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Abstract—Graphics Processing Units (GPUs) have been seeing
widespread adoption in the field of scientific computing, owing to
the performance gains provided on computation-intensive appli-
cations. In this paper, we present the design and implementation
of a Hessenberg reduction algorithm immune to simultaneous
soft-errors, capable of taking advantage of hybrid GPU-CPU
platforms. These soft-errors are detected and corrected on the
fly, preventing the propagation of the error to the rest of the data.
Our design is at the intersection between several fault tolerant
techniques and employs the algorithm-based fault tolerance
technique, diskless checkpointing, and reverse computation to
achieve its goal. By utilizing the idle time of the CPUs, and by
overlapping both host-side and GPU-side workloads, we minimize
the resilience overhead. Experimental results have validated our
design decisions as our algorithm introduced less than 2%
performance overhead compared to the optimized, but fault-
prone, hybrid Hessenberg reduction.

I. Introduction

A transient error is an error in a signal or data element

which is temporary, and caused by factors other than permanent

component failures. Many phenomena have been blamed for

transient errors, ranging from alpha particles from package

decay, to cosmic rays and thermal neutrons. Cosmic rays were

shown to be the most prevalent source of transient errors among

these sources [1]. While transient errors may happen at different

levels in the hardware hierarchy, such as communication links or

digital logic, the most common situation is in the semiconductor

storage.

Both GPUs and traditional CPUs, and their associated

memory, are prone to transient errors. CPU designs increasingly

scale the number of cores and the memory hierarchies in

order to provide more processing ability. Along with increasing

transistor density, newer CPU designs also adopt faster clock

frequency and lower voltage. More transistors per unit area

means the size of each transistor gets smaller. A smaller

feature size, combined with lower voltage to maintain transistor

states, makes the transistor state easier to change, and therefore

more vulnerable to external factors that might change the

state. The critical charge Qcrit, which is the lowest electron

charge needed to change the logical level, decreases as the chip

feature size decreases. Higher transistor density also causes

higher heat density which brings more thermal neutrons which

contribute to transient errors as well. General Purpose Graphics

Processing Units (GPGPUs) are gaining popularity in the

scientific computing community due to the sizable acceleration

they provide to computation intensive applications. A significant

percentage of the acceleration is due to the large amount of data

processing transistors inside the GPGPUs, where the number

of transistors follow a even more drastic increase than in the

CPU. As the evolution of the conventional processors and

accelerators follows similar trends, the presence and frequency

of transient errors have comparable progression and identical

effect, becoming a disturbance to application developers.

Transient errors are also becoming a challenge for the

applications. Both CPU main memory and GPU memory are

DRAMs (Dynamic Random-access Memory). Baumann [2]

reported that the soft error rate (SER)1 of DRAM is between

1k FIT/chip to 10K FIT/chip range, and stays at the same

level over 7 generations of DRAMs. Similarly, Jacob et al. [3]

reported that at the 130 nm process SRAM memory exhibits a

100k FIT/chip. Michalak et al. [4] reported that the ASC Q

supercomputer at Los Alamos National Laboratory experienced

an average of 51.7 soft errors per week over a period of 7 weeks

from September 2004 to October 2004. More recently, Haque

et al. [5] assessed the probability of soft errors in NVIDIA

GPUs using a benchmark called MemtestG80. They ran the test

on 50000 GPUs and found that about 60% of the GPUs have

a soft error probability (per test iteration) higher than 10−5
and a large population with a mean of 2 × 10−5. ECC memory

can protect data from being corrupted, but ECC incurs high

storage overhead. It is beneficial to explore alternative methods

to protect application data which as low storage overhead.

It goes without saying that science is based on facts and

on experiments that can be replicated and results that can

be trusted and verified. A single soft error can have a major

impact on the outcome of any computation as it can drastically

alter the results, and thus the understanding of the analyzed

phenomenon. In the extremely volatile execution environments

we will encounter in the very near future, it is critical that

the pillar of scientific applications, the notion of trust in the

scientific outcome, is not undermined. This requires the data

and the result to be carefully validated to ensure it matches the

experiment, and it has not been altered during the computational

phase. Ensuring this property is a difficult task if we are

bound to generic methodologies. Fortunately, some of the most

widely used algorithms have inherently properties that can be

advantageously exploited in fulfilling this need.

In this paper, we design and implement a soft error resilient

Hessenberg reduction algorithm for GPU enabled hybrid

architectures. We take advantage of diskless checkpointing,

1The measurement unit of (SER) is Failure in time (FIT), and one FIT is
one soft error in 109 device hours.
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ABFT, and reverse computation techniques to achieve soft

error resilience while introducing very little overhead compared

to the non fault tolerant Hessenberg reduction. We further

minimize the overhead by carefully overlapping workloads on

the host side and the GPU side. Unlike the post-processing

scheme for LU and QR in [6], [7], [8], our algorithm detects

soft errors at the end of each iteration. Once detected, the

errors are corrected right away, preventing the errors from

propagating and contaminating other matrix elements. While

the above mentioned post-processing scheme can only correct

up to two soft errors total during the course of the entire LU

or QR factorization, our fault tolerant Hessenberg algorithm

can detect and correct more than one simultaneous soft error,

assuming that the error positions in the matrix do not form a

rectangle. Once the algorithm has corrected the simultaneous

errors, it continues as normal and is ready to detect and correct

subsequent soft errors as they occur.

