopes. In essence, they are Python global variables as shown
in Figure 4. In addition to the standard Python semantics, the
the BEAST language offers overloaded standard functions and
operators that allow for streamlined creation and manipulation
of iterators — see Section VIII. The global scope is useful
for expressing code that is free of side-effects. If, however,
extended semantics are needed (e.g., for stateful iterators) or
the code needs better structure and organization for clarity,
then the other two scopes should be used.

Local scopes are mainly used to control the visibility of
names. Creating a local scope hides variables from the global
scope and allows for better code organization. This is done with
Python’s function and annotation syntax as shown in Figure 5.
While the local scope may serve as an organizational tool to
provide a structured definition of iterators with clear syntax, it
lacks the ability to attach a state to the iteration process. This
kind of functionality requires the third kind of lexical scope
that uses closures.

Closure scopes are used for iterators with stateful behavior
that is not possible otherwise with side-effect free constructs.
They also enable control of visibility because they create a
local name space just as was the case for local scopes. From the
Python syntax standpoint, closure scopes are simply generators
with the BEAST-defined annotation. The presence of the yield
keyword in the function code marks the closure scope and the
explicit return keyword marks the end of iteration. The lack
of return will create a closure that will stop iteration when
the end of the function is reached. In such a situation, Python
implicitly executes return None statement. Figure 6 shows a
sample iterator based on a closure scope — the code generates
Fibonacci numbers up to and including MAX.

VIII. OPERATING ON ITERATORS AND THEIR
CONSTRAINTS

In Figures 2 and 4 we showed the basic operation (aside
from initial construction) on iterators: casting of the iterator to
an integer. This is accomplished through overloaded functions
from Python’s standard library. This feature is more general
as the iterator variables can be used in arbitrary expressions
because their Python implementation overloads the operator
method such as _add . In addition, we added as a matter of
convenience the ability to overload some operators that do not
allow for overloading such as the ternary operator. The standard
operators overloaded for the iterators include arithmetic, binary,
logical, and relational iterators. The relational operators prove
especially useful for defining constraints as we discuss below.
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When overloading Python’s builtins and standard classes,
we faced a choice of implementing various type-dispatch
variants [31, p.125-141][32]. We opted for simplicity and
similarity to the semantics of existing languages that the users
would be familiar with. Therefore, we use single dispatch
throughout our implementation.

An iterator algebra is a functionality that is unique to iterators,
and it enables more structured definition of iteration spaces.
The user has the flexibility to define the iterators in a way
that corresponds closely to the search space, hardware features
and software tools, rather than being limited by the syntax
(loop nesting, etc.) of the generated code. Consequently, the
set-algebra operations, union, intersection, etc., can be used to
combine the iterators for expressive search space definition.

A. Operations on Iterator Constraints

Just as the iterators themselves, the constraints are instances
of standard Python classes and the comments made above
about overloading apply here as well. In particular, the logical
operators are well suited for creating complex expressions that
correspond to the desired limitations imposed on the search
space by the user. The complexity of these logical expressions
has an interesting consequence on the performance of the
generated code and may limit the options of the optimizing
stage to reduce the number of iterations and the running time
of the autotuner. In that context, the short-circuiting property
of the logical operators becomes an important optimization
tool.

IX. THE MODEL AUTOTUNING PROBLEM: GEMM

A. The GEMM Kernel

Figure 7 shows the tiling of the GEMM kernel. Each thread
block computes a part of the C matrix in registers, by streaming
thin stripes of the A and B matrices through the shared memory.

dim_m X dim_n defines the shape of the thread grid for
computing C.

blk_m X blk_n defines the area of C that the thread block
is responsible for.

blk_m X blk_k defines the size of the stripe of A in
shared memory.

blk_k x blk_n defines the size of the stripe of B in shared
memory.

dim_m_a X dim_n_a defines the shape of the thread grid
for reading A from device memory to shared memory.
dim_m_b X dim_n_b defines the shape of the thread grid
for reading B from device memory to shared memory.

