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Abstract—Computational chemistry comprises one of the
driving forces of High Performance Computing. In particular,
many-body methods, such as Coupled Cluster (CC) methods of
the quantum chemistry package NWCHEM, are of particular
interest for the applied chemistry community.

Harnessing large fractions of the processing power of modern
large scale computing platforms has become increasingly diffi-
cult. With the increase in scale, complexity, and heterogeneity
of modern platforms, traditional programming models fail to
deliver the expected performance scalability. On our way to
Exascale and with these extremely hybrid platforms, dataflow-
based programming models may be the only viable way for
achieving and maintaining computation at scale.

In this paper, we discuss a dataflow-based programming
model and its applicability to NWCHEM’s CC methods. Our
dataflow version of the CC kernels breaks down the algorithm
into fine-grained tasks with explicitly defined data dependencies.
As a result, many of the traditional synchronization points can
be eliminated, allowing for a dynamic reshaping of the execution
based on the ongoing availability of computational resources. We
build this experiment using PARSEC – a task-based dataflow-
driven execution engine – that enables efficient task scheduling
on distributed systems, providing a desirable portability layer for
application developers.

I. INTRODUCTION

Computational chemistry, aiming to simulate non-trivial
physical systems, imposes such high demands on the perfor-
mance of software and hardware, that it comprises one of the
driving forces of High Performance Computing. In particular,
many-body methods, such as Coupled Cluster methods [1]
(CC) of the quantum chemistry package NWCHEM [2] are both
computationally intensive and of interest to the computational
chemistry community.

Despite the need for high performance, harnessing large
fractions of the processing power of modern large scale com-
puting platforms has become increasingly difficult over the last
couple of decades. This is true due to both the increasing scale
and the increasing complexity and heterogeneity of modern
(and projected future) platforms. We believe that dataflow-
driven task-based programming models may be the only viable
way to achieve computation at scale, especially on distributed
heterogeneous architectures.

The Parallel Runtime Scheduling and Execution Control
(PARSEC) framework [3] is a task-based dataflow-driven run-
time that enables high performance computing at scale. PAR-
SEC enables task-based applications to execute on distributed

memory heterogeneous machines, and provides sophisticated
communication and task scheduling engines that hide the
hardware complexity of supercomputers from the application
developer, while not hindering the achievable performance.
The main difference between PARSEC and other task engines
is the way tasks, and their data dependencies, are represented,
enabling PARSEC to employ a unique, symbolic way of discov-
ering and processing the graph of tasks. Namely, PARSEC uses
a symbolic Parameterized Task Graph (PTG) [4] to represent
the tasks and their data dependencies to other tasks.

The PTG is a problem-size-independent representation that
allows for immediate inspection of a task’s neighborhood,
regardless of the location of the task in the Directed Acyclic
Graph (DAG). This contrasts to all other task scheduling
systems which discover the tasks and their dependencies at
run-time (through the execution of skeleton programs) and
therefore cannot process a future task that has not yet been
discovered, or face large overheads due to storing and travers-
ing the entire DAG that represents the whole execution of a
parallel application.

However, utilizing a task scheduling system such as PAR-
SEC to execute the Coupled Cluster code of NWCHEM is not
trivial. The CC code – generated by the Tensor Contraction
Engine (TCE) [5] – is neither organized in pure tasks, nor is
the control flow affine, as required by the front-end compiler of
PARSEC for automatic PTG generation. For example, the CC
code contains branches whose predicates depend on program
data. Nevertheless, the program data that controls the behavior
of these branches is set only once, upon the initialization
stages of the code, and does not change during the execution.
Capitalizing on this fact, we have created a dataflow version of
a subset of CC code subroutines by storing the data that affects
the control flow of the program into meta-data structures that
PARSEC examines during execution. This enables PARSEC to
take full control of the communication and task scheduling,
while preserving the semantics of the original CC code.

In this paper we outline PARSEC and NWCHEM, and
describe the transformations we performed to a subset of the
CC code so that it can run over PARSEC. We explain why
PARSEC’s execution model is (a) a good fit for the challenges
posed by running CC at scale; and (b) more promising than
the alternatives. Finally, we present experimental evidence
supporting the expectation that a deeper integration of PARSEC
and CC will enable more efficient execution at scale.



