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Abstract

Over the years, computational physics and chemistry served as an ongoing source of problems that demanded
the ever increasing performance from hardware as well as the software that ran on top of it. Most of these problems
could be translated into solutions for systems of linear equations: the very topic of numerical linear algebra.
Seemingly then, a set of efficient linear solvers could be solving important scientific problems for years to come.
We argue that dramatic changes in hardware designs precipitated by the shifting nature of the marketplace of
computer hardware had a continuous effect on the software for numerical linear algebra. The extraction of high
percentages of peak performance continues to require adaptation of software. If the past history of this adaptive
nature of linear algebra software is any guide then the future theme will feature changes as well — changes aimed
at harnessing the incredible advances of the evolving hardware infrastructure.

1 Introduction

Over the decades, dense linear algebra has been an indispensable component of science and engineering. While
the mathematical foundations and application methodology has changed little, the hardware has undergone a
tumultuous transition. The latter precipitated a number of paradigm shifts in the way the linear algebra software
is implemented. Indeed, the ever evolving hardware would quickly render old code inadequate in terms of perfor-
mance. The external interfaces to the numerical software routines have undergone only minor adjustment which
is in line with the unchanged mathematical formulation of the problem of solving a system of linear equations.
The internal implementation of these interfaces was changing to accommodate drastic redesign of the underlying
hardware technology. The internals have been modularized to ease the implementation process. These modules
over time have become the building blocks of new generations of the numerical linear algebra libraries and made
the effort more manageable in the long run. Over time, the number and functionality of these building blocks
have increased but the delegation of responsibilities between various modules inside the software stack has been
retained. The most recent increase in hardware parallelism further altered the established composition process of
the modules by necessitating the use of explicit scheduling mechanism which needed to be handled manually in
the composing code or externally with a software scheduler. The rapid transformation of computer hardware has
not been ongoing and is expected to be continuing into the future. With it, the software will evolve further and
our hope is that the design decision made in the past will allow for a smooth transition by reusing the tested and
optimized libraries we have become accustomed to.

2 Motivation: Plasma Physics and Electronic Structure Calculation

Computational experiments of self-sustaining fusion reactions could give us an informed perspective on how to
build a device capable of producing and controlling the high performance [1]. Modeling the heating response of
plasma due to radio frequency (RF) waves in the fast wave time scale leads to solving the generalized Helmholtz
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equation. The time harmonic terms of effective approximations of the electric field, magnetic field, and distri-
bution function as a time-averaged equilibrium satisfy the equation. The Scientific Discovery through Advanced
Computing project (SciDAC) Numerical Computation of Wave Plasma-Interactions in Multi-dimensional Systems
developed and implemented a simulation code that gives insight into how electromagnetic waves can be used for
driving current flow, heating and controlling instabilities in the plasma. The code is called AORSA [2, 3, 4, 5, 6]
and stands for All ORders Spectral Algorithm. The resulting computation requires a solution of a system of linear
equations exceeding half a million unknowns [7].

In quantum chemistry, most of the scientific simulation codes result in a numerical linear algebra problem
that may readily be solved with the ScaLAPACK library [8, 9]. For example, early versions of ParaGauss [10, 11,
12, 13] relied on diagonalization of the Kohn-Sham matrix and the parallelization method of choice relied on
the irreducible representations of the point group. The submatrices diagonalize in parallel and the number of
them depended on the symmetry group. When using one of ScaLAPACK’s parallel eigensolvers it is possible to
achieve speedup even for a Kohn-Sham matrix with only one block. A different use of the BLAS library occurs
in UTChem [14] — an application code that collects a number of methods that allow for accurate and efficient
calculations for computational chemistry of electronic structure problems. Both the ground and excited states
of molecular systems are covered. In supporting a number of single-reference many-electron theories such as
configuration-interaction theory, coupled-cluster theory, and Meller-Plesset perturbation theory, UTChem derives
working equations using a symbolic manipulation program called Tensor Contraction Engine (TCE) [15]. It auto-
mates the process of deriving final formulas and generation of the execution program. The contraction of creation
and annihilation operators according to Wick’s theorem, consolidation of identical terms, and reduction of the
expressions into the form of tensor contractions controlled by permutation operators are all done automatically
by TCE. If tensor contractions are treated as a collection of multi-dimensional summations of the product of a few
input arrays then the commutative, associative, and distributive properties of the summation allow for a number
of execution orders, each of which having different execution rates when mapped to a particular hardware archi-
tecture. Also, some of the execution orders would result in calls to BLAS, which provides a substantial increase
in floating-point execution rate. The current TCE implementation generates many-electron theories that are lim-
ited to non-relativistic Hartree-Fock formulation with reference wave functions but it is possible to extend it to
relativistic 2- and 4-component reference wave functions.

3 Problem Statement in Matrix Terms

Most dense linear systems solvers rely on a decompositional approach [16]. The general idea is the following:
given a problem involving a matrix A, one factors or decomposes A into a product of simpler matrices from which
the problem can easily be solved. This divides the computational problem into two parts: first determine an
appropriate decomposition, and then use it in solving the problem at hand. Consider the problem of solving the
linear system:

Ax=b (1)

where A is a nonsingular matrix of order n. The decompositional approach begins with the observation that it is
possible to factor A in the form:
A=LU (2)

where L is a lower triangular matrix (a matrix that has only zeros above the diagonal) with ones on the diagonal,
and U is upper triangular (with only zeros below the diagonal). During the decomposition process, diagonal
elements of A (called pivots) are used to divide the elements below the diagonal. If matrix A has a zero pivot, the
process will break with division-by-zero error. Also, small values of the pivots excessively amplify the numerical
errors of the process. So for numerical stability, the method needs to interchange rows of the matrix or make
sure pivots are as large (in absolute value) as possible. This observation leads to a row permutation matrix P and
modifies the factored form to:

PA=LU (3)

The solution can then be written in the form:
x=A"'Pb (4)

which then suggests the following algorithm for solving the system of equations:
* Factor A according to Eq. (3)
* Solve the system Ly = Pb
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function [L,U,p] = lutx(A) import numpy
%LUTX Triangular factorization, textbook version def lUtX(A)Z
% [L,U,p] = lutx(A) produces a unit lower triangular matrix L, 1rorrr
% an upper triangular matrix U, and a permutation vector p, lutx Triangular factorization, textbook version
% so that L*U = A(p,:) Ir010r
[n,n] = size(A);
= (Ln); n, n = A.shape

fork = 1on-1 p = numpy.arange(n)

% Find index of largest element below diagonal in k-th column

[r,m] = max(abs(A(k:n,K))); # Find index of largest element below diagonal

for k in range(n-1):

m = m-+k-1; r, m = max(numpy.abs(A[k:n, k]))
% Skip elimination if column is zero m 4=k
if (A(m)k) "= 0)
fVo SwaE) pivot row if A[m, k] 1= 0
if (m "=k) .
# Swap pivot row
A(lk m],:) = A([m k],2); if m = k:
p([k m]) = p([m K]); e A ]
end [k, m], :] = A[[m, k], :]

pl[k, m]] = p[[m, k]]

% Compute multipliers
i=k+1:n;

# C t [tipli
A(i,k) _ A(i,k)/A(k,k); ompute multipliers

i=range(k, n)
Ali, k] /= Alk, k]

% Update the remainder of the matrix

j=k+1lin; . :
.. . . . # Update the remainder of the matrix
A(ig) = Aig) - AlLK)*A(k,j); i = range(k, n)
end )
Ali, j]-=Ali, k] * Alk, j
end [i, j] [i, k] * ALk, j]

L = numpy.tril(A, -1) + numpy.eye(n, n)
U = numpy.triu(A)

% Separate result
L = tril(A,-1) + eye(n,n);

U = triu(A); returnL, U, p

Figure 1: Simple implementation of LU in MATLAB (left) and Python (right).

