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Abstract—Graphics Processing Units (GPUs) have been seeing
widespread adoption in the field of scientific computing, owing to
the performance gains provided on computation-intensive appli-
cations. In this paper, we present the design and implementation
of a Hessenberg reduction algorithm immune to simultaneous
soft-errors, capable of taking advantage of hybrid GPU-CPU
platforms. These soft-errors are detected and corrected on the
fly, preventing the propagation of the error to the rest of the data.
Our design is at the intersection between several fault tolerant
techniques and employs the algorithm-based fault tolerance
technique, diskless checkpointing, and reverse computation to
achieve its goal. By utilizing the idle time of the CPUs, and by
overlapping both host-side and GPU-side workloads, we minimize
the resilience overhead. Experimental results have validated our
design decisions as our algorithm introduced less than 2%
performance overhead compared to the optimized, but fault-
prone, hybrid Hessenberg reduction.

1. INTRODUCTION

A transient error is an error in a signal or data element
which is temporary, and caused by factors other than permanent
component failures. Many phenomena have been blamed for
transient errors, ranging from alpha particles from package
decay, to cosmic rays and thermal neutrons. Cosmic rays were
shown to be the most prevalent source of transient errors among
these sources [1]. While transient errors may happen at different
levels in the hardware hierarchy, such as communication links or
digital logic, the most common situation is in the semiconductor
storage.

Both GPUs and traditional CPUs, and their associated
memory, are prone to transient errors. CPU designs increasingly
scale the number of cores and the memory hierarchies in
order to provide more processing ability. Along with increasing
transistor density, newer CPU designs also adopt faster clock
frequency and lower voltage. More transistors per unit area
means the size of each transistor gets smaller. A smaller
feature size, combined with lower voltage to maintain transistor
states, makes the transistor state easier to change, and therefore
more vulnerable to external factors that might change the
state. The critical charge Qcit, which is the lowest electron
charge needed to change the logical level, decreases as the chip
feature size decreases. Higher transistor density also causes
higher heat density which brings more thermal neutrons which
contribute to transient errors as well. General Purpose Graphics
Processing Units (GPGPUs) are gaining popularity in the
scientific computing community due to the sizable acceleration
they provide to computation intensive applications. A significant
percentage of the acceleration is due to the large amount of data
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processing transistors inside the GPGPUs, where the number
of transistors follow a even more drastic increase than in the
CPU. As the evolution of the conventional processors and
accelerators follows similar trends, the presence and frequency
of transient errors have comparable progression and identical
effect, becoming a disturbance to application developers.

Transient errors are also becoming a challenge for the
applications. Both CPU main memory and GPU memory are
DRAMs (Dynamic Random-access Memory). Baumann [2]
reported that the soft error rate (SER)! of DRAM is between
1k FIT/chip to 10K FIT/chip range, and stays at the same
level over 7 generations of DRAMs. Similarly, Jacob et al. [3]
reported that at the 130 nm process SRAM memory exhibits a
100k FIT/chip. Michalak et al. [4] reported that the ASC Q
supercomputer at Los Alamos National Laboratory experienced
an average of 51.7 soft errors per week over a period of 7 weeks
from September 2004 to October 2004. More recently, Haque
et al. [5] assessed the probability of soft errors in NVIDIA
GPUs using a benchmark called MemtestG80. They ran the test
on 50000 GPUs and found that about 60% of the GPUs have
a soft error probability (per test iteration) higher than 107>
and a large population with a mean of 2 x 107>, ECC memory
can protect data from being corrupted, but ECC incurs high
storage overhead. It is beneficial to explore alternative methods
to protect application data which as low storage overhead.

It goes without saying that science is based on facts and
on experiments that can be replicated and results that can
be trusted and verified. A single soft error can have a major
impact on the outcome of any computation as it can drastically
alter the results, and thus the understanding of the analyzed
phenomenon. In the extremely volatile execution environments
we will encounter in the very near future, it is critical that
the pillar of scientific applications, the notion of trust in the
scientific outcome, is not undermined. This requires the data
and the result to be carefully validated to ensure it matches the
experiment, and it has not been altered during the computational
phase. Ensuring this property is a difficult task if we are
bound to generic methodologies. Fortunately, some of the most
widely used algorithms have inherently properties that can be
advantageously exploited in fulfilling this need.

In this paper, we design and implement a soft error resilient
Hessenberg reduction algorithm for GPU enabled hybrid
architectures. We take advantage of diskless checkpointing,

'The measurement unit of (SER) is Failure in time (FIT), and one FIT is
one soft error in 10° device hours.
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ABFT, and reverse computation techniques to achieve soft
error resilience while introducing very little overhead compared
to the non fault tolerant Hessenberg reduction. We further
minimize the overhead by carefully overlapping workloads on
the host side and the GPU side. Unlike the post-processing
scheme for LU and QR in [6], [7], [8], our algorithm detects
soft errors at the end of each iteration. Once detected, the
errors are corrected right away, preventing the errors from
propagating and contaminating other matrix elements. While
the above mentioned post-processing scheme can only correct
up to two soft errors total during the course of the entire LU
or QR factorization, our fault tolerant Hessenberg algorithm
can detect and correct more than one simultaneous soft error,
assuming that the error positions in the matrix do not form a
rectangle. Once the algorithm has corrected the simultaneous
errors, it continues as normal and is ready to detect and correct
subsequent soft errors as they occur.