The remainder of the paper is organized as follows: in

Section II we survey related work, then in Section III we

explain the Hessenberg reduction algorithm and its implemen-

tation in the MAGMA framework. Section IV describes our

soft error resilient hybrid Hessenberg reduction algorithm in

detail. Section V gives a formal analysis on the performance

overhead of the fault tolerant algorithm. Section VI presents the

experiment results of the algorithm and provides a theoretical

analysis for the performance. Section VII summarizes our

work.

II. Related work

Plank et al. [9] presented a fault tolerant technique based

on checksum and reverse computation for matrix computations

on networks of workstations (NOWs). Their scheme tackles

node failures instead of soft errors. A checksum of each

processor’s local matrix data is stored in main memory and

regenerated periodically. When a node failure happens, the live

processors reverse the computations that occurred after the

failure so that the matrix data and the checksum are consistent

with each other. Then the lost data on the failed processor

are recovered using the checksum and the data on the live

processors. Chen and Abraham [10] devised methods to detect

and locate faulty processors in the computation of eigenvalues

and singular values on systolic arrays. Their methods take the

special properties of eigenvalue computation and singular value

computation into consideration to make the detection of errors

very efficient.

While the field of fault tolerance was dominated for years

by solutions to address hard errors, with the increase in the

number of computing components, the impact of soft errors has

attracted significant attention, especially in linear algebra. Based

on the ABFT idea [11], [12], [13], Du et al. [6], [7] proposed

an algorithm to tolerate soft errors in the High Performance

LINPACK Benchmark (HPL) [14]. Their approach can compute

the correct solution vector to Ax = b in the presence of one

or two soft errors over the course of the factorization. Du et

al. [8] also designed a scheme to tolerate soft errors in the

QR factorization on hybrid systems with GPGPUs. At most,

one soft error can be tolerated in this fault tolerant hybrid

QR algorithm. Both the HPL fault tolerant scheme and QR

fault tolerant scheme adopt a post processing approach in

which the erroneous result is corrected through post processing

after the regular factorization. Bronevetsky and Supinski [15]

studied the impact of soft errors on iterative linear algebra

methods. They found that iterative methods are vulnerable to

soft errors as well and exhibit poor soft error detection abilities.

Shantharam et al. [16] analyzed the propagation pattern of

soft errors in iterative methods by modeling the iterative

process with a sequence of sparse matrix-vector multiplication

(SpMV) operations. Shantharam et al. [17] proposed a soft

error tolerant preconditioned conjugate gradient algorithm for

sparse linear systems. Their method adapted the algorithm

based fault tolerance technique to sparse linear systems and

achieved an overhead of 11.3% when no soft error occurs.

Chen and Abraham [10] designed a concurrent error detection

scheme for transient errors in the computation of eigenvalues

on systolic processor arrays using the QR algorithm [18], [19]

(not to be confused with the QR factorization). Cao et al. [20]

designed a soft error resilient task-based runtime with three

options to achieve fault tolerance.

Plank et al. [21] first introduced the idea of diskless

checkpointing which eliminates the disk access bottleneck

in the traditional checkpointing technique. In the traditional

checkpointing technique, checkpoints are stored to secondary

stable memory, usually in the form of hard drives. Since disk

accesses are very slow compared to floating point computation,

frequently writing checkpoints to disk incurs a big overhead.

With diskless checkpoint, the checkpoints are stored in main

memory instead of hard disk. Main memory access is much

faster than hard drive access, so diskless checkpointing can

greatly reduce the memory access overhead.

The Matrix Algebra on GPU and Multicore Architectures

project (MAGMA) [22] is a dense linear algebra library for

hybrid architectures with GPUs. The library provides equivalent

functionalities to LAPACK [23] and uses block algorithms

similar to those of LAPACK. By scheduling workloads with

different characteristics to CPUs and GPUs, the hybrid al-

gorithms are able to take advantage of both computational

units and gain considerable acceleration over their LAPACK

counterparts. The hybrid Hessenberg reduction algorithm in

MAGMA also utilizes both CPUs and GPUs in a hybrid system.

This hybrid algorithm is adapted from the LAPACK algorithm

in order to separate workloads which are more suitable for

GPUs from workloads that are suitable for CPUs. Details of

this hybrid algorithm will be explained in the next section.

III. Hessenberg reduction accelerated with GPU

In this section, we describe the Hessenberg reduction

algorithm and its variation as implemented in MAGMA.
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A. The Unblocked Hessenberg Reduction

A square matrix H in which all entries below the first

subdiagonal are zeros is said to be in upper Hessenberg matrix

form. Reduction of a square matrix A to the Hessenberg form

H is an important intermediate step in the Hessenberg QR

algorithm which is used to compute the eigenvalues of A.
Given a square matrix A, we apply a sequence of orthogonal
similarity transformations Qi to A:

H = Q−1
n Q−1

n−1 · · ·Q−1
2 Q−1

1 AQ1Q2 · · ·Qn−1Qn

let Q = Q1Q2 · · ·Qn−1Qn , we have:

H = Q−1AQ = QT AQ.

Qi is chosen to be the Householder reflector, which eliminates

the elements below the first subdiagonal in the i-th column of
Q−1

i−1 · · ·Q−1
1

AQ1 · · ·Qi−1.

B. The Blocked Hessenberg Reduction

The speed of the unblocked Hessenberg reduction algorithm

on modern computers is constrained by the latency of memory

accesses. The blocked Hessenberg reduction algorithm [24]

greatly increased the arithmetic intensity by grouping nb
Householder reflectors and applying the group to A at the

same time.