* Solve the system Ux =7y

This approach to matrix computations through decomposition has proven very useful for several reasons. First,
the approach separates the computation into two stages: the computation of a decomposition, followed by the use
of the decomposition to solve the problem at hand. This can be important, for example, if different right hand
sides are present and need to be solved at different points in the process. The matrix needs to be factored only
once and reused for the different right hand sides. This is particularly important because the factorization of A,
step 1, requires O(n®) operations, whereas the solutions, steps 2 and 3, require only O(n?) operations. Another
aspect of the algorithm’s strength is in storage: the L and U factors do not require extra storage, but can take over
the space occupied initially by A. For the discussion of coding this algorithm, we present only the computationally
intensive part of the process, which is step 1, the factorization of the matrix.
Decompositional technique can be applied to many different matrix types:

A =LLT A,=LDLT PA;=LU A;=QR (5)

such as symmetric positive definite (A1), symmetric indefinite (A;), square non-singular (A3), and general rect-
angular matrices (A4). Each matrix type will require a different algorithm: Cholesky factorization, Cholesky
factorization with pivoting, LU factorization, and QR factorization, respectively.

4 Introducing LU: a Simple Implementation

For the first version, we present a straightforward implementation of LU factorization. It consists of n-1 steps,
where each step introduces more zeros below the diagonal, as shown in Figure 1.
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Tools often used to teach Gaussian elimination include MATLAB and Python. They are scripting languages
that make developing matrix algorithms very simple. The notation might seem very unusual to people familiar
with other scripting languages because it is oriented to process multidimensional arrays. The unique features of
the language that we use in the example code are:

* Transposition operator for vectors and matrices: ’ (single quote)
* Matrix indexing specified as:

- Simple integer values: A(m, k)
— Ranges: A(k:n, k)
— Other matrices: A((k m], :)

* Built-in matrix functions such as size or shape (returns matrix dimensions), tril (returns the lower triangular
portion of the matrix), triu (returns the upper triangular portion of the matrix), and eye (returns an identity
matrix, which contains only zero entries, except for the diagonal, which is all ones).

The algorithm presented in Figure 1 is row-oriented, in the sense that we are taking a scalar multiple of the
“pivot” row and adding it to the rows below to introduce zeros below the diagonal. The beauty of the algorithm
lies in its similarity to the mathematical notation. Hence, this is the preferred way of teaching the algorithm for
the first time so that students can quickly turn formulas into running code.

The convenience has its price, however, and it is not only related to the overhead of scripting language inter-
pretation. In the 1970s, Fortran was the language for scientific computations. Fortran stores two-dimensional
arrays by column. Accessing the array in a row-wise fashion within the matrix could involve successive memory
reference to locations separated from each other by a large increment, depending on the size of the declared ar-
ray. The situation was further complicated by the operating system’s use of memory pages to effectively control
memory usage. With a large matrix and a row- oriented algorithm in a Fortran environment, an excessive number
of page swaps might be generated in the process of running the software. Cleve Moler pointed this out in the
1970s [17].

To avoid this situation, one needed simply to interchange the order of the innermost nested loops on i and
j. This simple change resulted in more than 30% savings in wall-clock time to solve problems of size 200 on an
IBM 360/67. Expressiveness of the code was thus traded for efficiency by using a less obvious ordering of loops
and the use of a much more obscure (by today’s standard) language.

5 Implementation for Vector Computers

In the second half of the seventies the introduction of vector computer systems marked the beginning of modern
Supercomputing. These systems offered a performance advantage of at least one order of magnitude over conven-
tional systems of that time. Raw performance was the main if not the only selling argument. In the first half of
the eighties the integration of vector systems in conventional computing environments became more important.
Only the manufacturers, which provided standard programming environments, operating systems and key ap-
plications, were successful in getting industrial customers and survived. Performance was mainly increased by
improved chip technologies and by producing shared memory multi-processor systems. They were able in one
step to perform a single operation on a relatively large number of operands stored in vector registers. Expressing
matrix algorithms as vector-vector operations was a natural fit for this type of machines [18]. However, some of
the vector designs had a limited ability to load and store the vector registers in main memory. A technique called
chaining allowed this limitation to be circumvented by moving data between the registers before accessing main
memory. Chaining required recasting linear algebra in terms of matrix-vector operations.

Vector architectures exploit pipeline processing by running mathematical operations on arrays of data in a
simultaneous or pipelined fashion. Most algorithms in linear algebra can be easily vectorized. Therefore, in the
late 70s there was an effort to standardize vector operations for use in scientific computations. The idea was to
define some simple, frequently used operations and implement them on various systems to achieve portability
and efficiency. This package came to be known as the Level 1 Basic Linear Algebra Subprograms (BLAS) or Level
1 BLAS [19].

The term Level 1 denotes vector-vector operations. As we will see, Level 2 (matrix-vector operations) [20, 21],
and Level 3 (matrix-matrix operations) [22, 23] play important roles as well. In the 1970s, the algorithms of dense
linear algebra were implemented in a systematic way by the LINPACK project [24]. LINPACK is a collection of
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subroutine dgefa(a,lda,n,ipvt,info) a(kk)=t
integer lda,n,ipvt(1),info 10 continue
double precision a(lda,1) [«
double precision t [ compute multipliers
integer idamax,j,k,kpl,,,nm1 [@
c t=-1.0d0/a(kk)
c gaussian elimination with partial pivoting call dscal(n-k,t,a(k+1,k),1)
c ¢
info=0 [ row elimination with column indexing
nml=n-1 ¢
if (nm1 .lt. 1) goto 70 do30j=kpl,n
do60k=1,nml t=a(lj)
kpl =k +1 if (L.eq. k) go to 20
c a(lj) = a(k,j)
C find L = pivot index akj) =t
c 20 continue
l = idamax(n-k+1,a(kk),1)+ k-1 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
ipvt(k) =1 30 continue
C go to 50
c zero pivot implies this column is already triangularized 40 continue
c info = k
if (a(L,k) .eq. 0.0d0) go to 40 50  continue
¢ 60 continue
c interchange if necessary 70 continue
C ipvt(n) =n
if (L.eq. k) goto 10 if (a(n,n) .eq. 0.0d0) info=n
t=a(lk) return
a(Lk) = a(kk) end

Figure 2: LINPACK variant of LU factorization (this is the original FORTRAN 66 code - if LINPACK was written
today it would have used Fortran 2008.)

Fortran subroutines that analyze and solve linear equations and linear least-squares problems. The package solves
linear systems whose matrices are general, banded, symmetric indefinite, symmetric positive definite, triangular,
and square tridiagonal (only diagonal, super-diagonal and sub-diagonal are present). In addition, the package
computes the QR (matrix Q is unitary or hermitian and R is upper trapezoidal) and singular value decompositions
of rectangular matrices and applies them to least-squares problems. LINPACK uses column-oriented algorithms,
which increase efficiency by preserving locality of reference. By column orientation, we mean that the LINPACK
code always references arrays down columns, not across rows. This is important since Fortran stores arrays in
column-major order. This means that as one proceeds down a column of an array, the memory references proceed
sequentially through memory. Thus, if a program references an item in a particular block, the next reference is
likely to be in the same block.

The software in LINPACK was kept machine-independent partly through the introduction of the Level 1 BLAS
routines. Calling Level 1 BLAS did almost all of the computation. For each machine, the set of Level 1 BLAS
would be implemented in a machine-specific manner to obtain high performance. The Level 1 BLAS subroutines
DAXPY, DSCAL, and IDAMAX are used in the routine DGEFA.

It was presumed that the BLAS operations would be implemented in an efficient, machine-specific way suitable
for the computer on which the subroutines were executed. On a vector computer, this could translate into a
simple, single vector operation. This avoided leaving the optimization up to the compiler and explicitly exposing
a performance-critical operation.

In a sense, then, the beauty of the original code was regained with the use of a new vocabulary to describe the
algorithms: the BLAS. Over time, the BLAS became a widely adopted standard and were most likely the first to
enforce two key aspects of software: modularity and portability. Again, these are taken for granted today, but at
the time they were not. One could have the cake of compact algorithm representation and eat it too, because the
resulting Fortran code was portable.

