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Abstract

The classical redistribution problem aims at optimally scheduling communications when moving
from an initial data distribution to a target data partition, where each processor will host a subset
of data items. A data distribution is usually defined to minimize a particular characteristic of an
algorithm (computational imbalance or communication volume or cost) and therefore to provide
high efficiency for that particular operation. However, there is no single data distribution that
provide this high efficiency. This leads to generalizing the redistribution problem as follows: find the
optimal one-to-one mapping of the subsets of data items onto the processors for which the cost of the
redistribution is minimal, and the operation remains as efficient. This paper studies the complexity
of this generalized problem. We provide optimal algorithms and evaluate, through simulations,
their gain over classical redistribution. We also show the NP-hardness of the problem to find the
optimal data partition and processor permutation (defined by new subsets) that minimize the cost
of redistribution followed by a simple computational kernel. Finally, experimental validation of the
new redistribution algorithms are conducted on a multicore cluster, for both a 1D-stencil kernel and
a more compute-intensive dense linear algebra routine.

1 Introduction

In parallel computing systems, data locality has a strong impact on application performance. To achieve a
good locality, a redistribution of the data may be needed between two different phases of the application,
or even at the beginning of the execution, if the initial data layout is not suitable for performance. Data
redistribution algorithms are critical to many applications, and therefore have received considerable
attention. The data redistribution problem can be stated informally as follows: given N data items
that are currently distributed across P processors, re-distribute them according to a different target
layout. Consider for instance a dense square matrix A = (a;;)o<s,j<n Of size n whose initial distribution
is random and that must re-distributed into square blocks across a p x p 2D-grid layout. A scenario
for this problem is that the matrix has been generated by a Monte-Carlo method and is now needed
for some matrix product C < C + AB. Assume for simplicity that p divides n, and let r = n/p. In
this example, N = n?, P = p?, and the redistribution will gather a block of © x r data elements on
each processor. More precisely, all the elements of block B; ; = (ag), where i < k < (r 4+ 1)i and
rj < ¢ < (r+1)j, must be sent to processor P; ;. This example illustrates the classical redistribution
problem. Depending upon the cost model for communications, various optimization objectives have been
considered, such as the total volume of data that is moved from one processor to another, or the total
time for the redistribution, if several communications can take place simultaneously. We detail classical
cost models in Section 2, which is devoted to related work.

Modern computing platforms are equipped with interconnection switches and routing mechanisms
mapping the most usual interconnection graphs onto the physical network with reduced (or even negligi-
ble) dilation and contention. Continuing with the example, the p x p 2D-grid will be virtual, an overlay
topology mapped into the physical topology, forcing the interconnection switch to emulate a 2D-grid.
Simultaneously, the layout of the processors in the grid remains completely flexible. For instance, the



processors labeled P; 1, P; 2 and P»; can be any processors in the platform, and we have the freedom to
choose which three processors will indeed be labeled as the top-left corner processors of the virtual grid.
Now, to describe the matrix product on the 2D-grid, we say that data will be sent horizontally between
Py 1 and P 2, and vertically between P; ; and P, 1, but this actually means that these messages will be
routed by the actual network, regardless of the physical position of the three processors in the platform.

This leads to revisit the redistribution problem, adding up the flexibility to select the best assignment
of data to the processors (according to the cost model). The problem can be formulated as mapping a
partition of the initial data onto the resources: there are P data subsets (the blocks in the example) to
be assembled onto P processors, with a huge (exponential) number, namely P!, of possible mappings.
An intuitive view of the problem is to assign the same color to all data items in a given subset (block),
and to look for a coloring of the processors that will minimize the redistribution cost. For instance, if
the data items in the first block By are colored red, we may want to select the processor that initially
holds the most red items as the target 'red’ processor, i.e. the processor where elements of block By g
are to be redistributed.

One major goal of this paper is to assess the complexity of the problem of finding the best processor
mapping for a given initial data distribution and a target data partition. This amounts to determine
the processor assignment that minimizes the cost of redistributing the data according to the partition.
There are P! possible redistributions, and we aim at finding the one minimizing a predefined cost-
function. In this paper, we use the two most widely-used criteria in the literature to compute the cost
of a redistribution:

e Total volume. In this model, the platform is not dedicated, and the objective is to minimize the
total communication volume, i.e., the total amount of data sent from one processor to another.
Minimizing this volume is likely to least disrupt the other applications running on the platform.
Conceptually, this is equivalent to assuming that the network is a bus, globally shared by all
computing resources.

e Number of parallel steps. In this model, the platform is dedicated to the application, and
several communications can take place in parallel, provided that they involve different processor
pairs. This is the one-port bi-directional model used in [1, 2]. The quantity to minimize is the
number of parallel steps, where a step is a collection of unit-size messages that involve different
processor pairs.