U1 = Q1Q2 · · ·Qnb = I − VTVT

where I is the identity matrix, V is an N ×nb matrix composed
of the Householder vectors, and T is an nb×nb upper triangular
matrix. This representation of U1 is called the compact WY
representation [25]. This representation requires less storage to
store U1 and enables the use of matrix-matrix multiplications

in the factorization. Matrix-matrix multiplications are desirable

because of their high arithmetic intensity and efficient imple-

mentation on modern computers with hierarchical memory

systems. Algorithm 1 shows the blocked Hessenberg reduction

algorithm as implemented in the LAPACK DGEHRD routine.

trail (A) means the trailing submatrix in that iteration.

Algorithm 1 Blocked Hessenberg Reduction

1: for i from 1 to � N
nb � do

2: DLAHRD, return V, T and Y where Y = AVT
3: DGEMM: trail (A) = trail (A) − YV�
4: DLARFB: trail (A) = trail (A) − VT�V�trail (A)
5: end for

C. Hessenberg Reduction in MAGMA

The hybrid Hessenberg reduction algorithm in MAGMA is

an adapted version of Algorithm 1. Algorithm 2 shows the

pseudocode for the hybrid Hessenberg reduction algorithm [26].

The input matrix A is stored in LAPACK layout, and matrix

elements are stored contiguously in column major format. The

matrix is logically divided into block columns, each block

column is of size N × nb. Upon completion, the matrix entries
below the first subdiagonal are overwritten with the final Q

matrix and the upper part of the matrix is overwritten with the

final H matrix. The hybrid algorithm executes all the updates

to the trailing matrix on the GPU. The panel factorization is

assigned to the CPU, and the next panel to be factorized is

transfered back to the host when both the right update and left

update from the previous panel have been applied to it. Line 6

is an asynchronous data transfer, and control is returned to

the CPU immediately after the data transfer is issued so that

the CPU can initiate the next computation kernel. GPUs are

able to do computation in parallel with communication, and

using asynchronous data transfer hides the time cost to transfer

the upper part of the current panel back to the CPU when it

is updated and will not be modified again. The two lines in

Algorithm 2, shown in red, are overlapped with each other.

Figure 1 visually illustrates one iteration of Algorithm 2; the

computation routine called in each step and the data it operates

on are pointed out with a black box. Figure 1(a) shows the

state at the beginning of this iteration. The matrix elements

in the yellow triangle and in the green trapezoid are the final

results of the Q matrix and the H matrix, and they reside on

the host side and will not be modified again. The red rectangle

is the trailing matrix which will be factorized and updated in

this iteration. The first nb columns of the red part are called

a panel which will be factorized next. Figure 1(b) shows the
panel factorization DLAHRD which factorizes the lower part

of the current panel. The yellow upper triangular matrix is

updated and contains the final results of H . The green trapezoid

contains the Householder vectors which are the final results

in the Q matrix. Upon completion of DLAHRD, both the

yellow triangle and the green trapezoid are on the host side.

Figure 1(c) shows the right update on M . M is the part of the

matrix marked by the black box which consists of the upper

part of the current panel and the upper part of the trailing

matrix. This step corresponds to line 5 of Algorithm 2. Upon

completion of this step, the nb × nb square matrix in yellow

contains the final results of H, and it will not be modified

again. This square matrix is sent back to the host side with an

asynchronous data transfer. Figure 1(d) shows the right update

to G. The G matrix is the lower part of the trailing matrix

marked by the black box. In Figure 1(e) the left update to G is

applied through the DLARFB call. After the DLARFB call,

the matrix A has a smaller trailing matrix to be factorized in

the next iteration. Figure 1(f) shows the state of the matrix at

the end of this iteration. The rectangular matrix in red is the

trailing matrix.

IV. Soft error resilient Hessenberg reduction algorithm

A. Failure Model

In this work, we consider soft errors, which are temporary

faults in the data matrix, where the factorization is oblivious

to the error and continues as usual. Without loss of generality,

we assume only one error happens at a single point in time.

In the MAGMA Hessenberg reduction algorithm, both the

CPU and GPU carry out computation. The CPU is responsible

for the panel factorization, and the GPU is responsible for
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Algorithm 2 Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host → d_A on the GPU

2: for i from 1 to � N
nb � do

3: Send the lower part of the next panel P to the host.

4: MAGMA_DLAHR2, return V, T and Y
where Y = [P,G]VT

5: DGEMM: M = M − MVTV�
6: Send the leftmost nb columns of M to the host asyn-

chronously.

7: DGEMM: G = G − YV�
8: DLARFB: trail (A) = trail (A) − VT�V�trail (A)
9: end for

(a) Beginning of iteration

DLAHRD

(b) Factorize the panel P

DLAHRD

DGEMM

(c) Right update to M

DLAHRD

DGEMM

(d) Right update to G

DLAHRD

DLARFB

(e) Left update to G (f) End of iteration

Fig. 1. One iteration of DGEHRD

the trailing matrix update. Both the CPU memory and GPU

memory contain part of the final result or intermediate data that

are used to compute the final result. The lower triangular matrix

to the left of the current panel on the host side contains part of

the final result of the Q matrix. The upper triangular matrix to

the left of the current panel on the host side contains the final

result of the H matrix. On the GPU, the rectangular matrix to

the right of the current panel contains intermediate data that

will be used to compute Q and H. Soft errors in either one
of these parts will cause the factorization to give an incorrect

result. We need to detect and correct soft errors in both the

CPU memory and the GPU memory. The algorithm we propose

in this work combines the advantage of the ABFT technique

and the diskless checkpointing technique. The algorithm also
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(d) Error location (63, 127)

Fig. 2. Propagation pattern of errors at different locations

uses reverse computation to roll back the program data to a

previous state.