The remainder of the paper is organized as follows: in
Section II we survey related work, then in Section III we
explain the Hessenberg reduction algorithm and its implemen-
tation in the MAGMA framework. Section IV describes our
soft error resilient hybrid Hessenberg reduction algorithm in
detail. Section V gives a formal analysis on the performance
overhead of the fault tolerant algorithm. Section VI presents the
experiment results of the algorithm and provides a theoretical
analysis for the performance. Section VII summarizes our
work.

II. RELATED WORK

Plank et al. [9] presented a fault tolerant technique based
on checksum and reverse computation for matrix computations
on networks of workstations (NOWSs). Their scheme tackles
node failures instead of soft errors. A checksum of each
processor’s local matrix data is stored in main memory and
regenerated periodically. When a node failure happens, the live
processors reverse the computations that occurred after the
failure so that the matrix data and the checksum are consistent
with each other. Then the lost data on the failed processor
are recovered using the checksum and the data on the live
processors. Chen and Abraham [10] devised methods to detect
and locate faulty processors in the computation of eigenvalues
and singular values on systolic arrays. Their methods take the
special properties of eigenvalue computation and singular value
computation into consideration to make the detection of errors
very efficient.

While the field of fault tolerance was dominated for years
by solutions to address hard errors, with the increase in the
number of computing components, the impact of soft errors has
attracted significant attention, especially in linear algebra. Based
on the ABFT idea [11], [12], [13], Du et al. [6], [7] proposed
an algorithm to tolerate soft errors in the High Performance
LINPACK Benchmark (HPL) [14]. Their approach can compute
the correct solution vector to Ax = b in the presence of one
or two soft errors over the course of the factorization. Du et
al. [8] also designed a scheme to tolerate soft errors in the
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QR factorization on hybrid systems with GPGPUs. At most,
one soft error can be tolerated in this fault tolerant hybrid
QR algorithm. Both the HPL fault tolerant scheme and QR
fault tolerant scheme adopt a post processing approach in
which the erroneous result is corrected through post processing
after the regular factorization. Bronevetsky and Supinski [15]
studied the impact of soft errors on iterative linear algebra
methods. They found that iterative methods are vulnerable to
soft errors as well and exhibit poor soft error detection abilities.
Shantharam et al. [16] analyzed the propagation pattern of
soft errors in iterative methods by modeling the iterative
process with a sequence of sparse matrix-vector multiplication
(SpMV) operations. Shantharam et al. [17] proposed a soft
error tolerant preconditioned conjugate gradient algorithm for
sparse linear systems. Their method adapted the algorithm
based fault tolerance technique to sparse linear systems and
achieved an overhead of 11.3% when no soft error occurs.
Chen and Abraham [10] designed a concurrent error detection
scheme for transient errors in the computation of eigenvalues
on systolic processor arrays using the QR algorithm [18], [19]
(not to be confused with the QR factorization). Cao et al. [20]
designed a soft error resilient task-based runtime with three
options to achieve fault tolerance.

Plank et al. [21] first introduced the idea of diskless
checkpointing which eliminates the disk access bottleneck
in the traditional checkpointing technique. In the traditional
checkpointing technique, checkpoints are stored to secondary
stable memory, usually in the form of hard drives. Since disk
accesses are very slow compared to floating point computation,
frequently writing checkpoints to disk incurs a big overhead.
With diskless checkpoint, the checkpoints are stored in main
memory instead of hard disk. Main memory access is much
faster than hard drive access, so diskless checkpointing can
greatly reduce the memory access overhead.

The Matrix Algebra on GPU and Multicore Architectures
project (MAGMA) [22] is a dense linear algebra library for
hybrid architectures with GPUs. The library provides equivalent
functionalities to LAPACK [23] and uses block algorithms
similar to those of LAPACK. By scheduling workloads with
different characteristics to CPUs and GPUs, the hybrid al-
gorithms are able to take advantage of both computational
units and gain considerable acceleration over their LAPACK
counterparts. The hybrid Hessenberg reduction algorithm in
MAGMA also utilizes both CPUs and GPUs in a hybrid system.
This hybrid algorithm is adapted from the LAPACK algorithm
in order to separate workloads which are more suitable for
GPUs from workloads that are suitable for CPUs. Details of
this hybrid algorithm will be explained in the next section.

III. HESSENBERG REDUCTION ACCELERATED WITH GPU

In this section, we describe the Hessenberg reduction
algorithm and its variation as implemented in MAGMA.



A. The Unblocked Hessenberg Reduction

A square matrix H in which all entries below the first
subdiagonal are zeros is said to be in upper Hessenberg matrix
form. Reduction of a square matrix A to the Hessenberg form
H is an important intermediate step in the Hessenberg QR
algorithm which is used to compute the eigenvalues of A.
Given a square matrix A, we apply a sequence of orthogonal
similarity transformations Q; to A:

H=0,'0.'---0,'0{'"4010> - 04-10n
let Q = Q102 Qn-1Qn, we have:
H=0"'140 =0T AQ.