One major contribution of this paper is the design of an optimal algorithm to solve this optimization
problem for either criterion. We also provide various experiments to quantify the gain that results
from choosing the optimal mapping rather than the canonical mapping where processors are labeled
arbitrarily, and independently of the initial data distribution.

As mentioned earlier, a redistribution is usually motivated by the need to efficiently execute in
parallel a subsequent computational kernel. In most cases, there may well be many data partitions that
are suitable to the efficient execution of this kernel. The optimal partition also depends upon the initial
data distribution. Coming back to the introductory example, where the redistribution is followed by a
matrix product, we may ask whether a full block partition is absolutely needed? If the original data
is distributed along a suitable, well-balanced distribution, a simple solution is to compute the product
in place, using the owner-compute rule, that is, we let the processor holding C; ; compute all A; By, ;
products. This means that elements of A and B will be communicated during the computation, when
needed. On the contrary, if the original distribution has a severe imbalance, with some processors
holding many more data than others, a redistribution is very likely needed. But in this latter case, do
we really need a perfect full block partition? In fact, the optimization problem is the following: given
an initial data distribution, what is the best data partition, and the best mapping of this partition onto
the processors, to minimize total execution time, defined as the sum of the redistribution time and of
the execution of the kernel. Another major contribution of this paper is to assess the complexity of
this intricate problem. Finding the optimal partition mapping becomes NP-complete when coupling
the redistribution with a simple computational kernel such as an iterative 1D-stencil kernel. Here the
optimization objective is the sum of the redistribution time (computed using either of the two criteria
above, with all communications serialized or with communications organized in parallel steps), and of
the parallel execution time of a few steps of the stencil. Intuitively this confirms that determining the
optimal data partition and its mapping is a difficult task. Stencil computations naturally favor block



distributions, in order to communicate only block frontiers at each iteration. But this has to be traded-
off with the cost of moving the data from the initial distribution, with the number of iterations, and
with the possible imbalance of the final distribution that is chosen (whose own impact depends upon
the communication-to-computation ratio of the machine). Altogether, it is no surprise that all these
possibilities lead to a truly combinatorial problem.

Finally, this paper provides an experimental validation of the new redistribution algorithms con-
ducted on a multicore cluster. We first experiment with the 1D-stencil algorithm and obtain performance
improvements in total execution time that strongly depend on initial distributions. Different data config-
urations have been experimented to assess this gain. For a more compute-intensive dense linear algebra
routine, such as QR factorization, redistributing the data items can also be necessary. The 2D block-
cyclic partition is known to offer a good trade-off between the amount of communications during the QR
factorization and the load balancing among processors. Using the optimal algorithms to determine the
best distribution compatible with the 2D block-cyclic partition provides significant improvement in the
completion time.

The rest of the paper is organized as follows. We survey related work in Section 2. We detail
the model and formally state the optimization problems in Section 3. We deal with the problem of
finding the best redistribution for a given data partition in Section 4. Sections 4.1 and 4.2 provide
optimal algorithms, while Section 4.3 reports simulation results showing the gain over redistributing to
an arbitrary compatible distribution. In Section 5, we couple the redistribution with a stencil kernel,
and show that finding the optimal data partition, together with the corresponding redistribution, is
NP-complete. Experimental experiments conducted on a multicore cluster are reported in Section 6.
Section 6.2 provides results when redistribution is followed by a stencil kernel, while Section 6.3 deals
with QR factorization. We provide final remarks and directions for future work in Section 7.

2 Related work

2.1 Communication model

The macro-dataflow model has been widely used in the scheduling literature (see the survey papers [3,
4, 5, 6] and the references therein). In this model, the cost to communicate L bytes is o+ LS, where « is
a start-up cost and ( is the inverse of the bandwidth. In this paper, we consider large, same-sized data
items, so we can safely restrict to unit communications that involves a single data item; we integrate the
start-up cost into the cost of a unit communication.