II. OVERVIEW OF NWCHEM AND PARSEC

A. NWChem

Computational modeling has become an integral part of
many research efforts in key application areas in chemical,
physical, and biological sciences. NWCHEM [2] is a molecular
modeling software developed to take full advantage of the ad-
vanced computing systems available. NWCHEM provides many
methods to compute the properties of molecular and periodic
systems by using standard quantum-mechanical descriptions of
the electronic wave function or density. The Coupled Cluster
theory [1] (CC) is considered by many to be a gold standard
for accurate quantum-mechanical description of ground and
excited states of chemical systems. Its accuracy, however,
comes at a significant computational cost.

Tensor Contraction Engine: An important role in de-
signing the optimum memory vs. cost strategies in coupled
cluster implementations is played by the automatic code
generator, TCE [5], which abstracts and automates the time-
consuming and error-prone processes of deriving the work-
ing equations of second-quantized many-electron theories and
synthesizing efficient parallel computer programs on the basis
of these equations. Current development is mostly focused
on CC implementation which can utilize any type of single-
determinantal reference function including restricted, restricted
open-shell, and unrestricted Hartree-Fock determinants (RHF,
ROHF, and UHF respectively) in describing closed- and open-
shell molecular systems. All TCE CC implementations take
advantage of Global Arrays (GA) [6] functionalities, which
supports the distributed memory programming model.

CC Single Double (CCSD): Especially important in the
hierarchy of the CC formalism is the iterative CC model with
single and double excitations (CCSD) [7], which is a starting
point for many accurate perturbative CC formalisms including
the ubiquitous CCSD(T) approach [8]. Our starting point for
the investigation in this paper is the CCSD version that takes
advantage of the alternative task scheduling (ATS). The details
of these implementations have been described in previous
publications [9]. In summary, the original CCSD TCE imple-
mentations aggregated a large number of subroutines, which
calculate either recursive intermediates or contributions to a
residual vector. The dimensionalities of the tensors involved
in a given subroutine greatly impact the memory, computa-
tion, and communication characteristics of each subroutine,
which can lead to pronounced problems with load balancing.
To address this problem and improve the scalability of the
CCSD implementations, NWCHEM exploits the dependencies
exposed between the task pools into classes characterized by a
collective task pool. This was done in such a way as to ensure
sufficient parallelism in each class while minimizing the total
number of such classes.

B. PaRSEC

The natural decomposition of NWCHEM into tasks makes
it a good match for PARSEC. The PARSEC framework [3] is
a task-based dataflow-driven system designed as a dynamic
platform that can address the challenges posed by distributed
heterogeneous hardware resources. The central component of
the system, the runtime, orchestrates the execution of the tasks
on the available hardware. Choices regarding the execution

of the tasks are based on information provided by the user
regarding the tasks that comprise the user application, and the
dataflow between those tasks. This information is provided in
the form of a compact, symbolic representation of the tasks
and their dependencies known as a Parameterized Task Graph
(PTG) [4]. The runtime combines the information contained in
the PTG with supplementary information provided by the user
– such as the distribution of data onto nodes, or hints about
the relative importance of different tasks – in order to make
efficient scheduling decisions.

The PTG can be understood as a compressed represen-
tation of the DAG that describes the execution of a task-
based application. As an example, consider the code shown
in Figure 1 and consider that the two lines in the body of the
loop correspond to the two different tasks PING and PONG.
An abstract form of the PTG that describes this program is

f o r ( s t e p =0; s t e p<max s teps ; s t e p ++){
A[ 0 ] = A[ 0 ] + A [ 1 ] ; / / PING ( IN : A[ 1 ] , INOUT : A[ 0 ] )
A[ 1 ] = A[ 1 ] + A [ 0 ] ; / / PONG( IN : A[ 0 ] , INOUT : A[ 1 ] )

}

Fig. 1. Serial code for ping-pong.

shown in Figure 2. As can be seen in the figure, the PTG has
an entry for each class of tasks, as opposed to one entry for
each individual task that will execute at run-time. Task classes
are parameterized (using parameter “s” in this example) and
their dependencies to other task classes depend only on their
local parameters. Each unique value of the parameters cor-
responds to a particular task instance. Clearly, for each task
instance, simple evaluation of the algebraic expressions in the
PTG reveal the predecessors and the descendants of the task,
or in other words, discovering the communication peers of
each task requires nothing more than the evaluation of the
expressions that appear in the PTG, given particular values for
the parameters.

PING ( s )
s = 0 . . max steps−1

READ A1 <− A1 PONG( s−1)
WRITE A0 −> A0 PONG( s )

END

PONG( s )
s = 0 . . max steps−1

READ A0 <− A0 PING ( s )
WRITE A1 −> A1 PING ( s +1)

END

Fig. 2. Abstract PTG for ping-pong.