Most algorithms in linear algebra can be easily vectorized. However, to gain the most out of such architectures,
simple vectorization is usually not enough. Some vector computers are limited by having only one path between
memory and the vector registers. This creates a bottleneck if a program loads a vector from memory, performs
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SUBROUTINE DGETRF(M, N, A, LDA, IPIV, INFO)
INTEGER INFO, LDA, M, N

INTEGER IPIV(*)

DOUBLE PRECISION A(LDA, *)

DOUBLE PRECISION ONE

PARAMETER (ONE =1.0D+0)
INTEGER I, 1INFO, J, JB, NB
EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM
EXTERNAL XERBLA
INTEGER ILAENV
EXTERNAL ILAENV
INTRINSIC MAX, MIN
INFO =0
IF(M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.O ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1,M)) THEN
INFO = -4
END IF

IF(INFO.NE.O ) THEN
CALL XERBLA( 'DGETRF’, -INFO )

RETURN
END IF

IF(M.EQ.0 .OR. N.EQ.0 ) RETURN

NB = ILAENV( 1, 'DGETRF’, © ", M,N,-1,-1)

IF(NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
CALL DGETF2( M, N, A, LDA, IPIV, INFO )
ELSE

DO 20 J =1, MIN(M, N ), NB
JB = MIN( MIN( M, N )-J+1,NB )

* Factor diagonal and subdiagonal blocks and test for exact
* singularity.

CALL DGETF2( M-J+1,JB, A(J,J ), LDA,IPIV(J ), lINFO )
* Adjust INFO and the pivot indices.

IF( INFO.EQ.O .AND. IINFO.GT.0 ) INFO = lINFO + J - 1
DO 101=J, MIN(M, J+JB-1)
IPIV(I)=J-1+IPIV(I])
10  CONTINUE
* Apply interchanges to columns 1:J-1.
CALL DLASWP( J-1, A, LDA, J, J+JB-1,IPIV, 1)
IF( J+JB.LE.N ) THEN

* Apply interchanges to columns J+JB:N.
CALL DLASWP( N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,IPIV, 1)
* Compute block row of U.
CALL DTRSM( "Left’, "Lower’, "No transpose’, "Unit’, JB,
$ N-J-JB+1, ONE, A(J, J), LDA, A(J, J+JB), LDA )
IF( J+JB.LE.M ) THEN
* Update trailing submatrix.

CALL DGEMM( "No transpose’, "No transpose’, M-J-JB+1,
N-J-JB+1, JB, -ONE, A(J+JB, J), LDA,
A(J, J+JB), LDA, ONE, A(J+JB, J+JB), LDA )
END IF
END IF
20 CONTINUE
END IF
RETURN
END

A A

Figure 3: LAPACK’s LU factorization routine DGETRF (FORTRAN 77 coding.)

some arithmetic operations, and then stores the results. In order to achieve top performance, the scope of the
vectorization must be expanded to facilitate chaining operations together and to minimize data movement, in
addition to using vector operations. Recasting the algorithms in terms of matrix-vector operations makes it easy
for a vectorizing compiler to achieve these goals.

Thus, as computer architectures became more complex in the design of their memory hierarchies, it became
necessary to increase the scope of the BLAS routines from Level 1 to Level 2 and Level 3.

6 Implementation on RISC Processors

RISC computers were introduced in the late 1980s and early 1990s. While their clock rates might have been com-
parable to those of the vector machines, the computing speed lagged behind due to their lack of vector registers.
Another deficiency was their creation of a deep memory hierarchy with multiple levels of cache memory to allevi-
ate the scarcity of bandwidth that was, in turn, caused mostly by a limited number of memory banks. The eventual
success of this architecture is commonly attributed to the right price point and astonishing improvements in per-
formance over time as predicted by Moore’s Law [25]. With RISC computers, the linear algebra algorithms had
to be redone yet again. This time, the formulations had to expose as many matrix-matrix operations as possible,
which guaranteed good cache reuse.

As mentioned before, the introduction in the late 1970s and early 1980s of vector machines brought about
the development of another variant of algorithms for dense linear algebra. This variant was centered on the
multiplication of a matrix by a vector. These subroutines were meant to give improved performance over the
dense linear algebra subroutines in LINPACK, which were based on Level 1 BLAS. In the late 1980s and early
1990s, with the introduction of RISC-type microprocessors (the “killer micros”) and other machines with cache-
type memories, we saw the development of LAPACK [26] Level 3 algorithms for dense linear algebra. A Level 3
code is typified by the main Level 3 BLAS, which, in this case, is matrix multiplication [27].

The original goal of the LAPACK project was to make the widely used LINPACK library run efficiently on
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vector and shared-memory parallel processors. On these machines, LINPACK is inefficient because its memory
access patterns disregard the multilayered memory hierarchies of the machines, thereby spending too much time
moving data instead of doing useful floating-point operations. LAPACK addresses this problem by reorganizing
the algorithms to use block matrix operations, such as matrix multiplication, in the innermost loops (see the paper
by E. Anderson and J. Dongarra under "Further Reading”). These block operations can be optimized for each
architecture to account for its memory hierarchy, and so provide a transportable way to achieve high efficiency on
diverse modern machines.

Here we use the term “transportable” instead of “portable” because, for fastest possible performance, LAPACK
requires that highly optimized block matrix operations be implemented already on each machine. In other words,
the correctness of the code is portable, but high performance is not — if we limit ourselves to a single Fortran
source code.

LAPACK can be regarded as a successor to LINPACK in terms of functionality, although it doesn’t always use
the same function-calling sequences. As such a successor, LAPACK was a win for the scientific community because
it could keep LINPACK’s functionality while getting improved use out of new hardware.

Most of the computational work in the algorithm from Figure 3 is contained in three routines:

* DGEMM - Matrix-matrix multiplication
* DTRSM - Triangular solve with multiple right hand sides
* DGETF2 - Unblocked LU factorization for operations within a block column

One of the key parameters in the algorithm is the block size, called NB here. If NB is too small or too large, poor
performance can result-hence the importance of the ILAENV function, whose standard implementation was meant
to be replaced by a vendor implementation encapsulating machine- specific parameters upon installation of the
LAPACK library. At any given point of the algorithm, NB columns or rows are exposed to a well-optimized Level-
3 BLAS. If NB is 1, the algorithm is equivalent in performance and memory access patterns to the LINPACK’s
version.

Matrix-matrix operations offer the proper level of modularity for performance and transportability across a
wide range of computer architectures, including parallel systems with memory hierarchy. This enhanced perfor-
mance is primarily due to a greater opportunity for reusing data. There are numerous ways to accomplish this
reuse of data to reduce memory traffic and to increase the ratio of floating-point operations to data movement
through the memory hierarchy. This improvement can bring a three- to ten-fold improvement in performance on
modern computer architectures.

The jury is still out concerning the productivity of writing and reading the LAPACK code: how hard is it to
generate the code from its mathematical description? The use of vector notation in LINPACK is arguably more
natural than LAPACK’s matrix formulation. The mathematical formulas that describe algorithms are usually more
complex if only matrices are used, as opposed to mixed vector-matrix notation.

7 Implementation on Distributed Memory Machines

Traditional design focus for Massively Parallel Processing (MPP) systems was the very high end of performance.
In the early nineties, the Symmetric Multi-Processing (SMP) systems of various workstation manufacturers as
well as the IBM SP series, which targeted the lower and medium market segments, gained great popularity. Their
price/performance ratios were better due to the missing overhead in the design for support of the very large
configurations and due to cost advantages of the larger production numbers. Due to the vertical integration of
performance it was no longer economically feasible to produce and focus on the highest end of computing power
alone. The design focus for new systems shifted to the market of medium performance systems.

The acceptance of MPP systems not only for engineering applications but also for new commercial applications
especially for database applications emphasized different criteria for market success such as the stability of the
system, continuity of the manufacturer and price/performance. Success in commercial environments became
a new important requirement for a successful supercomputer business towards the end of the nineties. Due
to these factors and the consolidation in the number of vendors in the market, hierarchical systems built with
components designed for the broader commercial market did replace homogeneous systems at the very high end
of performance. The marketplace adopted clusters of SMPs readily, while academic research focused on clusters
of workstations and PCs.