The implementation is also parameterized to handle all cases
of transpositions (either A or B transposed, or none, or both)
and all four standard LAPACK precisions (single-real, single-
complex, double-real, double-complex). We used this basic
structure extensively in the past for our autotuning efforts,
including tuning for the Fermi architecture [1], [2], the Kepler
architecture [3], and tuning for energy [4].
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Fig. 7. Tiling of the GEMM kernel: C « aAx B + fC.

B. The Device Parameters

An important part of the search space and pruning process
is the device information. Some of the device information
can be queried by using the cudaGetDeviceProperties
function. Figure 8 shows the device parameters that can be
retrieved that way. The values are for Tesla K40c.

Some of the device information cannot be queried, but is
available in NVIDIA documentation and tied to the compute
capability of the device. These parameters are stored in a table
and retrieved using the major number and the minor number
of the compute capability, as shown in Figure 9

C. The Autotuning Settings

The autotuning process is carried out separately for each
precision and each case of transposition. Therefore, the
precision and the input transpose configuration are part of
the definition of the search space. Here, we are using the
common case of double precision real arithmetic, with both A
and B not transposed. Figure 10 shows the settings.

D. The Search Space

The search space is defined by 15 iterators shown in Fig-
ure 11. This is a large number of dimensions and demonstrates
the hardship of defining the space as a set of nested loops. The

max_threads_per_block = 1024
max_threads_dim_x = 1024
max_threads_dim_y = 1024
max_shared_mem_per_block = 49152
warp_size = 32

max_regs_per_block = 65536
max_threads_per_multi_processor = 2048
cudamajor = 3

cudaminor = 5
max_registers_per_multi_processor = 65536
max_shmem_per_multi_processor = 49152
float_size = 4

Fig. 8. Device information coming form a device query that is specific to
Tesla K40c.
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MaxBlocksPerMultiProcessor = |
[1,-1,-1,-1,-1,-1, -1, -1, -1, -1],
[8, 8, 8, 8,-1,-1,-1,-1,-1,-1],
[8, 8 8, 8, 8 8, 8,8, 8, 8],
[16,-1,-1,-1,-1,16, -1, -1, -1, -1] |

MaxWarpsPerMultiProcessor = [
[1,-1,-1,-1,-1,-1,-1, -1, -1, 1],
[24, 24, 32, 32, -1, -1, -1, -1, -1, -1],
[48, 48, 48, 48, 48, 48, 48, 48, 48, 48],
[64,-1,-1,-1,-1,64,-1,-1,-1,-1]]

MaxRegistersPerThread = [

[-1, -1, -1, -1, -1,-1, -1, -1, -1, -1],
[128, 128, 128, 128, -1, -1, -1, -1, -1, -1],
[63, 63, 63, 63, 63, 63, 63, 63, 63, 63],
[63, -1, -1, -1, -1,255, -1, -1, -1, -1]]
max_blocks_per_multi_processor =
MaxBlocksPerMultiProcessor[cudamajor][cudaminor]
max_warps_per_multi_processor =
MaxWarpsPerMultiProcessor[cudamajor][cudaminor]
max_registers_per_thread
MaxRegistersPerThread[cudamajor][cudaminor]

Fig. 9.

Device information coming from a compute capability lookup.

precision = "double" ;trans_a = 0
arithmetic = "real™ ;trans_b =0

Fig. 10. Global settings.

search space for the GEMM kernel is defined by the following
iterators:

dim_m is the vertical dimension of the thread grid for
computing C.

dim_n is the horizontal dimension of the thread grid for
computing C.

blk_m is the vertical size of the block’s tile of C.
blk_n is the horizontal size of the block’s tile of C.
blk_k is the width of a stripe of A and the height of a
stripe of B.

dim_vec defines the size of the vector type used in the
implementation. Our implementation permits the use of
standard types (float, double, cuFloatComplex,
cuDoubleComplex), built-in vector types (double?2,
float4), and a custom type (cuFloatComplex2).
vec_mul defines if actual matrix multiplication is per-
formed using vector types, i.e., if A and B in shared
memory are accessed using vector types. While A and B
can be read from device memory to shared memory using
vector operations, they may be read from shared memory
to registers using non-vector operations. This will happen,
e.g., in the case of dim_vec= 4 and vec_mul= 0.