PARSEC is an event driven system. When an event occurs
(i.e., a task completes), the runtime reacts by examining the
dataflow from this task. This reveals what future tasks can be
executed based on the data generated by the completed task.
Since the tasks and their dataflow are described in the PTG,
discovering the future tasks, given the task that just completed,
does not involve expensive traversals of DAG structures stored
in program memory. This contrasts to other task scheduling
systems which rely on building the whole DAG of execution



in memory at run-time and traversing it in order to make
scheduling decisions. Beyond scheduling tasks, the runtime
also handles the data exchange between distributed nodes,
thus it reacts to the events triggered by the completion of
data transfers as well. When the hardware is busy executing
application code – and thus no events are triggered – the
runtime does not incur overhead.

Due to the PTG representation, all communication becomes
implicit and thus is handled automatically by the runtime.
In MPI (or other Bulk Synchronous programming models),
the developer has to explicitly specify the point during the
execution at which every message should be sent or received∗.
In PARSEC the runtime performs all necessary data exchanges
without user intervention. This is possible because the PTG
provides the necessary information regarding the data that each
task needs in order to execute, and the runtime is aware of the
mapping of tasks onto compute nodes. This approach provides
multiple benefits.

1) Application development is simplified, since communi-
cation management does not need to be handled by the
developer.

2) It allows the runtime to automatically make use
of efficient non-blocking communication and ad-
vanced collective communication algorithms to achieve
communication-computation overlapping and hide signif-
icant parts of the communication overhead.

3) The decoupling of the computation and communication
code allows for easy experimentation with alternative
communication strategies.

As an example, in the work presented in this paper,
we modified the ordering and the communication of the
computation kernels from the original serial chain pattern to
an embarrassingly parallel pattern followed by a binary tree
reduction. Performing this change required minimal effort,
which included little more than changing a few dataflow edges
in the PTG of our application and incorporating the PTG for
a generic binary tree reduction provided by PARSEC.

The runtime is also responsible for scheduling tasks within
each node. Specifically, every task that completes generates
data that enables the execution of other tasks. The runtime
keeps track of all completed tasks and uses the PTG to discover
the tasks that can execute next, without performing expensive
traversals of DAG structures in memory.

In summary, PARSEC provides the opportunity for par-
allel applications to enjoy high efficiency at scale, without
putting the burden of micromanaging data-transfers, processes,
threads, and other exotic low level library primitives and
interfaces on the application developer.

∗Non-blocking communication seemingly allows for some flexibility, but
in reality its use is limited, managing large numbers of outstanding messages
quickly becomes a logistical overhead, and many non-blocking data transfers
end up happening when the wait() operation is called instead of truly
asynchronously.

III. IMPLEMENTATION OF COUPLED CLUSTER THEORY

A. Coupled Cluster Theory through TCE

In NWCHEM, the CC methods, among other kernels, are
generated through the TCE into multiple sub-kernels that
are divided into so-called “T1” and “T2” subroutines for
equations determining T1 and T2 amplitude matrices. These
amplitude matrices embody the number of excitations in the
wave function, where T1 represents all single excitations and
T2 all double excitations. The underlying equations of these
theories are all expressed as contractions of many-dimensional
arrays or tensors (generalized matrix multiplications). There
are typically many thousands of such terms in any one prob-
lem, but their regularity makes it relatively straightforward to
translate them into FORTRAN code – parallelized with the
use of GA [6] – through the TCE. For instance, for the CCSD
generated code, there exist 19 T1 and 41 T2 subroutines, and
all of them highlight a very similar code structure and patterns.
The FORTRAN code that is generated for the T1 and T2
subroutines includes most work in deep loop nests. In these
loop nests there are three types of code. These are:

• Local memory management (i.e., MA_PUSH_GET(),
MA_POP_STACK()),

• Calls to GA functions that transfer data over the network
(i.e., GET_HASH_BLOCK(), ADD_HASH_BLOCK()),
and

• Calls to the subroutines that perform the actual computa-
tion on the data (i.e., SORT(), GEMM()).

The control flow of the loops is parameterized, but static.
That is, the induction variable of a loop with a header such
as “DO p3b = noab+1,noab+nvab” (i.e., p3b) may take
different values between different executions of the code, but
during a single execution of CCSD the values of the parameters
noab and nvab will not vary; therefore every time this loop
executes it will perform the same number of steps, and the
induction variable p3b will take the same set of values. This
enables us to restructure the body of the inner loop into
tasks that can be executed by PARSEC. That is, tasks with
an execution space that is parameterized (by noab, nvab,
etc.), but constant during execution.