Depending on the location of the soft error, an error has

different impacts on the result of the factorization. Figure 2

shows the impact of a soft error when it happens in three

different locations. In this example, the matrix size N is set

to 158, and the block size is 32. In all three figures, the

soft error is injected when the first iteration has finished,

and the second iteration has not yet started. Figure 2(a) is

the partitioning of the matrix. Each of the following three

figures shows the heat map of the difference matrix between

the error-free result and the result when an error has happened

during the factorization. Black means the difference is 0. Other

colors mean the difference is bigger than 0, with each color

representing a magnitude range. In Figure 2(b), the error occurs

at location (53, 16). This location is marked by an x in region
3 on the left in Figure 2(a). This error does not propagate as

the factorization proceeds. We can see that in the final result

of the factorization there is still only one incorrect element

(shown as the white dot in the upper left part of the matrix).

In Figure 2(c), the error happens at location (31, 127). This
location is marked by an x in region 1 shown in Figure 2(a).
This soft error propagates row-wise, and pollutes the entire

row in H when the factorization completes. In Figure 2(d), the

error occurs at location (63, 127). This location is marked by
an x in region 2, shown in Figure 2(a). An error in this region
causes the most damage among the three scenarios. When the

factorization completes, almost all the elements after column

32 in H are polluted, and many elements after column 32 in

Q are polluted.
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B. Encoding the Input Matrix

To recover from an error we need redundant information.

We add redundancy to the input matrix by appending an extra

column at the right side of the matrix, and an extra row at the

bottom of the matrix. An element in the extra column is the

summation of all the elements in the same row in the input

matrix. Similarly, an element in the extra row is the summation

of all the elements in the same column of the original matrix.

Figure 3 shows the initial state of the encoded input matrix.

Column of row checksums

Row of column checksums

Fig. 3. The encoded initial matrix

We define the following notations: Ar_chk is the column of
row checksums on the right side of the original matrix; Ac_chk
is the row of column checksums at the bottom of the original

matrix. Are is the original matrix appended with Ar_chk on

the right side (re for rowwise encoded). Ace is the original
matrix appended with Ac_chk at the bottom (ce for columnwise
encoded). Afe is the original matrix appended with both Ar_chk
and Ac_chk (fe for fully encoded).

C. The Fault Tolerant Algorithm

In this section, we present and explain our soft error tolerant

Hessenberg reduction algorithm. e is an all one vector: e =
(1, 1, · · · , 1, 1)�. Algorithm 3 is the pseudocode for the fault

tolerant algorithm.

The input matrix resides on the host side when the algorithm

begins; in Algorithm 3 line 1 sends the input matrix to the GPU.

Line 2 encodes the input matrix to obtain Afe. Starting from
line 3 the algorithm enters a for loop, this for loop iterates
over the block columns of A. In each loop the algorithm first

sends the lower part (the part marked by the black box in

Figure 4(b)) of the next panel to the CPU from the GPU in

line 4. In line 6 and line 7 the algorithm computes the column

checksums for matrix Y and matrix V . This procedure requires
two GEMV operations on the GPU. Line 8 applies the right

update to matrix Mre. This line corresponds to Figure 4(c),

and matrix Mre is the matrix marked by the black box in the
figure. Line 9 and line 10 (in red text) overlap with each other.

Line 10 applies the right update to matrix G. This corresponds
to Figure 4(d). Line 11 applies the left update from the panel

to matrix G, and this operation is illustrated in Figure 4(e).
We prove that, after line 11 in Algorithm 3, the column

of row checksums and the row of column checksums are still

valid for the yellow part and the red part in Figure 4(f). The

proof is presented in the next section.

Algorithm 3 Fault Tolerant Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host → d_A on the GPU

2: Encode the input matrix, expand it with a checksum column

and a checksum row.

3: for i from 1 to � N
nb � do

4: Send the lower part of the next panel P to the host.

5: MAGMA_DLAHR2, return V,T and Y
where Y = [P,G]VT

6: Obtain Yce by computing the column checksums of Y :
Ychk_c = trail (A)chk_c · V

7: Obtain Vce by computing the column checksums of V :
Vchk_c = e� · V

8: DGEMM: Mre = Mre − MVTV�
ce

9: Send the leftmost nb columns of M to the host asyn-

chronously.

10: DGEMM: Gfe = Gfe − YceV�
ce

11: DLARFB: trail (A)fe = trail (A)fe − VceT�V�trail (A)
12: Compute Sre =

∑
Are(i) and Sce =

∑
Ace(i)

13: if |Sre − Sce | > threshold then
14: Reverse the last left update and right update.

15: Correct the error.

16: end if
17: end for

(a) Beginning of iteration

DLAHRD

(b) Factorize the panel

DLAHRD

DGEMM

(c) Right update to M

DLAHRD

DGEMM

(d) Right update to G

DLAHRD

DLARFB

(e) Left update to G (f) End of iteration

Fig. 4. One iteration of FT_DGEHRD

Line 12 through line 16 check for the existence of a

soft error. The algorithm corrects the error if there is any.
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Line 12 computes the summations of the checksum row and

the checksum column. Since they contain checksums of the

same matrix data along different directions, the summation of

each vector should equal each other. Taking rounding errors

into consideration, we check the difference against a threshold.