o dim_m_a is the vertical dimension of the thread grid for
reading A.

dim_n_a is the horizontal dimension of the thread grid
for reading A.

dim_m_b is the vertical dimension of the thread grid for
reading B.

dim_n_b is the horizontal dimension of the thread grid
for reading B.

tex_a defines if texture reads are used for reading A.
tex_b defines if texture reads are used for reading B.
shmem_l11 defines the shared memory versus L1 cache
preference, as set by cudaFuncSetCacheConfig.
shmem_banks defines the 4-byte versus
byte shared memory bank size, as set

8-
by



dim_m = range(1, max_threads_dim_x+1)
dim_n = range(1, max_threads_dim_y+1)
@iterator
def blk_m(dim_m):
return range(dim_m, max_threads_dim_x+1, dim_m)
@iterator
def blk_n(dim_n):
return range(dim_n, max_threads_dim_y+1, dim_n)
blk_k = range(1, min(max_threads_dim_x, max_threads_dim_y)+1)
@iterator
def dim_vec(arithmetic, precision):
if arithmetic == "double":
if precision == "real™:
return range (1, 3)
else:
return 1
else:
if precision == "real™:
return range(1, 5, 3)
else:
return range(1, 3)
@iterator
def vec_mul(dim_vec):
if dim_vec == 1:
return 0
else:
return range(0, 2)
@iterator
def dim_m_a(blk_m, blk_k):
iftrans_a ==0:
return range(1, blk_m/dim_vec+1)
else:
return range(1, blk_k/dim_vec+1)
@iterator
def dim_n_a(blk_m, blk_k):
iftrans_a == 0:
return range(1, blk_k+1)
else:
return range(1, blk_m+1)
@iterator
def dim_m_b(blk_k, blk_n):
if trans_b == 0:
return range(1, blk_k/dim_vec+1)
else:
return range(1, blk_n/dim_vec+1)
@iterator
def dim_n_b(blk_k, blk_n):
if trans_b == 0:
return range(1, blk_n+1)
else:
return range(1, blk_k+1)
tex_a =range(0, 2)
tex_b =range(0, 2)
shmem_I1 = range(0, 2)
shmem_banks = range(0, 2)

Fig. 11.

cudaDeviceGetSharedMemConfig.

E. The Pruning Constraints

We can distinguish three classes of pruning constraints:

hard, soft, and correctness — all described in the sub-sections
that follow. They rely on a set of derived variables shown in
Figure 12. These derived variables are:

threads_per_block is the number of threads in a block.
thr_m is the vertical dimension of the local array used
by a single thread to store C (intended for registers).
thr_n is the horizontal dimension of the local array used
by a single thread to store C (intended for registers).
regs_per_thread is the number of 32-bit registers required
by a single thread to store C.

regs_per_block is the number of 32-bit registers required
by the block to store C.

Iterators defining the search space for the GEMM implementation.
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threads_per_block = dim_m * dim_n
thr_m = blk_m / dim_m

thr_n = blk_n/dim_n
regs_per_thread = thr_m * thr_n

if precision == "double™:
regs_per_thread = regs_per_thread * 2
if arithmetic == "complex":

regs_per_thread = regs_per_thread * 2
regs_per_block = regs_per_thread * threads_per_block
shmem_per_block = blk_k * (blk_m + blk_n) * float_size

if precision == "double":
shmem_per_block = shmem_per_block * 2
if arithmetic == "complex™:

shmem_per_block = shmem_per_block * 2
max_blocks_by_regs = max_registers_per_multi_processor / regs_per_block
max_blocks_by_regs =\

min(max_blocks_by_regs, max_blocks_per_multi_processor)
max_threads_by_regs = max_blocks_by_regs * threads_per_block
max_blocks_by_shmem

max_shmem_per_multi_processor / shmem_per_block
max_blocks_by_shmem =

min(max_blocks_by_shmem, max_blocks_per_multi_processor)
max_threads_by_shmem = max_blocks_by_shmem * threads_per_block
loads_per_thread = (thr_m + thr_n) * blk_k / dim_vec
loads_per_block = loads_per_thread * threads_per_block
if arithmetic == "complex™:

loads_per_block = loads_per_block * 2
fmas_per_thread = thr_m * thr_n * blk_k
fmas_per_block =fmas_per_thread * threads_per_block

if arithmetic == "complex™:
fmas_per_block = fmas_per_block * 4
Fig. 12.  Derived variables.