At the end of the nineties clusters were common in academia but mostly as research objects and not primarily
as general purpose computing platforms for applications. Most of these clusters were of comparable small scale
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and as a result the November 1999 edition of the TOP500 [28] listed only seven cluster systems. This changed
dramatically as industrial and commercial customers started deploying clusters as soon as applications with less
stringent communication requirements permitted them to take advantage of the better price/performance ratio
- roughly an order of magnitude of commodity based clusters. At the same time, all major vendors in the HPC
market started selling this type of cluster to their customer base. In November 2004, clusters were the dominant
architectures in the TOP500 with 294 systems at all levels of performance. Companies such as IBM and Hewlett-
Packard sell the majority of these clusters and a large number of them are installed at commercial and industrial
customers.

In the early 2000s, clusters build with off-the-shelf components gained more and more attention not only as
academic research object but also computing platforms with end-users of HPC computing systems. By 2004, these
groups of clusters represent the majority of new systems on the TOP500 in a broad range of application areas. One
major consequence of this trend was the rapid rise in the utilization of Intel processors in HPC systems. While
virtually absent in the high end at the beginning of the decade, Intel processors are now used in the majority
of HPC systems. Clusters in the nineties were mostly self-made system designed and built by small groups of
dedicated scientist or application experts. This changed rapidly as soon as the market for clusters based on PC
technology matured. Nowadays, the large majority of TOP500-class clusters are manufactured and integrated by
either a few traditional large HPC manufacturers such as IBM or Hewlett-Packard or numerous small, specialized
integrators of such systems.

In addition, there still is generally a large difference in the usage of clusters and their more integrated coun-
terparts: clusters are mostly used for capacity computing while the integrated machines primarily are used for
capability computing. The largest supercomputers are used for capability or turnaround computing where the
maximum processing power is applied to a single problem. The goal is to solve a larger problem, or to solve a
single problem in a shorter period of time. Capability computing enables the solution of problems that cannot
otherwise be solved in a reasonable period of time (for example, by moving from a 2D to a 3D simulation, using
finer grids, or using more realistic models). Capability computing also enables the solution of problems with
real-time constraints (e.g., predicting weather). The main figure of merit is time to solution. Smaller or cheaper
systems are used for capacity computing, where smaller problems are solved. Capacity computing can be used
to enable parametric studies or to explore design alternatives; it is often needed to prepare for more expensive
runs on capability systems. Capacity systems will often run several jobs simultaneously. The main figure of merit
is sustained performance per unit cost. Traditionally, vendors of large supercomputer systems have learned to
provide for the capacity mode of operation as the precious resources of their systems were required to be used as
effectively as possible. By contrast, Beowulf clusters are mostly operated through the Linux operating system (a
small minority using Microsoft Windows) where these operating systems either lack the tools or these tools are
relatively immature to use a cluster effectively for capability computing. However, as clusters become on average
both larger and more stable in terms of continuous operation, there is a trend to use them also as computational
capability servers.

There are a number of choices of communication networks available in clusters. Of course 100 Mb/s Ethernet
or Gigabit Ethernet is always possible, which is attractive for economic reasons, but it has the drawback of a high
latency (~ 100us) — the time it takes to send the shortest message. Alternatively, there are, for instance, networks
that operate from user space, like Myrinet, Infiniband. The network speeds as shown by these networks are more
or less on par with some integrated parallel systems. So, possibly apart from the speed of the processors and of
the software that is provided by the vendors of traditional integrated supercomputers, the distinction between
clusters and the class of custom capability machines becomes rather small and will, without a doubt, decrease
further in the coming years. And the advances of the Ethernet standard into the 100 Gb/s territory with latencies
well below 10 us make it even more so.

LAPACK was designed to be highly efficient on vector processors, high-performance “superscalar” worksta-
tions, and shared-memory multiprocessors. LAPACK can also be used satisfactorily on all types of scalar machines
(PCs, workstations, and mainframes). However, LAPACK in its present form is less likely to give good performance
on other types of parallel architectures — for example, massively parallel Single Instruction Multiple Data (SIMD)
machines, or Multiple Instruction Multiple Data (MIMD) distributed-memory machines. The ScaLAPACK effort
was intended to adapt LAPACK to these new architectures.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the
frequency of data movement between different levels of the memory hierarchy. The fundamental building blocks
of the ScaLAPACK library are distributed-memory versions of the Level-2 and Level-3 BLAS [29], and a set of
Basic Linear Algebra Communication Subprograms (BLACS) [30] for communication tasks that arise frequently
in parallel linear algebra computations. In the ScaLAPACK routines, all interprocessor communication occurs

JPDC: Perspectives on Parallel and Disttributed Processing 8



Luszczek, Kurzak, Dongarra Looking Back at Dense Linear Algebra Software

within the distributed BLAS and the BLACS, so the source code of the top software layer of ScaLAPACK looks
very similar to that of LAPACK. The similarity may be observed by comparing Figures 3 and 4.

In order to simplify the design of ScaLAPACK, and because the BLAS have proven to be very useful tools
outside LAPACK, we chose to build a Parallel BLAS, or PBLAS [29], whose interface is as similar to the BLAS as
possible. This decision has permitted the ScaLAPACK code to be quite similar, and sometimes nearly identical, to
the analogous LAPACK code.

It was our aim that the PBLAS would provide a distributed memory standard, just as the BLAS provided a
shared memory standard. This would simplify and encourage the development of high performance and portable
parallel numerical software, as well as providing manufacturers with just a small set of routines to be optimized.
The acceptance of the PBLAS requires reasonable compromises between competing goals of functionality and
simplicity.

The PBLAS operate on matrices distributed in a two-dimensional block cyclic layout. Because such a data
layout requires many parameters to fully describe the distributed matrix, we have chosen a more object-oriented
approach and encapsulated these parameters in an integer array called an array descriptor. An array descriptor
includes:

* The descriptor type

* The BLACS context (a virtual space for messages that is created to avoid collisions between logically distinct
messages)

* The number of rows in the distributed matrix

* The number of columns in the distributed matrix

* The row block size

* The column block size

* The process row over which the first row of the matrix is distributed

* The process column over which the first column of the matrix is distributed
* The leading dimension of the local array storing the local blocks

By using this descriptor, a call to a PBLAS routine is very similar to a call to the corresponding BLAS routine:
CALL DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A(IA, JA), LDA, B( 1B, JB ), LDB, BETA, C(IC, JC ), LDC)

CALL PDGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESC_A, B, JB, DESC_B, BETA, C, IC, JC, DESC_C)
DGEMM computes C = BETA x C + ALPHA x op( A ) x op( B ), where op(A) is either A or its transpose depending on
TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMM is the same, with the exception of the way
submatrices are specified. To pass the submatrix starting at A(IA,JA) to DGEMM, for example, the actual argument
corresponding to the formal argument A is simply A(IA,JA). PDGEMM, on the other hand, needs to understand the
global storage scheme of A to extract the correct submatrix, so IA and JA must be passed in separately.

DESC_A is the array descriptor for A. The parameters describing the matrix operands B and C are analogous to
those describing A. In a truly object-oriented environment, matrices and DESC_A would be synonymous. However,
this would require language support and detract from portability.

Using message passing and scalable algorithms from the ScaLAPACK library makes it possible to factor ma-
trices of arbitrarily increasing size, given machines with more processors. By design, the library computes more
than it communicates, so for the most part, data stay locally for processing and travels only occasionally across the
interconnect network.

But the number and types of messages exchanged between processors can sometimes be hard to manage.
The context associated with every distributed matrix lets implementations use separate “universes” for message
passing. The use of separate communication contexts by distinct libraries (or distinct library invocations) such as
the PBLAS insulates communication internal to the library from external communication. When more than one
descriptor array is present in the argument list of a routine in the PBLAS, the individual BLACS context entries
must be equal. In other words, the PBLAS do not perform “inter-context” operations.