Parallelism of the TCE generated CC code follows a task-
stealing model. The work inside each T1 and T2 subroutine
is grouped into chains of multiple matrix-multiply kernels
(GEMM) and those chains are executed in a parallel fashion.
However, multiple subroutines are divided into different levels
(e.g., the 19 T1 subroutines are divided into 3 different levels).
The task-stealing model is only executed within each level, and
there is a synchronization step between the levels. Load balanc-
ing within each level of subroutines is achieved through shared
variables that are atomically updated (read-modify-write) using
GA operations. This is an excellent case where very good
parallelism already exists but where additional parallelism can
be obtained by examining the data dependencies in the memory
blocks of each matrix.

For example, elements of the so-called T1 amplitude
matrices can be used for further computation before all of the
elements are computed. However, the current implementation
of CC features a significant amount of synchronizations that
prevent introducing additional levels of parallelism, which



consequently limits the overall scaling on much larger com-
putational resources. Additionally, the use of shared variables,
that are atomically updated – which is currently at the heart
of the task-stealing and load balancing solution – is bound
to become inefficient at large scale, becoming a bottleneck
and causing major overhead. Finally, the notion of task in the
current CC implementation in NWCHEM and the notion of task
in PARSEC are not identical. In NWCHEM, a task is a whole
chain of GEMMs, executed serially, one after the other. In
our PARSEC implementation of CC, each individual GEMM
kernel is a task on its own, and the choice between executing
them as a chain, or as a reduction tree, is almost as simple as
flipping a switch. In summary, the most significant impact of
porting CC over PARSEC is the ability to eliminate redundant
synchronizations by breaking down the algorithms into finer
grained tasks with explicitly defined dependencies.

B. Coupled Cluster Theory over PaRSEC

PARSEC provides a front-end compiler for converting
canonical serial codes into the PTG representation. How-
ever, due to computability limits, this tool is limited to
polyhedral codes, i.e., loops, branches, and array indexes
that only depend on affine functions of the loop induction
variables, constant variables, and numeric literals. While the
CC code seems polyhedral, it is not quite so. The code
generated by TCE includes branches that perform array
lookups into program data. For example, branches such as
IF(int_mb(k_spin+h7b-1).eq.int_mb(k_spin+p3b-1)) are
very common. Such branches make the code not only non-
affine, but statically undecidable since their outcome depends
on program data, and thus it cannot be resolved at compile
time.

While the CC code is neither affine, nor statically decid-
able, all the program data that affects the behavior of CC is
constant during a given execution of the code. Therefore, the
code can be expressed as a parameterized DAG, by using
lookups into the data of the program, or similar meta-data
structures constructed from the program data as soon as the
latter is known.

In the work described in this paper, we hand-
modified the body of one of the T1 subroutines –
namely icsd_t1_2_2_2(). The original code of
icsd_t1_2_2_2() consists of a loop-nest of depth
four that contains the memory access routines as well as the
main computation, namely SORT and GEMM. In addition to
the loops, the code contains several IF statements, such as
the one mentioned above. When CC executes, the code goes
through the entire execution space of the loop nests, and only
executes the actual computation kernels (SORT and GEMM) if
the multiple IF branches evaluate to true.

To create a PARSEC-enabled version of the subroutine we
decomposed it into two steps. The first step traverses the exe-
cution space and evaluates all IF statements, without executing
the actual computation kernels (SORT and GEMM). This step
uncovers sparsity information by performing all the lookups
into the program data (i.e., int_mb(k_spin+h7b-1)) that
is involved in the IF branches prior to the computation, and
stores the results in new custom meta-data vectors. Since the
data of NWCHEM that affects the control flow is immutable at
run-time, this first step only needs to be performed once.

The custom meta-data vectors merely hold information
regarding the actual loop iterations that will execute the
computational kernels at run-time, i.e., iterations where all
the IF statements evaluate to true. This step significantly
reduces the execution space of the loop nests by eliminating
all entries that would not have resulted in the execution of the
computational kernels.