In the macro-dataflow model, communication delays from one task to its successor are taken into
account, but communication resources are not limited. First, a processor can send (or receive) any number
of messages in parallel, hence an unlimited number of communication ports is assumed (this explains the
name macro-dataflow for the model). Second, the number of messages that can simultaneously circulate
between processors is not bounded, hence an unlimited number of communications can simultaneously
occur on a given link. In other words, the communication network is assumed to be contention-free,
which of course is not realistic as soon as the processor number exceeds a few units.

A much more realistic communication model is the one-port bidirectional model where at a given time-
step, any processor can communicate with at most one other processor in both directions: sending to
and receiving from another processor. Several communications can occur in parallel, provided that they
involve disjoint pairs of sending/receiving processors. The one-port model was introduced by Hollermann
et al. [1], and Hsu et al. [2]. It has been widely used since, both for homogeneous and heterogeneous
platforms [7, 8].

2.2 Redistribution

The complexity of scheduling data redistribution in distributed architecture strongly depends on the
network model. When the network has a general graph topology, achieving the minimal completion
time for a set of communication is NP-complete, even when the time required to move a data along any
link is constant [9]. In this context several variants of the one-port bidirectional model have also been
considered. The first variant is a unidirectional one-port model, where a processor can participate in
only one communication at a time (either as a sender or a receiver); with this variant, the redistribution



problem becomes NP-complete [10]. A second variant consists in assuming that each processor p has
a number of ports v(p) representing the maximum number of simultaneous transfers that it can be
participate to [11]. Finally, in a third variant [12], processors have memory constraints that must be
enforced during the redistribution process.

2.3 Array redistribution

A specific class of redistribution problems has received a considerable attention, namely the redistribution
of arrays that are already distributed in a block-cyclic fashion over a multidimensional processor grid.
This interest was originally motivated by the HPF [13] programming style, in which scientific applications
are decomposed into phases. At each phase, there is an optimal distribution of the data arrays onto the
processor grid. Typically, arrays are distributed according to a CYCLIC(r) pattern' along one or several
dimensions of the grid. The best value of the distribution parameter r depends on the characteristics of
the algorithmic kernel as well as on the communication-to-computation ratio of the target machine [14].
Because the optimal value of r changes from phase to phase and from one machine to another (think of a
heterogeneous environment), run-time redistribution turns out to be a critical operation, as stated in [15,
16, 17, 18] (among others). Communication are scheduled into parallel steps, which involve different
processor pairs. The model comes in two variants, synchronous or asynchronous. In the synchronous
variant, the cost of a parallel step is the maximal size of a message and the objective is to minimize
the sum of the cost of the steps [16, 19]. In the asynchronous model, some overlap is allowed between
communication steps [20]. Finally, the ScaLAPACK library provides a set of routines to perform array
redistribution [21]. A total exchange is organized between processors, which are arranged as a (virtual)
caterpillar. The total exchange is implemented as a succession of synchronous steps.

3 Model and framework

This section details the framework and formally states the optimization problems. We start with a few
definitions.

3.1 Definitions

Consider a set of N data items (numbered from 0 to N — 1) distributed onto P processors (numbered
from 0 to P —1).

Definition 1 (Data distribution). A data distribution D defines the mapping of the elements onto the
processors: for each data item 4, D(i) is the processor holding it.

Definition 2 (Data partition). A data partition P associates to each data item ¢ a partition P(¢)
(0 < P(i) < P —1) so that, for a given index j, all data items ¢ with P(i) = j reside on the same
processor (not necessarily processor j).

It is straightforward to see that a data distribution D defines a single corresponding data partition
(defined by P = D). However, a given data partition does not define a unique data distribution. On the
contrary, any of the P! permutations of 0,... P—1 can be used to map a data partition to the processors.

Definition 3 (Compatible distribution). We say that a data distribution D is compatible with a data
partition P if and only if there exists a permutation of processors o of 0,..., P — 1 such that for all
0<i<P-1,P®) =c(D()).

3.2 Cost of a redistribution

In this section, we formally state the two metrics for the cost of a redistribution, namely the total volume
and the number of parallel steps. Both metrics assume that the communication of one data item from
one processor to another takes the same amount of time, regardless of the item and of the location of
the source and target processors. Indeed, data items can be anything from single elements to matrix

IThe definition is the following: let an array X[0...M —1] be distributed according to a block-cyclic distribution CYCLIC(xr)
onto a linear grid of P processors. Then element X[i] is mapped onto processor p = |i/r] mod P,0 <p < P —1.



tiles, columns or rows, so that our approach is agnostic of the granularity of the redistribution. As
already mentioned, many modern interconnection networks are fully-connected switches, and they can
implement any (same-length) communication in the same amount of time. Note that with asymmetric
networks, it is always possible to use the worst-case communication time between any processor pair as
the unit time for a communication.