In the performance sense, ScaLAPACK did to LAPACK what LAPACK did to LINPACK: it broadened the range
of hardware where LU factorization (and other codes) could run efficiently. In terms of code elegance, the ScaLA-
PACK'’s changes were much more drastic: the same mathematical operation now required large amounts of tedious
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work. Both the users and the library writers were now forced into explicitly controlling data storage intricacies,
because data locality became paramount for performance. The victim was the readability of the code, despite
efforts to modularize the code according to the best software engineering practices of the day.

8 Shared Memory Implementation

The advent of multi-core processors brought about a fundamental shift in the way software is produced even
though comparisons have been brought up with the established coding techniques from SMPs. Rather elaborating
the differences we will focus on how most of software had to be adjusted for SMPs with a special focus on dense
linear algebra. The good news is that LAPACK’s LU factorization runs on a multi-core system and can even
deliver a modest increase of performance if multi-threaded BLAS are used. In technical terms, this is the Block
Synchronous Processing (BSP) model [31, 32] model of parallel computation: each call to BLAS (from a single main
thread) forks a suitable number of threads (parallel units of executions that share memory and are often scheduled
by the operating system), which perform the work on each core and then join the main thread of computation.
This is also called a fork-join model and it implies a synchronization point at each join operation.

The bad news is that the LAPACK’s fork-join algorithm gravely impairs scalability even on small multi-core
computers that do not have the memory systems available in SMP systems. The inherent scalability flaw is the
heavy synchronization in the fork-join model:only a single thread is allowed to perform the significant computa-
tion that occupies the critical section of the code, leaving other threads idle. That results in lock-step execution:
all threads have to wait for the slowest one among them. It also prevents hiding of inherently sequential portions
of the code behind parallel ones. In other words, the threads are forced to perform the same operation on different
data. If there is not enough data for some threads, they will have to stay idle and wait for the rest of the threads
that perform useful work on their data. Clearly, another version of the LU algorithm is needed such that would
allow threads to stay busy all the time by possibly making them perform different operations during some portion
of the execution.

The multithreaded version of the algorithm recognizes the existence of a so-called critical path in the algo-
rithm: a portion of the code whose execution depends on previous calculations and can block the progress of
the algorithm. The LAPACK’s LU does not treat this critical portion of the code in any special way: the DGETF2
subroutine is called by a single thread and doesn’t allow much parallelization even at the BLAS level. While one
thread calls this routine, the other ones wait idly. And since the performance of DGETF2 is bound by memory
bandwidth (rather than processor speed), this bottleneck will exacerbate scalability problems as systems with
more cores are introduced.

The multithreaded version of the algorithm attacks this problem head-on by introducing the notion of look-
ahead: calculating things ahead of time to avoid potential stagnation in the progress of the computations. This
of course requires additional synchronization and bookkeeping not present in the previous versions — a trade-off
between code complexity and performance. Another aspect of the multi-threaded code is the use of recursion in
the panel factorization. It turns out that the use of recursion can give even greater performance benefits for tall
panel matrices than it does for the square ones [33].

The algorithm is the same for each thread (the SIMD paradigm), and the matrix data is partitioned among
threads in a cyclic manner using panels with NB columns in each panel (except maybe the last). The NB parameter
corresponds to the blocking parameter NB of LAPACK. The difference is the logical assignment of panels (blocks
of columns) to threads. Physically, all panels are equally accessible, because the code operates in a shared memory
regime. The benefits of blocking in a thread are the same as they were in LAPACK: better cache reuse and less
stress on the memory bus. Assigning a portion of the matrix to a thread seems an artificial requirement at first, but
it simplifies the code and the bookkeeping data structures; most importantly, it provides better memory affinity.
It turns out that multi-core chips are not symmetric in terms of memory access bandwidth, so minimizing the
number of reassignments of memory pages to cores directly benefits performance.

The standard components of LU factorization are represented by the pfactor() and pupdate() functions in
Figure 5. As one might expect, the former factors a panel, whereas the latter updates a panel using one of the
previously factored panels.

The main loop makes each thread iterate over each panel in turn. If necessary, the panel is factored by the
owner thread while other threads wait (if they happen to need this panel for their updates).

The look-ahead logic is inside the nested loop (prefaced by the comment for each panel to be updated) that
replaces DGEMM or PDGEMM from previous algorithms. Before each thread updates one of its panels, it checks
whether it’s already feasible to factor its first unfactored panel. This minimizes the number of times the threads
have to wait because each thread constantly attempts to eliminate the potential bottleneck.
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As was the case for ScaLAPACK, the multithreaded version detracts from the inherent elegance of the LA-
PACK'’s version. Also in the same spirit, performance is the main culprit: LAPACK’s code will not run efficiently
on machines with ever-increasing numbers of cores. Explicit control of execution threads at the LAPACK level
rather than the BLAS level is critical: parallelism cannot be encapsulated in a library call. The only good news is
that the code is not as complicated as ScaLAPACK’s, and efficient BLAS can still be put to a good use.

9 Multicore Implementations

The multicore processors do not resemble the SMP systems of the past, nor do they resemble distributed memory
systems. In comparison to SMPs, multicores are much more starved for memory due to the fast increase in the
number of cores, which is not followed by a proportional increase in bandwidth. Owing to that, data access locality
is of much higher importance in case of multicores. At the same time, they do follow to a large extent the memory
model where the main memory serves as a central (not distributed) repository for data. For those reasons, the
best performing algorithms or multicores happen to be parallel versions of what used to be know as “out of core”
algorithms (algorithms developed in the past for situations where data does not fit in the main memory and has
to be explicitly moved between the memory and the disc).

In dense linear algebra, the Tile Algorithms are direct descendants of “out of core” algorithms. The Tile Algo-
rithms are based on the idea of processing the matrix by square submatrices, referred to as tiles, of relatively small
size. This makes the operation efficient in terms of cache and TLB use. The Cholesky factorization lends itself
readily to tile formulation, however the same is not true for the LU and QR factorizations. The tile algorithms for
them are constructed by factorizing the diagonal tile first and then incrementally updating the factorization using
the entries below the diagonal tile. This is a very well known concept that dates back to the work of Gauss. The
idea was initially used to build “out-of-core” algorithms and recently rediscovered as a very efficient method for
implementing linear algebra operations on multicore processors. It is crucial to note that the technique of pro-
cessing the matrix by square tiles yields satisfactory performance only when accompanied by data organization
based on square tiles. The layout is referred to as Square Block layout or, simply, Tile Layout.

For parallel execution those algorithms can be scheduled either statically or dynamically. For static execution
(Figure 6) the work for each core is predetermined and each core follows the cycle: check task dependencies
(and wait if necessary), perform a task, update dependencies, transition to the next task (using a static transition
function). For regular algorithms, such as dense matrix factorizations, static scheduling is straightforward and
very robust.

An alternative approach, which emphasizes the ease of development, is based on writing a serial algorithm
and the use of a dynamic scheduler, which traverses the code and queues tasks for parallel execution, while
automatically keeping track of data dependencies (Figure 7). This approach relies on the availability of such a
scheduler, which is not trivial to develop, but offers multiple advantages, such as pipelining/streaming of different
stages of the computation (e.g. factorization and solve).

Regardless of whether static or dynamic scheduling is used, a proper treatment of partial pivoting requires
nested parallelism that brings its own set of complications [34, 35, 36].

10 Error Analysis and Operation Count

The key aspect of all of the implementations presented in this section is their numerical properties.

It is acceptable to forgo elegance in order to gain performance. But numerical stability is of vital importance
and cannot be sacrificed, because it is an inherent part of the algorithm’s correctness. While these are serious
considerations, there is some consolation to follow. It may be surprising to some readers that all of the algorithms
presented are the same, even though it’s virtually impossible to make each excerpt of code produce exactly the
same output for exactly the same inputs. The fundamental reason for this are the vagaries of the floating-point
arithmetic in finite precision as it is implemented in virtually all hardware. In essence, only a slight change in the
order in which the floating-point operations are performed causes a change in the result: the change is on the order
of the, so called, machine precision. Machine precision comes from the number of decimal digits represented in
the floating-point format: for double precision there are 15 digits and so the machine precision is about 10713,
LINPACK and LAPACK perform the operations in different order because the latter merges the updates into a
single call to BLAS. And even though ScaLAPACK merges the updates in a similar fashion as LAPACK does, the
former performs its operations only on the local portion of the matrix whereas the latter treats the matrix as a
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single piece quantity. In other words, when LAPACK makes a single update operation, ScaLAPACK could make
as many as there are processors involved in the computation.