Q; is chosen to be the Householder reflector, which eliminates
the elements below the first subdiagonal in the i-th column of

207 AQ - Qi
B. The Blocked Hessenberg Reduction

The speed of the unblocked Hessenberg reduction algorithm
on modern computers is constrained by the latency of memory
accesses. The blocked Hessenberg reduction algorithm [24]
greatly increased the arithmetic intensity by grouping nb
Householder reflectors and applying the group to A at the
same time.

Ui =0102++ Qnp =1 - VTV

where [ is the identity matrix, V' is an N X nb matrix composed
of the Householder vectors, and T is an nbxnb upper triangular
matrix. This representation of Uj is called the compact WY
representation [25]. This representation requires less storage to
store U; and enables the use of matrix-matrix multiplications
in the factorization. Matrix-matrix multiplications are desirable
because of their high arithmetic intensity and efficient imple-
mentation on modern computers with hierarchical memory
systems. Algorithm 1 shows the blocked Hessenberg reduction
algorithm as implemented in the LAPACK DGEHRD routine.
trail(A) means the trailing submatrix in that iteration.

Algorithm 1 Blocked Hessenberg Reduction

for i from 1 to I'IIIV—b'I do
DLAHRD, return V, T and Y where Y = AVT
DGEMM: trail(A) = trail(A) = YVT
DLARFB: trail(A) = trail(A) — VT TV trail (A)
end for

1:
2
3:
4
5:

C. Hessenberg Reduction in MAGMA

The hybrid Hessenberg reduction algorithm in MAGMA is
an adapted version of Algorithm 1. Algorithm 2 shows the
pseudocode for the hybrid Hessenberg reduction algorithm [26].
The input matrix A is stored in LAPACK layout, and matrix
elements are stored contiguously in column major format. The
matrix is logically divided into block columns, each block
column is of size N X nb. Upon completion, the matrix entries
below the first subdiagonal are overwritten with the final Q
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matrix and the upper part of the matrix is overwritten with the
final H matrix. The hybrid algorithm executes all the updates
to the trailing matrix on the GPU. The panel factorization is
assigned to the CPU, and the next panel to be factorized is
transfered back to the host when both the right update and left
update from the previous panel have been applied to it. Line 6
is an asynchronous data transfer, and control is returned to
the CPU immediately after the data transfer is issued so that
the CPU can initiate the next computation kernel. GPUs are
able to do computation in parallel with communication, and
using asynchronous data transfer hides the time cost to transfer
the upper part of the current panel back to the CPU when it
is updated and will not be modified again. The two lines in
Algorithm 2, shown in red, are overlapped with each other.

Figure 1 visually illustrates one iteration of Algorithm 2; the
computation routine called in each step and the data it operates
on are pointed out with a black box. Figure 1(a) shows the
state at the beginning of this iteration. The matrix elements
in the yellow triangle and in the green trapezoid are the final
results of the Q matrix and the H matrix, and they reside on
the host side and will not be modified again. The red rectangle
is the trailing matrix which will be factorized and updated in
this iteration. The first nb columns of the red part are called
a panel which will be factorized next. Figure 1(b) shows the
panel factorization DLAHRD which factorizes the lower part
of the current panel. The yellow upper triangular matrix is
updated and contains the final results of H. The green trapezoid
contains the Householder vectors which are the final results
in the Q matrix. Upon completion of DLAHRD, both the
yellow triangle and the green trapezoid are on the host side.
Figure 1(c) shows the right update on M. M is the part of the
matrix marked by the black box which consists of the upper
part of the current panel and the upper part of the trailing
matrix. This step corresponds to line 5 of Algorithm 2. Upon
completion of this step, the nb X nb square matrix in yellow
contains the final results of H, and it will not be modified
again. This square matrix is sent back to the host side with an
asynchronous data transfer. Figure 1(d) shows the right update
to G. The G matrix is the lower part of the trailing matrix
marked by the black box. In Figure 1(e) the left update to G is
applied through the DLARFB call. After the DLARFB call,
the matrix A has a smaller trailing matrix to be factorized in
the next iteration. Figure 1(f) shows the state of the matrix at
the end of this iteration. The rectangular matrix in red is the
trailing matrix.

IV. SOFT ERROR RESILIENT HESSENBERG REDUCTION ALGORITHM
A. Failure Model

In this work, we consider soft errors, which are temporary
faults in the data matrix, where the factorization is oblivious
to the error and continues as usual. Without loss of generality,
we assume only one error happens at a single point in time.

In the MAGMA Hessenberg reduction algorithm, both the
CPU and GPU carry out computation. The CPU is responsible
for the panel factorization, and the GPU is responsible for



Algorithm 2 Hybrid Hessenberg Reduction
1: Transfer matrix: A on the host — d_A on the GPU
2: for i from 1 to [2-] do

3:  Send the lower part of the next panel P to the host.

4.  MAGMA_DLAHR2, return V, T and Y
where Y = [P,G|VT

5. DGEMM: M =M - MVTVT™

6:  Send the leftmost nb columns of M to the host asyn-
chronously.