3.2.1 Total volume

For this metric, we simply count the number of data items that are sent from one processor to another.
This metric may be pessimistic if some parallelism is possible, but it provides an interesting measure of
the overhead of the redistribution, especially if the platform is not dedicated.

Given an initial data distribution D;y; and a target distribution Dyg,, for 0 < i, < P —1, let ¢; ;
be the number of data items that processor ¢ must send to processor j: g; ; is the number of data items
such that D;pi(g; ;) = ¢ and Dier(gs ;) = j. For a given processor i, let s; (respectively 7;) be the total
number of data items that processor ¢ must send (respectively receive) during the redistribution. We
have s; =Y i B andr; =), 2i Qi The total communication volume of the redistribution is defined
as RedistVol(Din; — Diar) = >y 85 = 3, 71,

3.2.2 Number of parallel steps

With this metric, some communications can take place in parallel, provided that each of them involves
a different processor pair (sender and receiver). This communication model is the bidirectional one-port
model introduced in [1, 2] and accounts for contention when communications take place simultaneously.

We define a parallel step as a set of unit-size communications (one data item each) such that all
senders are different, and all receivers are different. Given an initial data distribution D;,; and a target
distribution Dy, we define RedistSteps(Din; — Diar) as the minimal number of parallel steps that are
needed to perform the redistribution.

3.3 Optimization problems

Here, we formally introduce the optimization problems that we study in Sections 4 and 5 below.

3.3.1 Best redistribution compatible with a given partition

In the optimization problems of Section 4, the data partition is given, and we aim at finding the best
compatible target distribution (among P! ones). More precisely, given an initial data distribution D;;
and a target data partition Py, we aim at finding a data distribution Dy, that is compatible with Pyg,
and such that the redistribution cost from D;,; to Dy, is minimal. Since we have two cost metrics, we
define two problems:

Definition 4 (VOLUMEREDISTRIB). Given Dj,; and Py, find Dy, compatible with Py, such that
RedistVol(Din; — Digr) is minimized.

Definition 5 (STEPREDISTRIB). Given D;,; and Py, find Die. compatible with Py, such that
RedistSteps(Dini — Diqr) is minimized.

We show in Section 4 that both problems have polynomial complexity.

3.3.2 Best partition, and best compatible redistribution

In the optimization problems of Section 5, the data partition is no longer fixed. Given an initial data
distribution D;y;, we aim at executing some computational kernel whose cost Teomp(Prer) depends upon
the data partition Py, that will be selected. Note that this computational kernel will have the same
execution cost for any distribution D;,, compatible with Pi,., because of the symmetry of the target
platform. However, the redistribution cost from D;,; to Dy, will itself depend upon D;,,-. We model
the total cost as the sum of the time of the redistribution and of the computation. Letting 7.y, denote
the time to perform a communication, the time to execute the redistribution is either RedistVol(D;y; —
Diar) X Teomm Or RedistSteps(Dini — Diar) X Teomm, depending upon the communication model. This
leads us to the following two problems:



Definition 6 (VOLPART&REDISTRIB). Given Diy;, find Piar, and Dyg, compatible with Pyg,, such that
Tiotal = RedistVol(Dini — Diar) X Teomm + Teomp (Ptar) is minimized.

Definition 7 (STEPPART&REDISTRIB). Given Dy, find Piar, and Dy, compatible with Py, such
that Tiorar = RedistSteps(Dini — Diar) X Teomm + Teomp(Piar) is minimized.

Note that both problems require that we are able to compute Tomp(Prar) for any target data par-
tition Pier. This is realistic only for very simple computational kernels. In Section 5, we consider
such a kernel, namely the 1D-stencil. We show the NP-completeness of both VOLPART&REDISTRIB
and STEPPART&REDISTRIB for this kernel, thereby assessing the difficulty to couple redistribution and
computations.

4 Redistribution

This section deals with the VOLUMEREDISTRIB and STEPREDISTRIB problems: given a data partition
Piar and an initial data distribution D;,;, find one target distribution D;,, among all possible P! com-
patible target distributions that minimizes the cost of the redistribution, either expressed in total volume
or number of parallel steps. We show that both problems have polynomial complexity.