If the difference exceeds the threshold, we consider an error

has happened. The threshold should be big enough to tolerate

roundoff errors, at the same time it should be small enough

to avoid false negatives. A proper choice of the threshold is

a value larger than the machine epsilon by 2 to 3 orders of

magnitude. At this point the soft error in the matrix element

has propagated to both the checksum column and the checksum

row, the checksums are not valid any more. Line 14 reverses the

last left update and the last right update so that the checksum

column and the checksum row, together with the matrix data,

are restored to their states at the end of the previous iteration.

The checksum relationship is made valid again. The reverse

computation is possible because the intermediate data used to

apply the last last left update and right update are still available

at the end of the iteration. They will not be destroyed until the

next panel factorization. The algorithm then enters the recovery

procedure.

D. The Checksum Relationship

In this section, we prove the following theorem:

Theorem 1. The checksum column on the right of matrix A
and the checksum row at the bottom of matrix A are valid at
the end of each iteration.

Proof. 1) The checksum column and the checksum row are

valid after line 2 since they are newly computed.

2) The checksum column and the checksum row are valid

after the right update to the trailing matrix.

Afe = Afe −
[

A
e�A

]
VT

[
V

e�V

]�

=

[
A Ae

e�A 0

]
−
[

AVTV� AVTV�e
e�AVTV� e�AVTV�e

]

=

[
(A − AVTV�) (A − AVTV�)e

e�(A − AVTV�) ∗
]

3) The checksum column and the checksum row are valid

after the left update to the checksum.

Afe = Afe −
[

V
e�V

]
T�V� [

A Ae
]

=

[
A Ae

e�A 0

]
−
[

VT�V�A VT�V�Ae
e�VT�V�A e�VT�V�Ae

]

=

[
(A − VT�V�A) (A − VT�V�A)e

e�(A − VT�V�A) ∗
]

4) According to Mathematical Induction, the checksum row

and the checksum column are valid at the end of each

iteration.

�

DLAHRD

Fig. 5. Maintaining the checksums for Q

E. Protecting Q

The Q matrix contains the Householder vectors which

were used to apply the similarity transformations to A. These
Householder vectors are not protected by the checksums

that encode the H matrix, we should provide protection for

Q through other schemes. These Householder vectors are

generated on the host side and stay there until the entire

factorization finishes. They are not modified after they are

generated. Moreover, they are not even read after the iteration

in which they were generated finishes. Hence, it suffices to

maintain a checksum for each row in order to correct an error.

But just like the situation in detecting a soft error in H , we need

both a checksum row and a checksum column to determine both

the error column index j and error row index i. We keep the
checksums for Q on the host. Qr_chk is the rowwise checksum
vector, and Qc_chk is the columnwise checksum vector.

Figure 5 shows the process for generating and updating the

checksums for the Q matrix. The dashed line on the left of the

matrix is the column of row checksums for Q. When a new

panel factorization is finished as the one shown in Figure 5, we

compute the row checksums for the newly finished panel. Then

the partial checksums for the panel are applied to the dashed

line on the left so that the dashed line protects the entire green

part. The dashed line at the bottom of the matrix is the row

of column checksums for Q. This vector is computed segment
by segment. When a new panel factorization is done on an nb
wide panel, an nb long segment of the column checksums is

also generated. The solid line segment at the bottom of the

panel in Figure 5 is the newly generated column checksum

segment for Q. This segment is never changed once generated.
Our algorithm overlaps the checksum generation for Q with

the update to the trailing matrix on the GPU. The checksum

generation involves two GEMV operations. GEMV is a level

2 BLAS operation which is a memory bound operation. We

choose to perform the checksum generation on the CPU while

the GPU is updating the trailing matrix. The CPU is idle in the

non-fault tolerant MAGMA Hessenberg reduction algorithm,

and our arrangement hides the time cost of the checksum

generation.

F. Recovery

Once we have detected a soft error, we first determine the

row index and the column index of the soft error before we

can correct the error. We recalculate a checksum column A′r_chk
and a checksum row A′c_chk of the current matrix (the yellow
part and the red part in Figure 4(f)). Then we compare A′r_chk

658658



and Ar_chk, and the error row index i can be determined if

A′r_chk(i) � Ar_chk(i). Similarly, the error column index j can
be determined by comparing A′c_chk and Ac_chk.

The erroneous element can be corrected using the formula

A(i, j) = Ar_chk(i) −∑k≤n,k� j
k=1

A(i, k) or the formula A(i, j) =
Ac_chk( j) −∑k≤n,k�i

k=1
A(k, j).

Since a soft error in the Q matrix does not propagate, we

only examine the checksum relationship once, at the end of

the factorization. The error detection and correction scheme is

similar to those for the H matrix, except that it is carried out

once at the end of the entire factorization instead of once per

iteration.

V. Performance Evaluation

In this section, we give a formal analysis for the overhead

of our fault tolerant Hessenberg reduction algorithm. The

fault tolerant Hessenberg reduction algorithm performs extra

floating point operations and extra data transfers between

the host and the GPU in addition to those in the original

MAGMA Hessenberg reduction. The fault tolerant algorithm

also consumes extra storage to keep data redundancy. So,

we evaluate the overhead in terms of extra FLOPS, extra

communication, and extra storage. We denote the matrix

dimension as N , the block size as nb, and the amount of

floating point operations as FLOP.
After the algorithm transfers the input matrix to the GPU, the

algorithm computes the global row checksums and the column

checksums for the input matrix. This involves two DGEMV
operations on the GPU: Ar_chk = Ae and Ac_chk = e�A. The
amount of floating operations:

FLOPinit = 2N (N + N − 1) = 4N2 − 2N .