7. DGEMM: G=G-YV"

8:  DLARFB: trail(A) = trail(A) — VTV trail (A)

9: end for

(a) Beginning of iteration  (b) Factorize the panel P

(c) Right update to M (d) Right update to G

(e) Left update to G
Fig. 1. One iteration of DGEHRD

(f) End of iteration

the trailing matrix update. Both the CPU memory and GPU
memory contain part of the final result or intermediate data that
are used to compute the final result. The lower triangular matrix
to the left of the current panel on the host side contains part of
the final result of the Q matrix. The upper triangular matrix to
the left of the current panel on the host side contains the final
result of the H matrix. On the GPU, the rectangular matrix to
the right of the current panel contains intermediate data that
will be used to compute Q and H. Soft errors in either one
of these parts will cause the factorization to give an incorrect
result. We need to detect and correct soft errors in both the
CPU memory and the GPU memory. The algorithm we propose
in this work combines the advantage of the ABFT technique
and the diskless checkpointing technique. The algorithm also
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Fig. 2. Propagation pattern of errors at different locations
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uses reverse computation to roll back the program data to a
previous state.

Depending on the location of the soft error, an error has
different impacts on the result of the factorization. Figure 2
shows the impact of a soft error when it happens in three
different locations. In this example, the matrix size N is set
to 158, and the block size is 32. In all three figures, the
soft error is injected when the first iteration has finished,
and the second iteration has not yet started. Figure 2(a) is
the partitioning of the matrix. Each of the following three
figures shows the heat map of the difference matrix between
the error-free result and the result when an error has happened
during the factorization. Black means the difference is 0. Other
colors mean the difference is bigger than 0, with each color
representing a magnitude range. In Figure 2(b), the error occurs
at location (53, 16). This location is marked by an x in region
3 on the left in Figure 2(a). This error does not propagate as
the factorization proceeds. We can see that in the final result
of the factorization there is still only one incorrect element
(shown as the white dot in the upper left part of the matrix).
In Figure 2(c), the error happens at location (31, 127). This
location is marked by an x in region 1 shown in Figure 2(a).
This soft error propagates row-wise, and pollutes the entire
row in H when the factorization completes. In Figure 2(d), the
error occurs at location (63, 127). This location is marked by
an x in region 2, shown in Figure 2(a). An error in this region
causes the most damage among the three scenarios. When the
factorization completes, almost all the elements after column
32 in H are polluted, and many elements after column 32 in
Q are polluted.



B. Encoding the Input Matrix

To recover from an error we need redundant information.
We add redundancy to the input matrix by appending an extra
column at the right side of the matrix, and an extra row at the
bottom of the matrix. An element in the extra column is the
summation of all the elements in the same row in the input
matrix. Similarly, an element in the extra row is the summation
of all the elements in the same column of the original matrix.
Figure 3 shows the initial state of the encoded input matrix.

Column of row checksums

Row of column checksums

Fig. 3. The encoded initial matrix

We define the following notations: A, o is the column of
row checksums on the right side of the original matrix; A. ok
is the row of column checksums at the bottom of the original
matrix. A, is the original matrix appended with A, ;4 on
the right side (re for rowwise encoded). A.. is the original
matrix appended with A, . at the bottom (ce for columnwise
encoded). Ay, is the original matrix appended with both A, .«
and A. ok (fe for fully encoded).

C. The Fault Tolerant Algorithm

In this section, we present and explain our soft error tolerant
Hessenberg reduction algorithm. e is an all one vector: e =
(1,1,---,1,1)T. Algorithm 3 is the pseudocode for the fault
tolerant algorithm.

The input matrix resides on the host side when the algorithm
begins; in Algorithm 3 line 1 sends the input matrix to the GPU.
Line 2 encodes the input matrix to obtain Ag. Starting from
line 3 the algorithm enters a for loop, this for loop iterates
over the block columns of A. In each loop the algorithm first
sends the lower part (the part marked by the black box in
Figure 4(b)) of the next panel to the CPU from the GPU in
line 4. In line 6 and line 7 the algorithm computes the column
checksums for matrix ¥ and matrix V. This procedure requires
two GEMV operations on the GPU. Line 8 applies the right
update to matrix M,,. This line corresponds to Figure 4(c),
and matrix M,, is the matrix marked by the black box in the
figure. Line 9 and line 10 (in red text) overlap with each other.
Line 10 applies the right update to matrix G. This corresponds
to Figure 4(d). Line 11 applies the left update from the panel
to matrix G, and this operation is illustrated in Figure 4(e).

We prove that, after line 11 in Algorithm 3, the column
of row checksums and the row of column checksums are still
valid for the yellow part and the red part in Figure 4(f). The
proof is presented in the next section.
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Algorithm 3 Fault Tolerant Hybrid Hessenberg Reduction
1: Transfer matrix: A on the host —» d_A on the GPU
2: Encode the input matrix, expand it with a checksum column
and a checksum row.
3: for i from 1 to I'rf’—b'l do

4:  Send the lower part of the next panel P to the host.

5:  MAGMA_DLAHR2, return V,T and Y
where Y = [P, G|VT

6:  Obtain Y., by computing the column checksums of Y:
Yok e = trail(A)ep_c -V

7. Obtain V., by computing the column checksums of V:
Vek e =e' -V

8:  DGEMM: M,, = M,, - MVTV,],

9:  Send the leftmost nb columns of M to the host asyn-
chronously.

10  DGEMM: G = Gy — Y.V,

11:  DLAREFB: trail(A), = trail(A)g, — Ve T TV trail(A)

12:  Compute Sy, = X, Ape(i) and See = Y Ace(i)

13:  if |S,e — Sce| > threshold then

14: Reverse the last left update and right update.