» shmem_per_block is the size of shared memory in bytes,
required by the block to store a stripe of A and of B.

» max_blocks_by_regs is the maximum number of blocks
that can be placed in a single multiprocessor, taking into
account the number of registers required by a single block.

o max_blocks_by_shmem is the maximum number of
blocks that can be placed in a single multiprocessor, taking
into account the amount of shared memory required by a
single block.

« loads_per_block is the number of load instructions from
shared memory to registers, executed by each block, in
order to process one stripe of A and B.

« fmas_per_block is the number of fused multiply add
(FMA) instructions, executed by each block, in order to
process one stripe of A and B.

Hard constraints are closely tied to hardware parameters.
The objective of the hard constraints is to eliminate kernels
that would fail to compile due to exceeding hardware limits,
or that would compile, but fail to launch. At the same time,
some of the hard constraints are only a guideline and may
eliminate kernels that would successfully run or permit kernels
that would fail. The four hard constraints shown in Figure 13
are generally applicable to any kernel.

The hard constraints used here are as follows:

« over_max_threads prevents exceeding the maximum
number of threads per block. This is an exact limit.

« over_max_regs_per_thread prevents exceeding the max-
imum number of registers per thread. This only means
the theoretical demand for registers, not the actual register
usage, since the actual usage is up to the compiler.

» over_max_regs_per_block prevents exceeding the maxi-
mum number of registers per block. As with the previous
one, this limit is also only theoretical.



@condition
def over_max_threads(threads_per_block):
return threads_per_block > max_threads_per_block
@condition
def over_max_regs_per_thread(regs_per_thread):
return regs_per_thread > max_registers_per_thread
@condition
def over_max_regs_per_block(regs_per_block):
return regs_per_block > max_regs_per_block
@condition
def over_max_shmem(shmem_per_block):
return shmem_per_block > max_shared_mem_per_block

Fig. 13.

Hard constraints that are applicable to any kernel.

« over_max_shmem_per_block prevents exceeding the
size of shared memory per block. This is an exact limit.

Soft constraints shown in Figure 14 are meant to eliminate
kernels that are correct, but guaranteed to perform poorly.
Similarly to the hard constraints, the soft constraints are also
fairly generic and, in principle, applicable to any kernel.

min_threads_per_multi_processor = 256
min_fmas_per_load = 2
@condition
def low_occupancy_regs(max_threads_by_regs):
return max_threads_by_regs < min_threads_per_multi_processor
@condition
def low_occupancy_shmem(max_threads_by_shmem):
return max_threads_by_shmem < min_threads_per_multi_processor
@condition
def low_fmas(loads_per_block, fmas_per_block):
return fmas_per_block / loads_per_block < min_fmas_per_load
@condition
def partial_warps(threads_per_block):
return threads_per_block % warp_size = 0

Fig. 14.  Soft constraints, applicable to any kernel.

Here, we first define two variables:

min_threads_per_multiprocessor defines the lowest de-
sired level of occupancy.

min_fmas_per_load defines the lowest desired number
of FMA instructions per each load instruction from shared
memory to registers.

Then we form the following constraints:

« low_occupancy_regs rejects kernels with maximum possi-
ble occupancy lower than desired, due to lack of registers.
low_occupancy_shmem rejects kernels with maximum
possible occupancy lower than desired, due to lack of
shared memory.

low_fmas rejects kernels with less than desired number of
FMA instructions per every load instruction from shared
memory to registers.

partial_warps rejects kernels that use a number of threads
that is not divisible by the warp size.

Finally, the correctness constraints reject kernels that violate
assumptions inherent in kernel’s algorithmic formulation, such
as divisibility of sizes. The particular set of such constraints
for GEMM kernels is shown in Figure 15. Violating these
constraints produces numerically incorrect results. Clearly, this
set of constraints is kernel-specific.