In every iteration, the algorithm computes column checksums

for matrix V . In the i-th iteration, the dimension of matrix V is

(N − nb · i) · nb. The accumulated FLOP count over the course
of the factorization is:

FLOPchkV =
N/nb−1∑

i=0

nb · (N − nb · i + N − nb · i − 1)

= O(N2).

The amount of floating point operations applied on the right

hand side checksums is:

FLOPr_chk =
N/nb−1∑

i=0

{(N − nb · i) · (nb + nb − 1)

+ N · (nb + nb − 1) + nb · [(N − nb · i) + (N − nb · i) − 1]}
= O(N2).

The amount of floating point operations applied on the bottom

checksums is:

FLOPc_chk =
N/nb−1∑

i=0

[(N − nb · i)(nb + nb − 1)

+ (N − nb · i)(nb + nb − 1)] = O(N2).

The amount of floating point operations spent on intermediate

results used by both row and column checksums is:

FLOPcommon =
N/nb−1∑

i=0

nb · (nb + nb − 1) = O(N ).

The computation cost to detect the error in Algorithm 3 requires

two dot product operations, one for the summation of the

row checksums, and one for the summation of the column

checksums. The total cost is given by:

FLOPD =
N/nb−1∑

i=0

2(N + N − 1) = O(N2).

Adding all these together we get the total amount of extra

floating point operations performed by the fault tolerant

algorithm:

FLOPextra = FLOPinit + FLOPchkV + FLOPr_chk

+ FLOPc_chk + FLOPcommon + FLOPD = O(N2).

The computation complexity of the Hessenberg reduction is

FLOPorig ∼ 10/3N3, so when there is no errors, the overhead

of the fault tolerant Hessenberg reduction in terms of FLOP

percentage is:

Overhead =
FLOPorig

FLOPextra
=

O(N2)
10/3N3

=
3

10
O(N−1).

When N increases the overhead tends to: 0.

In order to locate the error, a vector of new row checksums

and a vector of new column checksums need to be computed

on the matrix consisting of the yellow part and the red part in

Figure 2(a). The cost is given by:

FLOPL = 2N (N + N − 1) = 4N2 − 2N .

To correct the error requires a dot product and a subtraction:

FLOPC = N − 2 + 1 = N − 1.
After an error has been detected, the algorithm performs a roll

back by reverse update, which includes a reverse left update

and a reverse right update. Then the pre-factorized panel is

retrieved from the buffer, and the entire iteration is repeated

after the error correction. The amount of overhead is a function

of the size of the trailing matrix. Assume the error occurred

in the j-th iteration, and we have:

FLOPredo = FLOPrepeat + FLOPpanel

≈ N · (N − j · nb)(2nb − 1)+
(N − j · nb) · (N − j · nb)(2nb − 1)
+ (N − j · nb) · nb · [(N − j · nb) + (N − j · nb) − 1]
+ (N − j · nb) · nb · (nb + nb − 1)

= O(N2).

Compared with the computation cost of the original Hessen-

berg reduction, the extra FLOP introduced by the fault tolerant

algorithm is very low. It tends to 0 when n increases.
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TABLE I
Detailed specification of the test platform.

CPU GPU

Processor model Intel Xeon E5-2670 NVIDIA Tesla K40c
Clock frequency 2.6 GHz 745 MHz
Memory 62 GB 11.5 GB
Peak DP 10.4 Gflop/s 1.43 Tflop/s
BLAS/LAPACK Intel MKL 11.2 CUBLAS 7.0.28
OS CentOS 6.4 -
Compiler gcc 4.4.7 nvcc 7.0 V7.0.27

The storage requirement of the fault tolerant Hessenberg

reduction algorithm consists of a panel worth of work space

for the intermediate result to update the trailing matrix, and

four columns worth of space for the checksums:

S = nb · N + 4 · N

VI. Experiments

In this section, we present the performance of our fault

tolerant algorithm. Our testbed consists of an Intel Sandy

Bridge-EP CPU and an NVIDIA Kepler GPU. The detailed

specifications of the test platform are listed in Table I.

A. Performance Study

As shown in Figure 2(a), during the factorization the matrix

is partitioned in three areas. We analyze the performance

of our algorithm when the soft error occurs in each of

the different areas, at different moments of the factorization.

The Hessenberg reduction algorithm is application agnostic,

different applications may use a different typical matrix size.

Figure 6(a) shows the performance overhead in the case

where the soft error occurs in area 1 (see Figure 2(a)). This

overhead includes setting up and maintaining the checksums,

the reverse update to the trailing matrix, and the re-execution of

the faulty iteration. Among all these costs, the most expensive

step is the panel factorization when re-executing the faulty

iteration. When the error occurs early in the factorization, the

size of the panel which the algorithm re-factorizes is larger,

and the performance overhead is also larger. The gray area in

the figure indicates the range of the overhead depending on

the moment when the single fault is introduced in Area 1. We

can see that the overhead range remains small for all matrix

sizes while the overhead exhibits a decreasing trend as the

matrix size grows; at matrix size 10112 × 10112 the overhead
is less than between 0.47% and 2.1% when one error occurs

in Area 1.