In addition to the first step, we created a PTG represen-
tation of the subroutine. Since the control flow depends on
the program data that was examined by the first step, the PTG
of the subroutine cannot contain only algebraic expressions for
defining the dataflow between tasks. Instead, the PTG includes
lookups into our custom meta-data vectors populated by the
first step, so that the execution of the modified subroutine
over PARSEC perfectly matches the original execution of
icsd_t1_2_2_2(). Figure 3 shows one chain (out of a total
of twelve) from the DAG generated by executing the PARSEC
version of the subroutine using uracil-dimer, in 6-31G basis
set composed of 160 basis set functions, as the input molecule.
It is clear that the execution forms a chain, where each task
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Fig. 3. Chain of GEMMs

(a GEMM in particular) has to wait for the completion of the
previous one (as well as the task that reads the necessary input
data). In terms of parallelism and load balancing, this perfectly
matches the execution of the original NWChem code, where
a series of GEMM operations, executed serially in a loop,
constitutes a single task. In the case of uracil-dimer there are
twelve such independent chains, and each one performs twenty
four GEMM operations, as shown in the figure.
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Fig. 4. Parallel GEMMS and binary reduction of results

However, one of the main reasons we are porting CC over
PARSEC is the ability of the latter to express tasks and their
dependencies at a finer granularity, as well as the decoupling
of work tasks and communication operations that enables us to
experiment with more advanced communication patterns than
serial chains. A GEMM kernel performs the operation:

C = α ∗A ∗B + β ∗ C

where A,B, and C are matrices and α and β are scalar
constants. In the chain of GEMMs performed by the
t1_2_2_2() subroutine, the result of each matrix multi-
ply is added to the result of the previous matrix multiply
(since β = 1). Since matrix addition is an associative and
commutative operation, the order in which the GEMMs are
performed does not bare great significance†, as long as the
results are atomically added. This enables us to perform all
GEMM operations in parallel and sum the results using a
binary reduction tree. Figure 4 shows the DAG of one of
the twelve “chains” of GEMMs for the uracil-dimer input,
implemented with a binary reduction, using PARSEC.

Clearly, in this implementation there are significantly fewer
sequential steps than in the original chain. In addition, the
sequential steps are matrix additions, not GEMM operations,
so they are significantly faster, especially for larger matrices.
Furthermore, since the depth of the binary reduction trees
grows with the logarithm of the total count of GEMM opera-
tions, as the problem size gets bigger, the difference in number
of sequential steps performed by the chain and the binary tree
will grow fast.

It is important to note that the original version of the
code performs an atomic accumulate-write operation (via GA
functionality ADD_HASH_BLOCK()) at the end of each chain.
Since our dataflow version of the code computes the GEMM’s
for each chain in parallel, we eliminate the atomic GA func-
tionality and perform direct memory access instead.

The colors in Figure 4 were used to demonstrate the
utilization of resources when this approach is used. Namely,
each color corresponds to one of the eight nodes that par-
ticipated in this run. Where the original CC implementation
treats the entire chain of GEMM operations as one “task”
and therefore assigns it to one node, our new implementation
of t1_2_2_2() over PARSEC distributes the work onto

†Changing the ordering of GEMM operations leads to results that are not
bitwise equal to the original, but this level of accuracy is very rarely required,
and is lost anyway when transitioning to different compilers and/or math
libraries.

different hardware resources leading to better load balancing
and the ability to utilize additional resources, if available. That
is, the PARSEC version is by design able to achieve better
strong scaling (constant problem size, increasing hardware
resources) than the original code.

IV. COMPUTATION MODELS FOR EXASCALE

Pursuing novel programming paradigms for high perfor-
mance computing is becoming an increasingly popular trend
as more and more people in the field are coming to realize that
the Bulk Synchronous Programming model embodied by MPI
and other similar explicit communication paradigms is unlikely
to satisfy the needs of computing at exascale and beyond.

In particular, task-based dataflow programming has gained
a lot of attention as is evident by the increasing number of
task execution runtimes [10], [11], [12], [13] that are being
pursued by research groups all around the globe. At the time
of this writing, PARSEC stands unique among them in its use
of the PTG representation of parallel programs. Constructing
a purely algebraic PTG to describe a parallel program poses
some challenges, but once this is achieved, PARSEC can utilize
the PTG to deliver unparalleled performance on large scale
distributed memory executions. The multiple reasons that make
this true can be easily demonstrated in theory. For example,
unlike runtime systems where the whole DAG is traversed and
stored in memory: (a) the PTG is not problem size dependent,
(b) all tasks can be examined at any time during execution (i.e.,
there is no “window” of visible future tasks), and (c) there is no
redundant part of the DAG that needs to be traversed at every
node due to tasks that some other node will execute. In addition
to the theoretical evidence about the positive effects of the
PTG, the performance of the DPLASMA [14] library, built on
top of PARSEC, offers a concrete experimental demonstration
of the performance scalability that the PTG approach offers.