4.1 Total volume of communication

Theorem 1. Given an initial data distribution D;y; and target data partition Pia., Algorithm 1 computes
a data distribution Dier compatible with Piar such that RedistVol(Dini — Dier) s minimized, and its
complexity is O(NP + P3).

Proof. Using the definition of s; and r; from Section 3.2.1, the total volume of communication during
the redistribution phase from the initial distribution to the target distribution is

RedistVol(Dini — Diar) = Z §i = Z T
0<i<P—1 0<i<P-1

Solving VOLUMEREDISTRIB amounts to find a one-to-one perfect matching between each component of
the target data partition and the processors, so that the total volume of communications is minimized.
Algorithm 1 builds the complete bipartite graph where the two sets of vertices represents the P processors
and the P components of the target data partition. Each edge (i, ) of this graph is weighted with the
amount of data that processor P; would have to receive if matched to component j of the data partition.

Computing the weight of the edges can be done with complexity O(N P). The complexity of finding a
minimum-weight perfect matching in a bipartite graph with n vertices and m edges is O(n(m +mnlogn))
(see Corollary 17.4a in [22]). Here n=P and m=P2 hence the overall complexity of Algorithm 1 is
O(NP + P3). O

Algorithm 1: BESTDISTRIBFORVOLUME
Data: Initial data distribution D;,; and target data partition Py,
Result: a data distribution D;,, compatible with the given data partition so that
RedistVol(Djn; — Diayr) is minimized
A<+ {1,... P} (set of processors)
B« {1,... P} (set of data partition components)
G + complete bipartite graph (V, E) where V= AU B
for edge (i,7) in E do
| weight(i, j) < [{d € Ptar(j) s.t. Dini(d) # i}
M < minimum-weight perfect matching of G
for (i,7) € M do
L for d € Piar(j) do Dy (d) < i
return D,




4.2 Number of parallel communication steps

The second metric is the number of parallel communications steps in the bidirectional one-port model.
Note that this objective is quite different from the total communication volume: consider for instance
a processor which has to send and/or receive much more data than the others; all the communications
involving this processor will have to be performed sequentially, creating a bottleneck.

Theorem 2. Given an initial data distribution D;y; and target data partition Pia., Algorithm 2 computes
a data distribution Dyg,r compatible with Piay such that RedistSteps(Dini — Digr) is minimized, and its
complezity is O(NP + P%).

Proof. First, given an initial data distribution D,,; and a target distribution D;,., we can compute
RedistSteps(Dini — Diar) as

RedistSteps(Dini — Diar) = max max(s;,r;)
0<i<P—1
This well-known result [19] is a direct consequence of Konig’s theorem (see Theorem 20.1 in [22]) stating
that the edge-coloring number of a bipartite multigraph is equal to its maximum degree.

Algorithm 2 builds the complete bipartite graph G where the two sets of vertices represents the P
processors and the P components of Py,,-. Each edge (4, j) of the complete bipartite graph is weighted
with the maximum between the amount r; ; of data that processor i would have to receive if matched
to component j of the data partition, and the amount of data that it would have to send in the same
scenario. A one-to-one matching between the two sets of vertices whose maximal edge weight is minimal
represents an optimal solution to STEPREDISTRIB. We denote by M,,; such a matching and m,; its
maximal edge weight. Since there are P processors and P components in Py, the one-to-one matching
Mpe i @ matching of size P.

Algorithm 2 prunes an edge with maximum weight from G until it is not possible to find a matching
of size P, and it returns the last matching of size P. We denote by M,..; this matching and m,; its
maximum edge weight. Let us assume by contradiction that mye; > mep:. Then matching M,y only
contains edges with weight strictly smaller than m,.;. Since Algorithm 2 prunes edges starting from
the heaviest ones, these edges are still in G when Algorithm 2 returns M,..;. Thus we can remove the
edges with maximal weight m,..; in M,..; and still have a matching of size P. This contradicts the stop
condition of Algorithm 2. Thus m,..; = mep: and the matching returned by Algorithm 2 is a solution to
STEPREDISTRIB.

Again, computing the edge weights can be done with complexity O(NP). Algorithm 2 uses the
Hopcroft—Karp Algorithm [23] to find the maximum cardinality matching of a bipartite graph G = (V, E)
in time O(|E|y/|V]). There are no more than P? iterations in the while loop, and Algorithm 2 has a

worst-case complexity of O(NP + P%). O

4.3 Evaluation of optimal vs. arbitrary redistributions

In this section, we conduct several simulations to illustrate the interest of the two algorithms introduced
above. In particular, we want to show that in many cases, it is important to optimize the mapping rather
than resorting to an arbitrary mapping which could induce many more communications. Source code for
the algorithms and simulations is publicly available at http://perso.ens-1lyon.fr/julien.herrmann/.