Figure 6(b) shows the performance overhead of the fault

tolerant algorithm when the soft error occurs in area 2 (see

Figure 2(a)). Similar to Figure 6(a), the overhead is dependent

on the moment when the error occurs. It maintains the same

constant range and it exhibits the same decreasing trend as

the matrix size grows. The performance overhead is between

0.61% and 2.15% at matrix size 10112 × 10112.
Figure 6(c) shows the performance overhead of the fault

tolerant algorithm when the soft error occurs in Area 3 (see

Figure 2(a)). In this case we can see that the performance

overhead is smaller, closely following the overhead of the case

without failures. There are two reasons for this phenomenon:

the error detection and correction are only carried out once

at the end of the factorization, and after an error is detected,

only a dot product is necessary to correct the error. In contrast,

an error in either area 1 or 2 requires a reverse update, a

repeated panel factorization, and a trailing matrix update. We

also observe that the uncertainty interval of the performance

overhead is very small at all matrix sizes. No matter when

the error occurred during the factorization, they are treated at

the end with the same procedure, with the same minimalistic

approach. Therefore they incur the same amount of overhead.

Overall, these results indicate that our approach is a practical

solution to ensure the correctness of the Hessenberg reduction

with minimal overhead, and that this overhead consistently

decreases as the size of the matrix increases.

B. Numerical Stability

In this section, we investigate the numerical behavior of

our fault tolerant Hessenberg algorithm compared with the

non-fault tolerant algorithm.

The block Hessenberg reduction algorithm implemented in

MAGMA is backward stable. The following residual is used

to verify the factorization result:

r =
‖A −QHQ�‖1

N ‖A‖1
where A is the input matrix, and N is the matrix dimension.

Table II shows the comparison of the residuals as obtained

from the original MAGMA non-fault tolerant algorithm and

our fault tolerant algorithm with one soft error.

The three main sections of the table indicate the location of

the error, Area 1, Area 2, or Area 3. In each section, the letter

appended to the name of the column indicates the moment

when the error occurs, B for the beginning of the factorization,

M for the middle, and finally, E for the end of the factorization.

Finally, in the case of Area 3, all columns were collapsed into

a single column as the residuals were identical. We can see

that for every matrix size the residuals from Area 1 and Area

2 are on the same order of magnitude, with minimal variations,

as the original MAGMA algorithm. In some cases, the fault

tolerant algorithm even has a smaller residual than the fault

free original algorithm. When the error was introduced on the

left part of the matrix (i.e., Q, in Area 3), the final residuals
are higher than their counterparts in the MAGMA routine, but

they are still within the acceptable range. The extra amount of

error compared with the classic algorithm is introduced by the

encoding/recovery process. In the encoding phase, N elements

(in a row or column) are added together to form one checksum

element. In the recovery phase, N − 1 elements are subtracted
from the checksum element. Both phases are implemented as

dot products. We refer interested readers to [27] for a detailed

discussion of rounding errors in dot products. Overall, these

results are evidence that our fault tolerant Hessenberg reduction

algorithm can successfully correct soft errors without degrading

the stability of the original algorithm.

660660



G
F

L
O

P
S

P
er

ce
n

t 
(%

)

Matrix size

Perf Penalty 1 fault (%)
Perf Penalty (%)
FT-Hess
MAGMA Hess

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1022 2046 3070 4030 51826014 7038 8062 9086 10110
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

(a) Area 1

G
F

L
O

P
S

P
er

ce
n

t 
(%

)

Matrix size

Perf Penalty 1 fault (%)
Perf Penalty (%)
FT-Hess
MAGMA Hess

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1022 2046 3070 4030 51826014 7038 8062 9086 10110
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

(b) Area 2

G
F

L
O

P
S

P
er

ce
n

t 
(%

)

Matrix size

Perf Penalty 1 fault (%)
Perf Penalty (%)
FT-Hess
MAGMA Hess

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1022 2046 3070 4030 51826014 7038 8062 9086 10110
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

(c) Area 3

Fig. 6. Overhead of FT-Hess. The blue line is the overhead without failures, while the gray area is the uncertainty interval when one single error is introduced
in a specific area (as described in Figure 2(a)).

TABLE II
Numerical Stability A1, A2, A3

Matrix Area 1 Area 2 Area 3
Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess B/M/E

1022 6.2529 × 10−18 6.2764 × 10−18 6.2520 × 10−18 6.2540 × 10−18 6.2764 × 10−18 6.2520 × 10−18 6.2540 × 10−18 3.9780 × 10−16
2046 2.6291 × 10−18 2.6552 × 10−18 2.6502 × 10−18 2.6276 × 10−18 2.6552 × 10−18 2.6502 × 10−18 2.6276 × 10−18 1.6047 × 10−15
3070 8.0088 × 10−18 8.0023 × 10−18 7.9987 × 10−18 8.0066 × 10−18 8.0023 × 10−18 7.9987 × 10−18 8.0066 × 10−18 1.9576 × 10−15
4030 8.4784 × 10−18 8.4697 × 10−18 8.4747 × 10−18 8.4790 × 10−18 8.4697 × 10−18 8.4747 × 10−18 8.4790 × 10−18 1.9473 × 10−14
5182 1.2012 × 10−17 1.2024 × 10−17 1.2008 × 10−17 1.2011 × 10−17 1.2024 × 10−17 1.2008 × 10−17 1.2011 × 10−17 2.5166 × 10−15
6014 1.5892 × 10−17 1.5881 × 10−17 1.5891 × 10−17 1.5892 × 10−17 1.5881 × 10−17 1.5891 × 10−17 1.5892 × 10−17 4.3368 × 10−15
7038 1.9573 × 10−17 1.9580 × 10−17 1.9571 × 10−17 1.9571 × 10−17 1.9580 × 10−17 1.9571 × 10−17 1.9571 × 10−17 2.6158 × 10−14
8062 3.7656 × 10−18 3.7575 × 10−18 3.7690 × 10−18 3.7656 × 10−18 3.7575 × 10−18 3.7690 × 10−18 3.7656 × 10−18 8.9874 × 10−15
9086 6.3745 × 10−18 6.3814 × 10−18 6.3736 × 10−18 6.3746 × 10−18 6.3814 × 10−18 6.3736 × 10−18 6.3746 × 10−18 2.2618 × 10−14
10110 1.7536 × 10−17 1.7531 × 10−17 1.7535 × 10−17 1.7536 × 10−17 1.7531 × 10−17 1.7535 × 10−17 1.7536 × 10−17 2.4302 × 10−14