However, the implementation of the Coupled Cluster code
of NWCHEM, described in this paper, does not rely on a purely
algebraic PTG. Instead, as we mentioned earlier, the PTG
performs lookups into meta-data vectors that are populated
by running a skeleton program which is based on the control
flow of the original application. This step is similar to the
skeleton program executed by runtimes that store the entire
DAG in memory, in several ways, but the two models are not
equivalent for the reasons we analyze below.

In terms of similarities between our meta-data building step
and DAG building steps of other runtimes, they both need to
execute all iterations of the loops of the original program and



evaluate all IF statements of the original program, so they both
have the same algorithmic complexity. However, the amount
of work and the amount of memory overhead at every step is
wildly different.

In the case of PARSEC, the task classes are known through
static analysis of the code, whether this analysis is performed
automatically by a compiler tool, or manually by a human de-
veloper, as is the case for the work presented in this paper. This
static analysis reveals the patterns of dependencies in the code.
For example, in the case of icsd_t1_2_2_2(), static code
analysis revealed that there is always a GET_HASH_BLOCK
and a DFILL operation, initializing the matrices, followed by a
chain of GEMM operations, followed by an ADD_HASH_BLOCK
operation that pushes the result of the chain back into the
global array. Therefore, our skeleton program that populates
the custom meta-data vectors only needs to discover informa-
tion such as the length of each chain of GEMMs, and only
store a handful of variables into the vectors at every step.

A DAG building skeleton program, in contrast, assumes
nothing about the shape of the DAG. Instead, it needs to
record the pointers to the program data that is read and
modified by each task. Then it must use these pointers, for
each newly discovered task, to identify the previous task that
read or modified the same data, in order to build the DAG
that represents the execution of the program. This is clearly a
much more time-consuming operation.

Also, the memory requirements in the case of PARSEC
are lower than in the case of a runtime that builds the whole
DAG in memory. This is true because the meta-data vectors
used by PARSEC are custom per application and are crafted to
store the minimum number of elements needed to reproduce
the behavior of the original program. In the case of DAG build
runtimes, the structures that hold the nodes and the edges of
the DAG have to be generic enough to accommodate any type
of program and thus they must employ expensive lists and
other memory consuming data structures.

The second major difference between PARSEC’s meta-data
driven PTG and alternative approaches that build the program’s
DAG, is the adherence to the original program’s control flow.
As we described earlier in this paper, we have knowledge of the
type of operation performed by the chained tasks (i.e., matrix-
matrix multiply) and the mathematical properties that govern
it (i.e., matrix addition being associative and commutative). As
a result, we can modify our PTG to sum the resulting matrices
using a binary tree instead of a linear chain. It is important to
note that performing this optimization was not only technically
easy, but it did not require any changes in the meta-data, or the
skeleton code that populates the meta-data. It only involved
modifying some dataflow edges in the PTG. In contrast, a
runtime that builds the DAG by following the execution of the
original program will construct a chain of tasks, and it will
have no way of identifing that this chain could be rearranged
as a binary tree. In other words, the DAG building approach
is forced to adhere to the (potentially suboptimal) control flow
of the original program.

While for small examples the differences between these
two models might be masked by other factors and design
choices between different runtimes, we assert that at exascale,
even when using skeleton programs to populate custom meta-

data vectors that will be used by the PTG, the PARSEC
approach has the potential to deliver higher performance than
approaches that build the entire execution DAG in memory.

V. RELATED WORK

The Cyclops Tensor Framework [15] uses an orthogonal
approach to TCE. It uses cyclic data decomposition to com-
pute (mainly dense) tensor contractions, with the objective to
eliminate scalability issues of load imbalance and irregular
communication.

An alternate approach for achieving better load balancing
in the TCE CC code is the Inspector-Executor methods [16].
The Inspector phase loops through the subroutines and creates
an informative list of tasks as it uncovers sparsity information.
The Executor phase loops through this list of tasks and aggre-
gates the computations into a single task. Prior to the Executor
phase, performance model based cost estimation techniques
for the computations (e.g., GEMM and SORT) are applied
to assign the aggregated tasks to processors. This technique
focuses on balancing the computational cost without taking
data locality into consideration.

Another method that has been effectively used to parallelize
CC codes is through ACES III [17]. In this work, the CC
algorithms are designed in a domain specific language named
super instruction assembly language (SIAL) [18]. This serves
a similar function as the TCE, but with an even higher
level of abstraction to the equations. The SIAL program, in
turn, is run by a MPMD parallel virtual machine, the super
instruction processor (SIP) SIP, has components that coordinate
the work by tasks, communicated information between tasks,
for retrieving data, and then for execution.