« cant_reshape_al rejects cases where reading A (from
device memory to shared memory) would require a
different number of threads than computing C.
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@condition
def cant_reshape_a1(dim_m_a, dim_n_a, threads_per_block):
return (dim_m_a * dim_n_a = threads_per_block)
@condition
def cant_reshape_b1(dim_m_b, dim_n_b, threads_per_block):
return (dim_m_b * dim_n_b = threads_per_block)
@condition
def cant_reshape_a2(blk_m, blk_k, dim_m_a, dim_n_a):
return (trans_a == 0 and \
((blk_m % (dim_m_a*dim_vec) |= 0 ) or (blk_k % dim_n_a |= 0))) \
or\
(trans_a =0 and \ ((blk_k % (dim_m_a*dim_vec) |=0) or \
(blk_m % dim_n_a |= 0)))
@condition
def cant_reshape_b2(blk_k, blk_n, dim_m_b, dim_n_b):
return (trans_b == 0 and \
((blk_k % (dim_m_b*dim_vec) != 0) or (blk_n % dim_n_b = 0))) \
or\
(trans_b != 0 and ((blk_n % (dim_m_b*dim_vec) != 0) or \
(blk_k % dim_n_b |=0)))

Fig. 15.

Correctness constraints.

« cant_reshape_bl1 rejects cases where reading B would
require a different number of threads than computing C.
cant_reshape_a2 rejects cases where the dimensions of
a stripe of A (in shared memory) are not evenly divisible
by the dimensions of the thread grid.

cant_reshape_b2 rejects cases where the dimensions of
a stripe of B are not evenly divisible by the dimensions
of the thread grid.

X. THEORETICAL FRAMEWORK FOR CODE GENERATION
A. Dependency DAG Example

The BEAST language can used to express a set of iterators
that define the search space, and a set of constraints that prune
the parameter space. Examples of iterators are the range of
block sizes to test, and the range of thread block dimensions to
examine. These ranges may be inter-related, in that, for code
correctness, the value of one range depends on the value of
other ranges. For instance, in tuning the matrix multiplication
(GEMM) GPU kernel, the thread-block dimension must evenly
divide the block size (NB). The dependencies among iterators
and constraints can be represented by a directed acyclic graph
(DAG). An example DAG is given in Figure 16. Loops defining
the iterators may be reordered as long as the order (level sets)
in the DAG is respected. These concepts are formalized below.

bl k

\

max_shmem  low_shmem

blk_m_div max_regs._thread low_regs blk_n_div.

Fig. 16. Graph of dependencies between iterators (blue circles) and constraints
(red octagons).

B. Graph Model of Iterators and Conditions

The iterators/constraints and their dependencies may be
modeled by a DAG G with vertices V and edges E: G = (V, E).
The set of vertices consists of all the iterators/constraints
defined by the user: V = IUC. The dependencies are the edges
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Fig. 17.  Performance of simple loops from BEAST autotuner in Python for
108 total iterations.

E = VXV in the graph. For any two vertices v, w € V, there is
an edge e = (v, w) € E if and only if iterator/constraint v is used
to express the value of the iterator/constraint w. Note that the
transitive closure of G is not a strict superset of G. For example,
an empty set of edges occurs when iterators/constraints are
not expressed in terms of each other but only in terms of
hardware and algorithmic parameters. The dependence relation
between the iterators/constraints induces a weak order within
the set of vertices that can be used to correctly and efficiently
generate loop nests for the exploration of the autotuning search
space. Formally, v > w (v succeeds w) if (v,w) € E (v
and w are connected) or there exists a path between v and
w: duev | v > u Au > w. The level sets of vertices are
defined as L = {L; | Yo, wer,v # W Av £ w} and can be
generated with a greedy traversal of the graph G. The level
sets L of iterators/constraints represent subset of vertices that
are unordered with respect to each other and are used to create
independent sets of loop nests. Within each level, the loops may
be interchanged according to external rules or requirements, for
example, to facilitate loop fusion or introduce parallelization
(through multithreading or multiprocessing) that can be very
beneficial at the outermost loop nests, close to level 0: Lo.