When it comes to repeatability of results, the vagaries of floating-point representation may be captured in a
rigorous way by error bounds. One way of expressing the numerical robustness of the previous algorithms is with
the following formula:

JAz b _
A =

where the error vector x — X is the difference between the computed solution £ and the correct solution x,
and Ax — b is a so-called “residual”. The previous formula basically says that the size of the error (the parallel
bars surrounding a value indicate a norm — a measure of absolute size) is as small as warranted by the quality of
the matrix A. Therefore, if the matrix is close to being singular in numerical sense (some entries are small with
respect to machine precision and the condition number of the matrix and so they might be considered to be zero)
the algorithms will not give an accurate answer. But otherwise, a relatively good quality of the result may be
expected.

Another feature that is common to all the versions presented is the operation count: they all perform O(2/313)
floating-point multiplications and/or additions. The order of these operations is what differentiates them. There
exist algorithms that increase the amount of floating-point work to save on memory traffic or network transfers (es-
pecially for distributed-memory parallel algorithms.) But because the algorithms shown in this chapter have the
same operation count, it is valid to compare them for performance. The computational rate (number of floating-
point operations per second) may be used instead of the time taken to solve the problem, provided that the matrix
size is the same. But comparing computational rates is sometimes better because it allows a comparison of al-
gorithms when the matrix sizes differ. For example, a sequential algorithm on a single processor can be directly
compared with a parallel one working on a large cluster on a much bigger matrix.

llx = %ll < [|A7HlllA% ~ bl (6)

11 Concluding Remarks and Future Directions

In this chapter we have looked at the evolution of the design of a simple but important algorithm in computational
science. The changes over the past 30 years have been necessary to follow the lead of the advances in computer
architectures. In some cases these changes have been simple, such as interchanging loops. In other cases, they
have been as complex as the introduction of recursion and look-ahead computations. In each case, however, a
code’s ability to efficiently utilize the memory hierarchy is the key to high performance on a single processor as
well as shared and distributed memory systems.

The essence of the problem is the dramatic increase in complexity that software developers have had to con-
front, and still do. Dual-core machines are already common, and the number of cores is expected to roughly
double with each processor generation. But contrary to the assumptions of the old model, programmers will not
be able to consider these cores independently (i.e., multi-core is not “the new SMP”) because they share on-chip
resources in ways that separate processors do not. This situation is made even more complicated by the other
non-standard components that future architectures are expected to deploy, including mixing different types of
cores, hardware accelerators, and memory systems.

When processor clock speeds flatlined in 2004, after more than fifteen years of exponential increases, the era
of routine and near automatic performance improvements that the HPC application community had previously
enjoyed came to an abrupt end. The air of crisis that followed in the wake of this new regime continues to hang
over computational science. To develop software that will perform well on petascale systems with thousands of
nodes and millions of cores, the list of major challenges that must now be confronted is formidable:

* Dramatic escalation in the costs of intrasystem communication between processors and/or levels of memory
hierarchy;

* Increased hybridization of processor architectures (mixing CPUs, GPUs, etc.), in varying and unexpected
design combinations;

* High levels of parallelism and more complex constraints means that cooperating processes must be dynam-
ically and unpredictably scheduled for asynchronous execution;

¢ Software will not run at scale without much better resilience to faults and far more robustness; and
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* New levels of self-adaptivity will be required to enable software to modulate process speed in order to satisfy
limited energy budgets.

After the industry-wide move from single to multi-core systems, dominant mainstream computer architecture
is now undergoing a second major evolution: from homogeneous to heterogeneous platforms. With increased
frequency, the new systems are called Hybrid Multicores (HMCs). Today’s breed of HMCs simply feature a multi-
core processor and a high end GPU. In the future, the multi-core vendors are planning integration of GPU-like
technology directly into the multi-core chip. From the programmer perspective, this might alleviate the problem
of dealing with two separate memory address spaces: one attached to the multi-core and one attached to the GPU.
If such integration is realized and the performance levels are satisfactory, then such hybrid computing device
could be the prevalent hardware design. Faced with a choice of either having an external GPU or an integrated
GPU-like device, the programmer would have to choose the more productive solution give the problem at hand.

In a nutshell, the high performance computing (HPC) community will soon be faced with machines support-
ing heterogeneities in all hardware aspects — processing elements of multiple types with different ISAs, multiple
memory components with variable data transport interfaces, general and specific accelerators for various pur-
pose, power control system infrastructure integrated throughout — and all in concurrent, simultaneous action and
interaction.

Finally, the proliferation of widely divergent design ideas shows that the question of how to best combine
all these new resources and components is largely unsettled. When combined, these changes produce a picture
of a future in which programmers will have to overcome software design problems vastly more complex and
challenging than those in the past in order to take advantage of the much higher degrees of concurrency and
greater computing power that new architectures will offer. The current trends in software do not address such
complexities. The message passing paradigm epitomized by the MPI (Message Passing Interface) standard quickly
leads to management issues if every processing core corresponds to a single MPI process. Only a hierarchical
approach could possibly address today’s machine that features man hundreds of thousands of computational
cores. One such approach is a mix of MPI and OpenMP. The former connects the multi-core nodes while the latter
commands the computation inside each node. Such a mix could potentially reduce the programming complexity
by one or two orders of magnitude in the number cores but the issue of the attached accelerator (either a GPU
or GPU-like device) is still not addressed within a single programming framework. Existing PGAS (Partitioned
Global Address Space) languages such as Co-Array Fortran, Titanium, and UPC have never been designed to
address the hardware hybridization phenomenon. Even the new languages of the breed such as Chapel, Fortress,
and X10 could potentially face the challenge of redesign to fit in the changing hardware landscape. It is still
too early to tell what would come out of the current initiatives to retrofit the mainstay languages of HPC, C and
Fortran, with new facilities for handling hybrid computers. At this point in time it is hard to which approach will
prove to have a lasting power.

So the bad news is that none of the presented codes will work efficiently someday. The good news is that
we have learned various ways to mold the original simple rendition of the algorithm to meet the ever increasing
challenges of hardware designs.
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SUBROUTINE PDGETRF( M, N, A, 1A, JA, DESCA, IPIV, INFO )
INTEGER IA, INFO, JA,M, N

INTEGER DESCA(* ), IPIV(*)

DOUBLE PRECISION A(*)

INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC._

PARAMETER (BLOCK_CYCLIC.2D = 1, DLEN_=9,DTYPE_=1,
$ CTXT-=2,M_=3,N_=4,MB_=5,NB_=6,

$ RSRC_=7,CSRC_=8&,LLD_-=9)

DOUBLE PRECISION ONE

PARAMETER (ONE = 1.0D+0)

CHARACTER COLBTOP, COLCTOP, ROWBTOP

INTEGER I, 1ICOFF, ICTXT, lINFO, IN, IROFF, J, JB, JN,

$ MN, MYCOL, MYROW, NPCOL, NPROW

INTEGER IDUM1( 1), IDUM2(1)

EXTERNAL BLACS_GRIDINFO, CHK1MAT, IGAMN2D, PCHK1MAT,
$ PB_TOPGET, PB_.TOPSET, PDGEMM, PDGETF2,

$ PDLASWP, PDTRSM, PXERBLA

INTEGER ICEIL

EXTERNAL ICEIL

INTRINSIC MIN, MOD

Get grid parameters
ICTXT = DESCA( CTXT.)
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
Test the input parameters
INFO =0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT-)
ELSE
CALL CHK1MAT(M, 1,N, 2, 1A, JA, DESCA, 6, INFO )
IF( INFO.EQ.O ) THEN
IROFF = MOD( IA-1, DESCA(MB_) )
ICOFF = MOD( JA-1, DESCA(NB.) )
IF( IROFF.NE.O ) THEN