The Dynamic Load-balanced Tensor Contractions frame-
work [19] has been designed with the goal to provide dynamic
task partitioning for tensor contraction expressions. Each con-
traction is decomposed into fine-grained units of tasks. Units
from independent contractions can be executed in parallel. As
in TCE, the tensors are distributed among all processes via
global address space. However, since GA does not explicitly
manage data redistribution, the communication pattern result-
ing from one-sided accesses is often irregular [15].

In an effort to offer alternative programming paradigms to
the Bulk Synchronous Parallel model offered by MPI there
has been a significant body of work on languages, or language
extensions, such as the PGAS languages [20], [21], [22],
[23], [24], where the compiler is expected to perform the
parallelization of the input program. Habanero [25] combines
a compiler and a runtime to achieve parallelism and sched-
ule tasks, and relies on language extensions that a human
developer must place into his or her application to guide task
creation and synchronization. Bamboo [26] is another compiler
tool that utilizes the prototype runtime system Tarragon [13]
for scheduling tasks extracted from annotated MPI code.
Bamboo’s execution model is a form of fork-join parallelism,
since it preserves the execution order of overlap regions, which
run sequentially, one after the other. Also, the more mature
Charm++ solution offers a combination of a programming
language and a task scheduling backend. All of these solutions
offer new languages, or extensions to existing languages that
require specialized compilers and expect the developer to adopt



them as the programming paradigm of choice. In the work
presented in this paper, we did not require the developers
of NWCHEM to change the programming language they use,
but rather adapted their FORTRAN 77 code to use our task
scheduling runtime.

In terms of dataflow environments, several groups have
studied parallel execution models since the early 1990′s that
(a) allowed the same code to run on shared memory and dis-
tributed memory systems, and (b) provided load balancing fea-
tures for irregular applications [27], [28], [29]. Unfortunately,
most of these systems are impossible to use and evaluate
today. Newer approaches, such as PM2 [30], SMARTS [31],
Uintah [32], and Mentat [27] exist, but do not satisfy the
requirement for decentralized execution of medium grain tasks
(≈ 10µs− 1ms) in distributed-memory environments.

Finally, there are several task scheduling systems that
employ “Dynamic Task Discovery (DTD)”, or in other words
building the entire DAG of execution in memory using skeleton
programs. Several projects are embracing this principle on
shared memory (SMPSs [10], Cilk [33], Thread Building
Blocks TBB [34]), or accelerator based systems (StarPU [11],
CellSs, GPUSs [35], [36]). Some have support for medium
size distributed memory machines, but with the introduction
of synchronization at both endpoints. In this work we use
PARSEC as our runtime system and take advantage of the PTG
representation, in order to avoid the unnecessary overheads
accosiated with DTD, as we explain further in Section IV.

VI. EXPERIMENTAL EVALUATION

In this section we illustrate the performance of one CC
subroutine, icsd_t1_2_2_2(), that represents single ex-
citations. For the purpose of this experiment we modified
both the original code and our implementation so that the
subroutine runs in isolation, without the other icsd subroutines
that normally surround it. Also, we allowed for only one
iteration of the iterative CC code. This reduced the noise in the
measurements and made the test less “forgiving” since there
is no additional workload to alleviate scalability shortcomings,
or amortize overheads.

A. Methodology

As input, we used the beta carotene molecule in 6-31G
basis set composed of 472 basis set functions. In our tests we
kept all core electrons frozen and correlated 296 electrons. For
the original version of the icsd_t1_2_2_2(), this results
in 48 chains, each computing 48 sequential GEMM’s.

The scalability tests for the original TCE generated code
and the dataflow version of icsd_t1_2_2_2() were per-
formed on the Titan Cray-XK7 computer system of the
National Center for Computational Sciences at Oak Ridge
National Laboratory. Each node has 32 GB of RAM and one
16-core AMD Opteron (Interlagos) processor running at 2.2
GHz. We performed various performance tests utilizing 1, 2,
4, 8, and 16 cores per node. NWCHEM was compiled with
the Intel compiler icc-13.1.3, and instead of using NWCHEM’s
internal reference BLAS implementation, we employed the
optimized BLAS library ACML 5.3.1, provided on titan.

B. Discussion

Figure 5 shows the execution time of the subroutine
icsd_t1_2_2_2() when the implementation found in the
original NWCHEM code is used, and when our PARSEC based
dataflow implementation is used.

In the graph we depict the behavior of the original code
using the blue boxes with whiskers – light gray in grayscale
– and the behavior of the PARSEC implementation using the
red – dark gray – boxes. Note that the Y axis is logarithmic
and we have “removed” the middle part of the axis to improve
readability, since there is nothing but straight lines between 1s
and 10−4s.