15: Correct the error.

16:  end if

17: end for

(a) Beginning of iteration (b) Factorize the panel

(c) Right update to M (d) Right update to G

(e) Left update to G
Fig. 4. One iteration of FT_DGEHRD

(f) End of iteration

Line 12 through line 16 check for the existence of a
soft error. The algorithm corrects the error if there is any.



Line 12 computes the summations of the checksum row and
the checksum column. Since they contain checksums of the
same matrix data along different directions, the summation of
each vector should equal each other. Taking rounding errors

into consideration, we check the difference against a threshold.

If the difference exceeds the threshold, we consider an error
has happened. The threshold should be big enough to tolerate
roundoff errors, at the same time it should be small enough
to avoid false negatives. A proper choice of the threshold is
a value larger than the machine epsilon by 2 to 3 orders of
magnitude. At this point the soft error in the matrix element
has propagated to both the checksum column and the checksum
row, the checksums are not valid any more. Line 14 reverses the
last left update and the last right update so that the checksum
column and the checksum row, together with the matrix data,

are restored to their states at the end of the previous iteration.

The checksum relationship is made valid again. The reverse
computation is possible because the intermediate data used to
apply the last last left update and right update are still available
at the end of the iteration. They will not be destroyed until the
next panel factorization. The algorithm then enters the recovery
procedure.

D. The Checksum Relationship
In this section, we prove the following theorem:

Theorem 1. The checksum column on the right of matrix A
and the checksum row at the bottom of matrix A are valid at
the end of each iteration.

Proof. 1) The checksum column and the checksum row are
valid after line 2 since they are newly computed.
2) The checksum column and the checksum row are valid
after the right update to the trailing matrix.
A v
Ap = A [A] vr [V]

[ A Ae] [AVIVT  AVIVTe

“leTA 0 eTAVTVT eTAVTV e

| (A= AVTVT) (A-AVTV e
eT(A-AVTVT) *

3) The checksum column and the checksum row are valid
after the left update to the checksum.

_ 14 TyT
Ap = Ap — [ETV] TTVT[A Ae]
_| A Ae| VTTVTA VTTVT Ae
“leTA 0 e"VTTVTA e"VTTVT Ae
| (A=-VTTVTA) (A-VTTVTA)e
T eT(A-VTTVTA) *
4) According to Mathematical Induction, the checksum row

and the checksum column are valid at the end of each
iteration.

Fig. 5. Maintaining the checksums for Q
E. Protecting Q

The Q matrix contains the Householder vectors which
were used to apply the similarity transformations to A. These
Householder vectors are not protected by the checksums
that encode the H matrix, we should provide protection for
Q through other schemes. These Householder vectors are
generated on the host side and stay there until the entire
factorization finishes. They are not modified after they are
generated. Moreover, they are not even read after the iteration
in which they were generated finishes. Hence, it suffices to
maintain a checksum for each row in order to correct an error.
But just like the situation in detecting a soft error in H, we need
both a checksum row and a checksum column to determine both
the error column index j and error row index i. We keep the
checksums for Q on the host. O, i is the rowwise checksum
vector, and Q. . is the columnwise checksum vector.

Figure 5 shows the process for generating and updating the
checksums for the Q matrix. The dashed line on the left of the
matrix is the column of row checksums for Q. When a new
panel factorization is finished as the one shown in Figure 5, we
compute the row checksums for the newly finished panel. Then
the partial checksums for the panel are applied to the dashed
line on the left so that the dashed line protects the entire green
part. The dashed line at the bottom of the matrix is the row
of column checksums for Q. This vector is computed segment
by segment. When a new panel factorization is done on an nb
wide panel, an nb long segment of the column checksums is
also generated. The solid line segment at the bottom of the
panel in Figure 5 is the newly generated column checksum
segment for Q. This segment is never changed once generated.

Our algorithm overlaps the checksum generation for Q with
the update to the trailing matrix on the GPU. The checksum
generation involves two GEMV operations. GEMV is a level
2 BLAS operation which is a memory bound operation. We
choose to perform the checksum generation on the CPU while
the GPU is updating the trailing matrix. The CPU is idle in the
non-fault tolerant MAGMA Hessenberg reduction algorithm,
and our arrangement hides the time cost of the checksum
generation.

F. Recovery

Once we have detected a soft error, we first determine the
row index and the column index of the soft error before we
can correct the error. We recalculate a checksum column A; chk
and a checksum row A/ . of the current matrix (the yellow
part and the red part in Figure 4(f)). Then we compare A’

r_chk



and A, o, and the error row index i can be determined if
A; o) # Ar_cni(§). Similarly, the error column index j can
be determined by comparing Aé o and Ac_cnk.

The erroneous element can be corrected using the formula
AG, j) = Ar_gu() = 7 AG, k) or the formula AG, j) =
Ac () = DEEPT Ak, ).

Since a soft error in the Q matrix does not propagate, we
only examine the checksum relationship once, at the end of
the factorization. The error detection and correction scheme is
similar to those for the H matrix, except that it is carried out
once at the end of the entire factorization instead of once per
iteration.