XI. PERFORMANCE COMPARISON
A. Hardware and Software Used in Tests

We ran all of our performance tests on Intel Xeon Sandy
Bridge E5-2650 v3 2.3 GHz. In order to provide the per-
formance base for tested environments, we present only
sequential runs as not all tested environments allow for
multithreading to the same extent (see further discussion
below). All C and Fortran codes were compiled with the
GNU gcc/gfortran compiler suite version 4.4.7-16 and
flags: -02 -march=native -mtune=native. For Java
tests, we used the latest Oracle Java version 1.8.0 update 60
with HotSpot JIT Server. We used Python version 2.7.10 and
ran the tested codes with maximum optimization flag: —00.
Also, Lua 5.1.4 was used.

B. Python Performance for Search Space Pruning

The majority of tools and utilities for the BEAST project
are written in Python, which has been of growing importance
in the HPC field over the past years [33]. Hence, we start with
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the Python language and present in Figure 17 performance
of various depths of loop nests (between 1 and 4) across
syntactic variants of the implementation. The quantity of merit
for the figure is iterations per second and we are interested in
maximizing this value. The number of total iterations is 10®
and they are either performed by a single loop, two loops of
length [\/ﬁ] each, three ([\3/1_03b, or four (length [\4/1_08])
loop nests. The innermost body of the loop performs integer
arithmetic on local variables — there are no memory accesses
through mutable containers such as lists or dictionaries. It is
clear from the figure that the syntax of the loop matters and
the while construct is about 30% slower than the range and
xrange syntax. The explanation is that Python’s access to
variables is through associative array lookup (there is one array
per lexical scope) and this, combined with standard handling of
loop variables (increments and comparisons) causes the while
variant to execute the slowest. When using the range builtin
function, the loop overhead is hidden because it is handled
inside the interpreter that is written in C and this results in
a performance increase. There is still a visible slowdown for
a single loop nest with the range construct — this has to do
with instantiating in memory a list of 10® integers that define
the iteration space. This overhead disappears with xrange,
which was designed to remove this exact memory overhead
and the figure clearly shows that it outperforms the other two
solutions. Despite the optimizations, the rate of execution for
loop iterations is still too low considering the fact that modern
processors can execute in excess of 1000 MIPS. As a point of
reference, we generated the autotuning code for the BEAST
matrix-matrix multiply kernel and it took 66948 seconds (over
18.5 hours), which is unacceptable for productive autotuning.

As a possible solution, multi-threading can be considered.
However, we cannot effectively use multi-threading, on par
with other languages. This is due to Python’s Global Interpreter
Lock (GIL) that prevents simultaneous execution of threads
inside Python’s Virtual Machine. Also, multi-processing in
Python is available as a builtin module but involves kernel-
level calls and use of Unix shared memory. It also performs
data copies that are not required in a multi-threading scenario.
We simply assume that with sufficient effort, any system would
benefit equally from multi-threading but the BEAST language
system just makes that feature transparent to the user. Finally,
it would be hard to breach the performance gap of two orders
of magnitude that exists for autotuning search between Python
and compiled languages as is shown below.

C. Lua Performance for Search Space Pruning

Our earlier work with BEAST autotuning [4] relied on
the Lua language for specification of the search space. Con-
sequently, we show in Figure 18 performance of Lua code
that is equivalent to Python tests reported in Figure 17. We
see a significant difference in performance between various
syntactic variants: using while is about 10% slower than the
repeat—-until variant which is about 30% slower than the
for variant. We also see a significant improvement, 5-fold in



35.0
32432331 8

I |

Lua for

30.0

25.0

221, 1220216

Lua repeat

19.319.319.21gg

Lua while

20.0 1 loop
B 2 loops
3 loops

= 4 loops

15.0

Million iterations per second

10.0
5.0

0.0

Fig. 18. Performance of simple loops from BEAST autotuner in Lua for 108
total iterations.

1400

129812941254

iA' |
C

Fig. 19. Performance of simple loops from BEAST autotuner in C, Java,
and Fortran for 23! — 1 total iterations.

fact, over the Python-based iteration. This is still quite a large
performance gap from the native performance of the hardware.