INFO = -4
ELSE IF( ICOFF.NE.O ) THEN
INFO = -5

ELSE IF( DESCA( MB_ ).NE.DESCA( NB_) ) THEN
INFO = -(600+NB.)
END IF
END IF
CALL PCHK1IMAT(M, 1,N, 2,1A, JA, DESCA, 6, 0, IDUM1,
$ IDUM2, INFO )
END IF
IF( INFO.NE.O ) THEN
CALL PXERBLA( ICTXT, "PDGETRF”, -INFO )
RETURN
END IF
Quick return if possible
IF( DESCA( M- ).EQ.1 ) THEN
IPIV(1)=1
RETURN
ELSE IF( M.EQ.0 .OR. N.EQ.O ) THEN
RETURN
END IF
Split-ring topology for the communication along process rows
CALL PB_.TOPGET( ICTXT, 'Broadcast’, "Rowwise’, ROWBTOP )
CALL PB_.TOPGET( ICTXT, 'Broadcast’, "Columnwise’, COLBTOP )
CALL PB_TOPGET( ICTXT, "Combine’, "Columnwise’, COLCTOP )
CALL PB_TOPSET(ICTXT, 'Broadcast’, "Rowwise’, ROWBTOP )
CALL PB_TOPSET(ICTXT, 'Broadcast’, "Columnwise’, COLBTOP )
CALL PB_TOPSET(ICTXT, "Combine”, "Columnwise’, COLCTOP )
RETURN
END

*

CALL PB_.TOPSET(ICTXT, 'Broadcast’, "Rowwise’, "S-ring” )
CALL PB_.TOPSET(ICTXT, 'Broadcast’, "Columnwise’, " ")
CALL PB_TOPSET( ICTXT, "Combine’, "Columnwise’, " ")
Handle the first block of columns separately
MN =MIN(M,N)
IN = MIN( ICEIL( IA, DESCA(MB. ) )*DESCA(MB_), IA+M-1)
JN = MIN( ICEIL( JA, DESCA(NB.) )*DESCA( NB. ), JA+MN-1 )
JB=UN-JA+1
Factor diagonal and subdiagonal blocks and test for exact
singularity.
CALL PDGETF2( M, JB, A, 1A, JA, DESCA, IPIV, INFO )
IF(JB+1.LENN ) THEN
Apply interchanges to columns JN+1:JA+N-1.
CALL PDLASWP( "Forward’, "Rows’, N-JB, A, IA, JN+1, DESCA,
$ IA,IN, IPIV')
Compute block row of U.
CALL PDTRSM( "Left’, "Lower’, "No transpose’, "Unit’, JB,
$ N-JB, ONE, A, 1A, JA, DESCA, A, IA, JN+1, DESCA )
IF(JB+1.LEMM ) THEN
Update trailing submatrix.

CALL PDGEMM( "No transpose’, "No transpose’, M-JB, N-JB, JB,

$ -ONE, A, IN+1, JA, DESCA, A, IA, JN+1, DESCA,
$ ONE, A, IN+1, JN+1, DESCA )
END IF
END IF
Loop over the remaining blocks of columns.
DO 10 J = JN+1, JA+MN-1, DESCA(NB_)
JB = MIN( MN-J+JA, DESCA(NB_) )
I=1A+J-JA
Factor diagonal and subdiagonal blocks and test for exact
singularity.
CALL PDGETF2( M-J+JA, JB, A, |, J, DESCA, IPIV, [INFO )
IF( INFO.EQ.O .AND. [INFO.GT.0 )
$ INFO=IINFO +J - JA
Apply interchanges to columns JA:J-JA.
CALL PDLASWP( "Forward’, "Rowwise’, J-JA, A, IA, JA, DESCA,
$ I, 1+JB-1, IPIV )
IF(J-JA+JB+1.LE.N ) THEN
Apply interchanges to columns J+JB:JA+N-1.
CALL PDLASWP( "Forward’, "Rowwise’, N-J-JB+JA, A, IA, J+JB,
$ DESCA, |, I+JB-1, IPIV )
Compute block row of U.
CALL PDTRSM( "Left’, "Lower’, "No transpose’, "Unit’, JB,

$ N-J-JB+JA, ONE, A, I, J, DESCA, A, |, J+JB,
$ DESCA)
IF( J-JA+JB+1.LEM ) THEN
Update trailing submatrix.
CALL PDGEMM( "No transpose’, "No transpose’, M-J-JB+JA,
$ N-J-JB+JA, JB, -ONE, A, I1+JB, J, DESCA, A,
$ I, J+JB, DESCA, ONE, A, 1+JB, J+JB, DESCA )
END IF
END IF
10 CONTINUE
IF(INFO.EQ.O )

$ INFO=MN+1

CALL IGAMN2D( ICTXT, "Rowwise’, ’
$ -1,-1, MYCOL )
IF(INFO.EQ.MN+1 )

$ INFO=0

CALL PB_.TOPSET( ICTXT, 'Broadcast’, "Rowwise’, ROWBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast’, "Columnwise’, COLBTOP )
CALL PB_TOPSET(ICTXT, "Combine”, "Columnwise’, COLCTOP )
RETURN

END

",1,1,INFO, 1, IDUM1, IDUM2,

Figure 4: ScaLAPACK variant of LU factorization (FORTRAN 77 coding makes the code overly verbose due to lack
of object oriented capabilities that could have hidden much of the complexity.)
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void
SMP _dgetrf(int n, double *a, int lda, int *ipiv, int NB,
int tid, int tsize, int *pready, ptm *mtx, ptc *cnd) {
int pcnt, pfctr, ufrom, uto, ifrom, p;
double *pa = a, *pl, *pf, *Ip;

pcnt = n / NB; /* number of panels */

/* first panel that should be factored by this thread after
* the very first panel (number 0) gets factored */
pfctr = tid + (tid ? O : tsize);

/* this is a pointer to the last panel */
lp = a + (size_t)(n - NB) * (size_t)lda;

/* for each panel (that is used as source of updates) */
for (ufrom = 0; ufrom < pcnt;
ufrom++, pa += NB * (size_t)(lda + 1)){
p = ufrom * NB; /* column number */

/* if the panel to be used for updates has not been
* factored yet; ipiv’ does not be consulted, but it is
* to possibly avoid accesses to ‘pready’ */
if (lipiv[p + NB - 1] || ! pready[ufrom]) {
/* if this is this thread’s panel */
if (ufrom % tsize == tid) {
pfactor(n-p, NB, pa, lda, ipiv+p, pready, ufrom, mtx, cnd);

/¥ if this is not the last panel */
} else if (ufrom < pent - 1) {
LOCK( mtx );
while (! pready[ufrom]) { WAIT( cnd, mtx ); }
UNLOCK( mtx );
}
}

/* for each panel to be updated */
for (uto = first_panel_to_update( ufrom, tid, tsize );
uto < pcnt; uto += tsize) {
/* if there are still panels to factor by this thread and
* preceding panel has been factored; test to ‘ipiv’
* could be skipped but is in there to decrease number
* of accesses to ‘pready’ */
if (pfctr < pent && ipiv[pfctr*NB-1] &&
pready|pfctr-1]) {
/* for each panel that has to (still) update panel
* ‘pfctr’ */
for (ifrom = ufrom + (uto>pfctr ? 1 : 0); ifrom < pfctr;
ifrom-++) {
p = ifrom * NB;
pl = a + (size_t)p * (size_t)(lda + 1);
pf = pl + (size_t)(pfctr - ifrom) * (size_t)NB * lda;
pupdate( n - p, NB, pl, pf, lda, p, ipiv, lp );
}
p = pfctr * NB;
pl = a + (size_t)p * (size_t)(lda + 1);
pfactor(n-p, NB, pl, lda, ipiv+p, pready, pfctr, mtx, cnd);
pfctr += tsize; /¥ move to this thread'’s next panel */
}
/* if panel ‘'uto” hasn’t been factored (if it was, it
* certainly has been updated, so no update is
* necessary) */
if (uto > pfctr || lipiv[uto * NB]) {
p = ufrom * NB;
pf = pa + (uto - ufrom) * (size_t)NB * lda;
pupdate( n - p, NB, pa, pf, lda, p, ipiv, lp );
}