C. Orthogonality of Q

In this section, we verify the orthogonality of matrix

Q generated by our fault tolerant algorithm. As explained

in Section III-A, we have H = QT AQ where Q is an

orthogonal matrix. We use the following residual to examine

the orthogonality of Q:

r =
‖QQ� − I ‖1

N
.

I is the identity matrix, N is the matrix dimension. Table III

shows the residuals from the non-fault tolerant MAGMA

algorithm and residuals from our fault tolerant algorithm when

one error occurs in different areas and different stages of the

matrix. When the soft-error occurs in Area 1 and Area 2, all

residuals are on the order of 10−17, which is the same as the
residuals from the MAGMA algorithm. When the soft-error

occurs in Area 3, the residual is higher but still comparable to

the residuals from MAGMA. So the orthogonality of Q is not

damaged after the recovery from an error.

VII. Conclusions and Future Work

In this paper, we presented the design and analysis of a

soft error resilient hybrid Hessenberg reduction algorithm,

an algorithm capable of taking advantage of current and

future hybrid architectures to ensure data correctness during

an entire two-sided factorization. This goal is achieved by

an attentive combination of the strengths of ABFT and

diskless checkpointing to maintain data redundancy during the

factorization. From an algorithmic perspective, our algorithm

detects the soft errors on-line and corrects them before they

have the opportunity to propagate to the rest of the matrix data,

minimizing the cost of the recovery process. In the case of

a soft error, our algorithm carries out a reverse computation

to roll the program data back to a consistent state and then

corrects the soft error. The overhead of our approach is very

low since it mainly utilizes extra computation to detect and

correct the error, and the amount of extra memory necessary

for the checksum is minimal. The performance overhead of

our fault tolerant algorithm compared to the non-fault tolerant

MAGMA Hessenberg reduction reaches 0.56% when no errors

occur, and reaches 0.61% when one error occurs. Another

important capability of our fault tolerant algorithm is that it can

detect and correct more than one consecutive error, making it a

potential candidate for highly volatile environments. Moreover,

the methodology highlighted in this paper is generic enough to

be applicable to the entire spectrum of two-sided factorizations,

as well as other similar algorithms. This applicability is on

our list of things to explore in the near term as we plan to

provide soft error resilience for the rest of the hybrid two-sided

factorizations in MAGMA.
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TABLE III
Orthogonality of Q A1, A2, A3

Matrix Area 1 Area 2 Area 3
Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess

1022 3.65 × 10−17 3.80 × 10−17 3.41 × 10−17 3.36 × 10−17 3.64 × 10−17 3.46 × 10−17 3.35 × 10−17 6.84 × 10−16
2046 3.72 × 10−17 3.61 × 10−17 3.71 × 10−17 3.65 × 10−17 3.53 × 10−17 3.64 × 10−17 3.64 × 10−17 2.76 × 10−15
3070 3.62 × 10−17 3.40 × 10−17 3.57 × 10−17 3.63 × 10−17 4.61 × 10−17 3.63 × 10−17 3.65 × 10−17 3.31 × 10−15
4030 3.75 × 10−17 3.40 × 10−17 3.75 × 10−17 3.75 × 10−17 3.98 × 10−17 3.81 × 10−17 3.77 × 10−17 3.28 × 10−14
5182 4.59 × 10−17 3.78 × 10−17 3.63 × 10−17 3.61 × 10−17 3.92 × 10−17 3.62 × 10−17 3.62 × 10−17 4.19 × 10−15
6014 3.74 × 10−17 3.71 × 10−17 3.63 × 10−17 3.62 × 10−17 3.89 × 10−17 3.60 × 10−17 3.62 × 10−17 7.19 × 10−15
7038 4.10 × 10−17 4.44 × 10−17 4.51 × 10−17 4.50 × 10−17 4.00 × 10−17 4.52 × 10−17 4.51 × 10−17 4.35 × 10−14
8062 3.64 × 10−17 3.31 × 10−17 3.74 × 10−17 3.74 × 10−17 3.58 × 10−17 3.77 × 10−17 3.74 × 10−17 1.49 × 10−14
9086 3.64 × 10−17 3.75 × 10−17 4.22 × 10−17 4.22 × 10−17 4.08 × 10−17 4.18 × 10−17 4.22 × 10−17 3.71 × 10−14
10110 4.36 × 10−17 4.20 × 10−17 4.32 × 10−17 4.29 × 10−17 4.15 × 10−17 4.30 × 10−17 4.29 × 10−17 4.05 × 10−14
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