V. PERFORMANCE EVALUATION

In this section, we give a formal analysis for the overhead
of our fault tolerant Hessenberg reduction algorithm. The
fault tolerant Hessenberg reduction algorithm performs extra
floating point operations and extra data transfers between
the host and the GPU in addition to those in the original
MAGMA Hessenberg reduction. The fault tolerant algorithm
also consumes extra storage to keep data redundancy. So,
we evaluate the overhead in terms of extra FLOPS, extra
communication, and extra storage. We denote the matrix
dimension as N, the block size as nb, and the amount of
floating point operations as FLOP.

After the algorithm transfers the input matrix to the GPU, the
algorithm computes the global row checksums and the column
checksums for the input matrix. This involves two DGEMV
operations on the GPU: A, . = Ae and A, o = e A. The
amount of floating operations:

FLOP;i; =2N(N + N — 1) =4N? — 2N.

In every iteration, the algorithm computes column checksums
for matrix V. In the i-th iteration, the dimension of matrix V is
(N —nb-i)-nb. The accumulated FLOP count over the course
of the factorization is:
N /nb-1
FLOPggy= ) nb-(N=nb-i+N—nb-i~1)
i=0
= O(N?).

The amount of floating point operations applied on the right
hand side checksums is:
N /nb-1
FLOP, gy = Z {(N=nb-i)- (nb+nb-1)
i=0
+N-(mb+nb—1)+nb-[(N—nb-i)+ (N —nb-i)—1]}
= O(N?).

The amount of floating point operations applied on the bottom
checksums is:
N /nb—1
FLOP: g = ) [(N =nb-i)(nb+nb-1)
i=0
+ (N —nb-i)(nb +nb—-1)] = O(N?).

The amount of floating point operations spent on intermediate
results used by both row and column checksums is:

N /nb—-1
FLOPcommon = Y nb- (nb+nb—1) = O(N).
i=0
The computation cost to detect the error in Algorithm 3 requires
two dot product operations, one for the summation of the
row checksums, and one for the summation of the column
checksums. The total cost is given by:

N /nb-1
FLOPp = Z 2(N+N—-1) = O(N?).
i=0
Adding all these together we get the total amount of extra

floating point operations performed by the fault tolerant
algorithm:

FLOP oxyq = FLOPyyt + FLOP iy + FLOPLchk

+ FLOP.. i + FLOP tomon + FLOPp = O(N?).
The computation complexity of the Hessenberg reduction is
FLOP,;s ~ 10/3N 3. so when there is no errors, the overhead

of the fault tolerant Hessenberg reduction in terms of FLOP
percentage is:

FLOP,;; O(N*) 3 .
Overhead = = =—O(N").
Ve = O Poa ~ 10387~ 1000 )

When N increases the overhead tends to: 0.

In order to locate the error, a vector of new row checksums
and a vector of new column checksums need to be computed
on the matrix consisting of the yellow part and the red part in
Figure 2(a). The cost is given by:

FLOP, =2N(N + N — 1) = 4N* - 2N.
To correct the error requires a dot product and a subtraction:
FLOPc=N-2+1=N-1.

After an error has been detected, the algorithm performs a roll
back by reverse update, which includes a reverse left update
and a reverse right update. Then the pre-factorized panel is
retrieved from the buffer, and the entire iteration is repeated
after the error correction. The amount of overhead is a function
of the size of the trailing matrix. Assume the error occurred
in the j-th iteration, and we have:
FLOPredo = FLOPrepeat + FLOPpanel
~N-(N—-j-nb)y2nb-1)+
(N—j-nb) - (N—j-nby2nb-1)
+(N—j-nb)-nb-[(N—-j-nb)+ (N—j-nb)-1]
+(N—j-nb)-nb-(nb+nb-1)
= O(N?).

Compared with the computation cost of the original Hessen-
berg reduction, the extra FLOP introduced by the fault tolerant
algorithm is very low. It tends to O when n increases.
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TABLE I
DETAILED SPECIFICATION OF THE TEST PLATFORM.

CPU GPU
Processor model  Intel Xeon E5-2670  NVIDIA Tesla K40c
Clock frequency 2.6 GHz 745 MHz
Memory 62 GB 11.5 GB
Peak DP 10.4 Gflop/s 1.43 Tflop/s
BLAS/LAPACK Intel MKL 11.2 CUBLAS 7.0.28
oS CentOS 6.4 -
Compiler gcc 4.4.7 nvee 7.0 V7.0.27

The storage requirement of the fault tolerant Hessenberg
reduction algorithm consists of a panel worth of work space
for the intermediate result to update the trailing matrix, and
four columns worth of space for the checksums:

S=nb-N+4-N
VI. EXPERIMENTS

In this section, we present the performance of our fault
tolerant algorithm. Our testbed consists of an Intel Sandy
Bridge-EP CPU and an NVIDIA Kepler GPU. The detailed
specifications of the test platform are listed in Table I.

A. Performance Study

As shown in Figure 2(a), during the factorization the matrix
is partitioned in three areas. We analyze the performance
of our algorithm when the soft error occurs in each of
the different areas, at different moments of the factorization.
The Hessenberg reduction algorithm is application agnostic,
different applications may use a different typical matrix size.