Figure 5: Factorization for multi-threaded execution (C code.)
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#define A(m,n) &((PLASMA_Complex64_t*)A.mat)[A.bsiz*(m)+A.bsiz*A.lmt*(n)]
#define L(m,n) &((PLASMA_Complex64_t*)L.mat)[L.bsiz*(m)+L.bsiz*L.lmt*(n)]
#define IPIV(m,n) &IPIV[A.nb*(m)+A.nb*A.lmt*(n)]
void plasma_pzgetrf(plasma_context_t *plasma) {
PLASMA_desc A, L;
int *IPIV k, m, n, next_k, next_m, next_n, iinfo; PLASMA_Complex64_t *work;
plasma_unpack_args_3(A, L, IPIV);
work = (PLASMA_Complex64_t*)plasma_private_alloc(plasma, L.mb*L.nb, L.dtyp);
ss_init(A.mt, A.nt, -1);
k = 0; n = PLASMA_RANK;
while (n >= A.nt) {k++; n = n-A.nt+k;}
m=k;

while (k < min(A.mt, A.nt) && n < A.nt) {
next_n = n; next_m = m; next_k = k;

next_m++;
if (next_-m == A.mt) {
next_n += PLASMA_SIZE;
while (next_n >= A.nt && next_k < min(A.mt, A.nt)) {
next_k++; next_n = next_n-A.nt+next_k;} next_m = next_k;
}
if (n == k)
if (m == k) |
ss_cond_wait(k, k, k-1);
CORE_zgetrf( k == A.mt-1 ? Am-k*A.nb: A.nb, k == A.nt-1 ? A.n-k*A.nb : A.nb, L.mb,
A(k, k), A.nb, IPIV(k, k), &iinfo);
if (PLASMA_INFO == 0 && iinfo > 0 && m == A.mt-1)
PLASMA_INFO = iinfo + A.nb*k;
ss_cond_set(k, k, k);
} else {
ss_cond_wait(m, k, k-1);
CORE_ztstrf( m == Amt-1 ? Am-m*A.nb : A.nb, k == A.nt-1 ? A.n-k*A.nb : A.nb, L.mb, A.nb,
A(k, k), A.nb, A(m, k), A.nb, L(m, k), L.mb, IPIV(m, k), work, L.nb, &iinfo);
if (PLASMA_INFO == 0 && iinfo > 0 && m == A.mt-1)
PLASMAL_INFO = iinfo + A.nb*k;
ss_cond_set(m, k, k);
}
} else {
if (m==k) {
ss_cond_wait(k, k, k);
ss_cond_wait(k, n, k-1);
CORE_zgessm( k == A.mt-1 ? Am-k*A.nb: A.nb, n == A.nt-1 ? A.n-n*A.nb : A.nb, A.nb, L.mb,
IPIV(k, k), A(k, k), A.nb, A(k, n), A.nb);
} else {
ss_cond_wait(m, k, k);
ss_cond_wait(m, n, k-1);
CORE_zssssm( A.nb, m == Amt-1 ? Am-m*A.nb: Anb, n == A.nt-1 ? A.n-n*A.nb : A.nb, L.mb, A.nb,
A(k, n), A.nb, A(m, n), A.nb, L(m, k), L.mb, A(m, k), A.nb, IPIV(m, k));
ss_cond_set(m, n, k);
}
}
n = next_n; m = next_m; k = next_k;
}
plasma_private_free(plasma, work);
ss_finalize();

}

Figure 6: Factorization for multicore execution using the SPMD programming model with static scheduling of
work (C code).
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#define A(m,n) &((PLASMA_Complex64_t*)A.mat)[A.bsiz*(m)+A.bsiz*A.lmt*(n)]
#define L(m,n) &((PLASMA_Complex64_t*)L.mat)[L.bsiz*(m)+L.bsiz*L.lmt*(n)]

#define IPIV(m,n) &IPIV[A.nb*(m)+A.nb*A.lmt*(n)]

void plasma_pdgetrf_quark(PLASMA_desc A, PLASMA _desc L, int *IPIV) {

plasma.context_t *plasma;

Quark_Task_Flags task-flags = Quark_Task_Flags_Initializer;

intk, m, n;

int ldak, ldam;

int tempkm, tempkn, tempmm, tempnn;

int ib = PLASMAL_IB;

plasma = plasma_context_self();

for (k = 0; k < min(A.mt, A.nt); k++) {
tempkm = k == Amt-1 ? Am-k*A.mb : A.mb;
tempkn = k == A.nt-1 ? A.n-k*A.nb : A.nb;
ldak = BLKLDD(A, k);

QUARK _Insert_task( plasma->quark, CORE_dgetrf_incpiv, &task_flags,

sizeof(int), tempkm, VALUE,
sizeof(int), tempkn, VALUE,
sizeof(int), ib, VALUE,
sizeof(int), L.nb, VALUE,
sizeof(double)*A.mb*A.nb, A(k, k), INOUT | LOCALITY,
sizeof(int), ldak, VALUE,
sizeof(int)*A.mb, IPIV(k, k), OUTPUT,
sizeof(int), k == A.mt-1, VALUE,
sizeof(int), A.nb*k, VALUE,
0);

for (n =k+1; n < A.nt; n++) {
tempnn =n ==A.nt-1 ? An-n*A.nb: A.nb;

QUARK _Insert_Task( plasma->quark, CORE_dgessm, &task_flags,

sizeof(int), tempkm, VALUE,
sizeof(int), tempnn, VALUE,
sizeof(int), tempkm, VALUE,
sizeof(int), ib, VALUE,
sizeof(int),  L.nb, VALUE,
sizeof(int)*A.mb, IPIV(k, k), INPUT,
sizeof(double)*A.mb*A.nb, A(k, k), NODEP,
sizeof(int), ldak, VALUE,
sizeof(double)*A.mb*A.nb, A(k, n), INOUT | LOCALITY,
sizeof(int),  ldak, VALUE,
0);
}
for (m =k+1; m < A.mt; m++) {
tempmm =m == Amt-1 ? Am-m*A.mb : A.mb;
ldam = BLKLDD(A, m);

QUARK _Insert_Task( plasma->quark, CORE _dtstrf, &task_flags,

sizeof(int), tempmm, VALUE,
sizeof(int),  tempkn, VALUE,
sizeof(int), ib, VALUE,
sizeof(int), L.nb, VALUE,
sizeof(double)*A.mb*A.nb, A(k, k), INOUT | LOCALITY,
sizeof(int),  ldak, VALUE,
sizeof(double)*A.mb*A.nb, A(m, k), INOUT,
sizeof(int),  ldam, VALUE,
sizeof(int)*L.mb*L.nb, L(m, k), OUTPUT,
sizeof(int), L.mb, VALUE,
sizeof(int)*A.mb, IPIV(m, k), OUTPUT,
sizeof(double)*L.mb*L.nb, NULL, SCRATCH,
sizeof(int), ~m ==A.mt-1, VALUE,
sizeof(int), A.nb*k, VALUE,

0);
for (n = k+1; n < Ant; n++) {

tempnn =n ==A.nt-1 ? An-n*A.nb : A.nb;

QUARK _ Insert_Task( plasma->quark, CORE_dssssm, &task-flags,

sizeof(int) A.nb, VALUE,
int), tempnn, VALUE,
int), tempmm, VALUE,
int), tempnn, VALUE,
int), A.nb, VALUE,
int), ib, VALUE,
sizeof(int), L.nb, VALUE,

sizeof(double)*A.mb*A.nb, A(k, n), INOUT | LOCALITY,

sizeof(double)*A.mb*A.nb, A(m, n), INOUT,

sizeof(int), ldam, VALUE,

sizeof(int),  L(m, k), INPUT,

sizeof(int), L.mb, VALUE,
sizeof(double)*A.mb*A.nb, A(m, k), INPUT,
sizeof(int), ldam, VALUE,

sizeof]
0);
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Figure 7: Factorization for multicore execution using dynamic task scheduling (C code).
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