Since the beta carotene input results in only 48 chains
of GEMM operations, and the original code uses entire chains
as the unit of parallelism, it is expected that the code will
only utilize up to 48 parallel processes‡. Each (light) blue box
represents the execution time range observed for the 48 slowest
processes of the original code (i.e., only the 48 processes
involved in the computation of the chains). The whiskers show
the execution time of the fastest process. These results clearly
demonstrate that there are indeed 48 processes that perform
the work and all other processes are idle (since their execution
time is on the order of 100µs). Interestingly however, in the
case of the original NWCHEM code, as we increase the number
of processes per node we observe a dramatic performance
degradation. Indeed, the execution time of the 48 working
processes (i.e., the boxes in the graph) goes from the order of
1s when using one core per node, to 5s with two cores, to 20s
with eight and finally to over 50s when all the cores of each
node are running NWCHEM processes. This is an unexpected
outcome, since the additional processes are not involved in
the computation. Furthermore, this behavior demonstrates the
inability of the original code to utilize additional resources to
speed up a fixed problem, i.e., lack of strong scaling.

The same graph depicts the behavior of our implementation
of the subroutine over PARSEC using the (dark) red boxes.
PARSEC uses one process per node and an increased number
of threads per node when additional cores are being used.
Since PARSEC causes an implicit synchronization between
tasks at the beginning and end of execution, we could not
differentiate between busy and idle threads. Therefore the
(dark) red boxes depict the whole range from minimum to
maximum. However, by design the PARSEC version of the
code uses individual GEMM operations as the unit of parallelism
(as opposed to a whole chain) and thus it is able to utilize
more hardware resources. Also, PARSEC internally uses an
additional thread for performing the communication, so the
minimum recommended core count per node is two.

In terms of absolute time, the PARSEC version of the
code is at best (for 16 cores/node) on a par with the best
performance achieved by the original code (for 1 core/node).
These results support the claim that a dataflow representation
of CC has greater scalability potential than the current design,
for the following reasons:

1) As discussed in section III-B, in order to create the
dataflow version of CC we needed to create a skeleton

‡However, more than 48 nodes are needed due to memory requirements.
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Fig. 5. Performance comparison of NWChem versions on titan using beta carotene

function that populates the meta-data vectors. This func-
tion incurs overhead in the computation. This overhead
will be amortized when a larger number of CC subrou-
tines are ported over PARSEC, but in the experiments
presented in this paper we timed a single subroutine and
thus there is no amortization of the cost of the meta-data
population step.

2) The cost of the meta-data population does not increase as
the size of the GEMM operation increases. Thus, for larger
input problems, where the GEMM operations will be more
time consuming, the overhead plays a less significant role.

3) As the input problem increases, and the size of the chains
of GEMM operations increases, the difference between the
original chain implementation and the modified binary
tree implementation becomes more important.

4) As can be seen in the graph, while the performance of
the original code deteriorates with the increasing number
of resources, the performance of the PARSEC version
improves as the number of cores per node increases. If
we compare the performance of the original versus the
modified code when all the cores per node (or half the
cores per node) are used then our dataflow version of
CC outperforms the original by more than an order of
magnitude.

VII. CONCLUSION AND FUTURE WORK

We have successfully demonstrated the feasibility of con-
verting TCE generated code into a form that can execute in
a dataflow-based task scheduling environment. We performed
this conversion manually, and thus we were limited to a small
scope (the subroutine icsd_t1_2_2_2), yet this process
provided a strong indication that utilizing dataflow-based exe-
cution for Coupled Cluster methods will enable more efficient
computation at scale.

As a next step, we will automate the conversion of the
entire NWCHEM TCE Coupled Cluster implementation into a
dataflow form so that it can be integrated to more software
levels of NWChem with minimal human involvement. Ulti-
mately, the generation of a dataflow version may be adopted
by the TCE engine.

With this new dataflow version of the CC kernel promoting
much finer grained parallelism, most of the traditional synchro-
nization points throughout each cycle of its iterative process are
eliminated. This strategy with PARSEC offers many advantages
since communication becomes implicit (and can be overlapped
with computation), finer grained tasks can be executed in more
efficient orderings than sequential chains (i.e., binary trees)
and each of these finer grained parallel tasks are able to run
on different cores of multicore systems, or even different parts
of heterogeneous platforms. This will enable computation at
extreme scale in the era of many-core, highly heterogeneous
platforms, utilizing the components (e.g., CPU or GPU) that
perform best for the type of task under consideration.
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