129512921281

il

Fortran

126912701227

izs |

Java

1200

1000

8

=3
=3

H 1 loop

M 2 loops
3 loops

4 loops

6

=3
S

4

S
S

Million iterations per second

2

o
S

D. Compiled Languages’ Speed for Search Space Pruning

Clearly, the prior experiments indicate that there is a sub-
stantial overhead in using scripting or weakly typed languages
for synthetic loop nest benchmarks. Additionally, GEMM —
a practical case of autotuning — cannot be handled by these
languages in a reasonable time frame. This is one of the reasons
why we developed the the BEAST language for specifying
autotuners and added a code generation to automatically
produce fast code to enumerate and prune the search space. We
now turn to compiled and strongly typed languages: C, Java,
and Fortran as the backends for the BEAST code generator. We
start with the same experiment as was performed for Python
and Lua. Figure 19 shows the performance for C, Java, and
Fortran. We had to increase the total iteration count from 108
to the largest signed 32-bit integer, 23! — 1, to amortize the loop
setup and tear-down overheads. Also, functions were made
static where possible to increase the compiler’s potential for
optimization. Java turns out to be the slowest and Fortran the
fastest, albeit by a negligibly small margin. Also, the single loop
nest turned out to be the worst performing variant. Analysis
of the generated assembly code reveals that for more than one
loop nest, the compiler generates a better instruction mix that
gets higher execution rate per cycle and uses the registers more
efficiently. As the ultimate test of the improvement over the
Python-based iteration, we ran the BEAST autotuning space
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TABLE 1
PERFORMANCE LEVELS ACHIEVED WITH THE BEAST AUTOTUNER.

Kernel name and type

GEMM [4]
Batched factorizations (small size) [5]
Batched factorizations (medium size) [34], [35], [36]

Improvement

80% of peak
up to 1000%
up to 300%

sweep with the generated C for BEAST matrix-multiply kernel
and it finished in 264 seconds. This is over a 250-fold speedup
which allows much more productive autotuning [4].

E. Application Use Cases

The the BEAST language was also used to develop a
number of highly tuned implementations of basic numerical
kernels. Table I summarizes the performance improvements
that we achieved so far. The GEMM [4] study aimed at not
only high performance but at the same time optimal energy
consumption. The ability of the BEAST framework to explore
the parameter space allowed us to draw conclusions about trade-
offs necessary to optimize two objective functions at once. The
batch factorizations of a large number of very small matrices
is essential in some machine learning tasks and the BEAST
implementation was able to deliver superior performance level
against any other code currently available [5]. Finally, large
counts of mid-sized matrices are common throughout various
disciplines of science. For a large range of sizes, our autotuned
kernels delivered performance that was up to 3 times faster
than any competing implementation [34], [35], [36]. The code
for these kernels is either already available inside the MAGMA
library or will be released pending final testing as part of,
again, MAGMA or the BEAST software release.

XII. CONCLUSIONS AND SOFTWARE RELEASE

We showed how the BEAST language makes it easy to
describe a complex, multidimensional search space and apply
pruning constraints. As our experiments showed, this greatly
increases the speed of evaluating the search space. Our notation
is declarative rather than prescriptive and we showed how it
allows us to apply a variety of aggressive optimizations and
generate standard C code for fast and multithreaded evaluation.
Unlike other approaches that use kernel code annotations or
DSLs, our notation is Python-based and thus instantly familiar
to the users: benchmarking engineers or scientists interested in
autotuning. We presented autotuning of an important kernel for
NVIDIA GPUs with 15 search dimensions and the speed of
evaluation is orders of magnitude faster compared to imperative
generators in various scripting and compiled languages. Modern
accelerators, especially Xeon Phi, offer opportunity to further
improve the evaluation speed by utilizing their man-core design
and we intend to target them in the future. Also, the plan
is to incorporate statistical search methods to address the
multidimensional search space growth.

The software described here, the the BEAST language and
the accompanying framework, will be released as part of the
BEAST software release in 2016. It will be available on the



project website! and distributed under a permissive, three-clause
BSD license.
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