Figure 6(a) shows the performance overhead in the case
where the soft error occurs in area 1 (see Figure 2(a)). This
overhead includes setting up and maintaining the checksums,
the reverse update to the trailing matrix, and the re-execution of
the faulty iteration. Among all these costs, the most expensive
step is the panel factorization when re-executing the faulty
iteration. When the error occurs early in the factorization, the
size of the panel which the algorithm re-factorizes is larger,
and the performance overhead is also larger. The gray area in
the figure indicates the range of the overhead depending on
the moment when the single fault is introduced in Area 1. We
can see that the overhead range remains small for all matrix
sizes while the overhead exhibits a decreasing trend as the
matrix size grows; at matrix size 10112 x 10112 the overhead
is less than between 0.47% and 2.1% when one error occurs
in Area 1.

Figure 6(b) shows the performance overhead of the fault
tolerant algorithm when the soft error occurs in area 2 (see
Figure 2(a)). Similar to Figure 6(a), the overhead is dependent
on the moment when the error occurs. It maintains the same
constant range and it exhibits the same decreasing trend as
the matrix size grows. The performance overhead is between
0.61% and 2.15% at matrix size 10112 x 10112.

Figure 6(c) shows the performance overhead of the fault
tolerant algorithm when the soft error occurs in Area 3 (see
Figure 2(a)). In this case we can see that the performance
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overhead is smaller, closely following the overhead of the case
without failures. There are two reasons for this phenomenon:
the error detection and correction are only carried out once
at the end of the factorization, and after an error is detected,
only a dot product is necessary to correct the error. In contrast,
an error in either area 1 or 2 requires a reverse update, a
repeated panel factorization, and a trailing matrix update. We
also observe that the uncertainty interval of the performance
overhead is very small at all matrix sizes. No matter when
the error occurred during the factorization, they are treated at
the end with the same procedure, with the same minimalistic
approach. Therefore they incur the same amount of overhead.
Overall, these results indicate that our approach is a practical
solution to ensure the correctness of the Hessenberg reduction
with minimal overhead, and that this overhead consistently
decreases as the size of the matrix increases.

B. Numerical Stability

In this section, we investigate the numerical behavior of
our fault tolerant Hessenberg algorithm compared with the
non-fault tolerant algorithm.

The block Hessenberg reduction algorithm implemented in
MAGMA is backward stable. The following residual is used
to verify the factorization result:

Lo lA- QHQ' i
NIAlh
where A is the input matrix, and N is the matrix dimension.
Table II shows the comparison of the residuals as obtained
from the original MAGMA non-fault tolerant algorithm and
our fault tolerant algorithm with one soft error.

The three main sections of the table indicate the location of
the error, Area 1, Area 2, or Area 3. In each section, the letter
appended to the name of the column indicates the moment
when the error occurs, B for the beginning of the factorization,
M for the middle, and finally, E for the end of the factorization.
Finally, in the case of Area 3, all columns were collapsed into
a single column as the residuals were identical. We can see
that for every matrix size the residuals from Area 1 and Area
2 are on the same order of magnitude, with minimal variations,
as the original MAGMA algorithm. In some cases, the fault
tolerant algorithm even has a smaller residual than the fault
free original algorithm. When the error was introduced on the
left part of the matrix (i.e., @, in Area 3), the final residuals
are higher than their counterparts in the MAGMA routine, but
they are still within the acceptable range. The extra amount of
error compared with the classic algorithm is introduced by the
encoding/recovery process. In the encoding phase, N elements
(in a row or column) are added together to form one checksum
element. In the recovery phase, N — 1 elements are subtracted
from the checksum element. Both phases are implemented as
dot products. We refer interested readers to [27] for a detailed
discussion of rounding errors in dot products. Overall, these
results are evidence that our fault tolerant Hessenberg reduction
algorithm can successfully correct soft errors without degrading
the stability of the original algorithm.
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Fig. 6. Overhead of FT-Hess. The blue line is the
in a specific area (as described in Figure 2(a)).

(b) Area 2

overhead without failures, while the gray area is

(c) Area 3

the uncertainty interval when one single error is introduced

TABLE I
NUMERICAL STABILITY Al, A2, A3
Matrix Area 1 Area 2 Area 3
Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess B/M/E
1022 | 6.2529x 10718 | 6.2764x 1071 6.2520x 1078 6.2540 x 10718 | 6.2764x 107"  6.2520x 10718 6.2540x 1078 | 3.9780x 10~'6
2046 | 2.6291x 10718 | 2.6552x 10718 2.6502x 107! 2.6276x 107!8 | 2.6552x 107'%  2.6502x 107!  2.6276 x 107'8 | 1.6047 x 1071
3070 | 8.0088 x 10718 | 8.0023 x 10718 7.9987x 10718 8.0066 x 10~!18 | 8.0023 x 10718  7.9987 x 10718 8.0066 x 10718 | 1.9576 x 10715
4030 | 8.4784x 10718 | 8.4697 x 10718 8.4747x 10718  8.4790x 10718 | 8.4697 x 107'8  8.4747x 10718  8.4790x 10718 | 1.9473 x 10~
5182 | 1.2012x 10717 | 1.2024x107'7  1.2008 x 10717 1.2011x 1077 | 1.2024x 107'7  1.2008 x 10717 1.2011x 10717 | 2.5166 x 10713
6014 | 1.5892x 10717 | 1.5881x107'7  1.5891x 1077  1.5892x107'7 | 1.5881x 1077  1.5891x 10717  1.5892x107'7 | 4.3368 x 1071
7038 | 1.9573x 10717 | 1.9580x 10717 1.9571x 10717  1.9571x 10717 | 1.9580x 10717  1.9571x 10717  1.9571x 10717 | 2.6158 x 1074
8062 | 3.7656 x 10718 | 3.7575x 10718 3.7690 x 1018 3.7656 x 10718 | 3.7575x 10718 3.7690 x 10™18  3.7656 x 10718 | 8.9874 x 10717
9086 | 6.3745x 10718 | 6.3814x 10718 6.3736 x 107! 6.3746x 107!8 | 6.3814x 1071  6.3736 x 107! 6.3746x 10718 | 2.2618 x 10714
10110 | 1.7536 x 1077 | 1.7531x 10717 1.7535x 10717 1.7536 x 10717 | 1.7531x 107 1.7535x 10717 1.7536 x 1077 | 2.4302x 10714

C. Orthogonality of Q

In this section, we verify the orthogonality of matrix
Q generated by our fault tolerant algorithm. As explained
in Section IM-A, we have H = QTAQ where Q is an
orthogonal matrix. We use the following residual to examine
the orthogonality of Q:

_ Q™ -1
r= —
N

I is the identity matrix, N is the matrix dimension. Table III
shows the residuals from the non-fault tolerant MAGMA
algorithm and residuals from our fault tolerant algorithm when
one error occurs in different areas and different stages of the
matrix. When the soft-error occurs in Area 1 and Area 2, all
residuals are on the order of 10~!7, which is the same as the
residuals from the MAGMA algorithm. When the soft-error
occurs in Area 3, the residual is higher but still comparable to
the residuals from MAGMA. So the orthogonality of Q is not
damaged after the recovery from an error.

VII. ConcLusioNs AND FUTURE WORK

In this paper, we presented the design and analysis of a
soft error resilient hybrid Hessenberg reduction algorithm,
an algorithm capable of taking advantage of current and
future hybrid architectures to ensure data correctness during
an entire two-sided factorization. This goal is achieved by
an attentive combination of the strengths of ABFT and
diskless checkpointing to maintain data redundancy during the
factorization. From an algorithmic perspective, our algorithm
detects the soft errors on-line and corrects them before they
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have the opportunity to propagate to the rest of the matrix data,
minimizing the cost of the recovery process. In the case of
a soft error, our algorithm carries out a reverse computation
to roll the program data back to a consistent state and then
corrects the soft error. The overhead of our approach is very
low since it mainly utilizes extra computation to detect and
correct the error, and the amount of extra memory necessary
for the checksum is minimal. The performance overhead of
our fault tolerant algorithm compared to the non-fault tolerant
MAGMA Hessenberg reduction reaches 0.56% when no errors
occur, and reaches 0.61% when one error occurs. Another
important capability of our fault tolerant algorithm is that it can
detect and correct more than one consecutive error, making it a
potential candidate for highly volatile environments. Moreover,
the methodology highlighted in this paper is generic enough to
be applicable to the entire spectrum of two-sided factorizations,
as well as other similar algorithms. This applicability is on
our list of things to explore in the near term as we plan to
provide soft error resilience for the rest of the hybrid two-sided
factorizations in MAGMA.
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TABLE III
ORTHOGONALITY OF Q Al, A2, A3

Matrix Area 1 Area 2 Area 3
Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess
1022 3.65x 10717 | 3.80x 10717 3.41x1077  3.36x107'7 | 3.64x 10717  3.46x 1077  3.35x 1077 | 6.84x 1076
2046 3.72x 10717 | 3.61x 10717 3.71x 1077 3.65%x 10717 | 3.53x 10717 3.64x 10717  3.64x 10717 | 2.76x 10715
3070 3.62x 10717 | 3.40x 10717 3.57x 1077 3.63x 10717 | 4.61x107'7  3.63x107'7  3.65x107'7 | 3.31x 10715
4030 3.75x 10717 | 3.40x 10717 3.75x1077  3.75%x 10717 | 3.98x 1077 3.81x 10717 3.77x10717 | 3.28 x 1074
5182 4.59% 10717 | 3.78x 10717 3.63x 10717 3.61x1077 | 3.92x 10717 3.62x10"7 3.62x 10717 | 4.19x 1071
6014 3.74%x 1077 | 3.71x 10717 3.63x 1077 3.62x 10717 | 3.89x 10717  3.60x 107  3.62x 10717 | 7.19x 10715
7038 4.10x 1077 | 4.44%x 10777 4.51x107"7  4.50x 10717 | 4.00x 10717 4.52x 1077 4.51x 1077 | 4.35x 10714
8062 3.64x 10717 | 3.31x10717  3.74x1077  3.74x 1077 | 3.58x 1077 3.77x 1077 3.74x 1077 | 1.49x 1074
9086 3.64x 10717 | 3.75x 10717 4.22x1077  4.22%x 1077 | 4.08x 1077 4.18x 10717 4.22x 1077 | 3.71x 1074
10110 436x10717 | 42010717 4.32x10717  4.29x10717 | 4.15%x 10717 4.30%x 10717 4.29%x 10717 | 4.05x 10714
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