4.3.1 Random balanced initial data distribution

First we consider a random balanced initial data distribution D;,; where each processor initially hosts
D data items, and each data item has the same probability to reside on any processor. Most parallel
applications require perfect load balancing to achieve good performance, and thus a balanced data
partition. Therefore, we consider here a balanced target data partition Py, (each of the P components
Piar(7) includes D data items). We denote by D.,, the canonical data distribution (compatible with
partition Py,,-) which maps component Py, (j) onto processor j.

As seen in Section 3, the volume of communication involved during the redistribution from D;,; to
Dian is RedistVol(Dipg — Dean) = ZOSjSPfl {d € Piar(j) s.t. Dini(d) # j}|. Since |Pior(7)] = D for



Algorithm 2: BESTDISTRIBFORSTEPS
Data: Initial data distribution D;,; and target data partition Py
Result: A data distribution Dy, compatible with the given data partition so that
RedistSteps(Dini — Diar) is minimized
A<« {1,... P} (set of processors)
B« {1,... P} (set of data partition components)
G + complete bipartite graph (V, E') where V= AU B
for edge (i,7) in E do
Tij |{d S Pta'r(j) s.t. Drml(d) 7& Z}|
S5 |{d S Uk?éj Ptar(k‘) s.t. ’sz(d) = Z}|
| weight(i, j) < max(r; j, s;

M < maximum cardinality matching of G (using the Hopcroft-Karp Algorithm)
while |[M| == P do

MSG’UE % M

Suppress all edges of G with maximum weight

M + maximum cardinality matching of G (using the Hopcroft-Karp Algorithm)

return Mg,

any processor j and D;,;(d) is equal to j with a probability % for any processor j and any data item
d, we can compute the expected volume of communication: FE(RedistVol(Djn; — Dean)) = D(P — 1).
Thus, picking an arbitrary target distribution leads to an average volume of communication linear in P.

Each processor hosts D data items at the beginning and at the end of the redistribution phase. Thus,
according to Section 4.2, the number of steps required to schedule the redistribution phase is equal to D
if and only if one of the P processors has to send its complete initial data set during the redistribution
phase. This happens with probability

(- (7))

This probability is equal to 0.986 for P = 10 and D = 10, and is non-decreasing with P, which means
that the worst number of steps is reached in almost all cases for average values of D. This shows
that picking an arbitrary data distribution D.,, is suboptimal most of the time. Instead, we can use
Algorithm 1 to find the data distribution D,,; that minimizes the volume of communications involved
in the redistribution phase and Algorithm 2 to find the data distribution Dgteps that minimizes the
number of steps of the redistribution phase. Figure 1 depicts the relative volume of communication and
the relative number of redistribution steps when using target data distributions Dy, and Dgteps. The
results are normalized with the performance of the arbitrary target distribution D.4,. The simulations
have been conducted with P = 32 processors and up to D = 20 data items on each of them. For these
values, the arbitrary target distribution D.,, requires in average 620 communications and involves 20
parallel steps with a probability larger than 1 — 3.3 x 107!, Each point in Figure 1 represents the
average results and the standard deviation on a set of 50 random initial distributions. We can see that
the best data distributions for the communication volume and for the communication step represents a
10% improvement compared to an arbitrary target distribution when D > 10, and a larger improvement
for smaller values of D. The results for these two data distributions are really close and present a small
standard deviation.

4.3.2 Skewed balanced initial data distribution

Real world data distributions are usually not random. Some data are more likely to be initially hosted
by some particular processor. In this section, we show the possible gain of using the proposed algorithms
for skewed initial distributions. We consider a balanced target data partition Py, where each of the
P components Piq-(j) includes D elements of data. For 0 < a < 1, we note DY, the initial data
distribution which maps |aD] data items in P4 () on processor (j + 1) mod P, and which randomly
maps the other D — |aD] data items to all P processors. Note that DY, . represents a random balanced

data distribution as studied in previous section.
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Figure 1: Performance of Algorithm 1 and 2 compared to the canonical distribution for a random initial
distribution.

We still use Dqpn, the arbitrary target distribution which maps component P;,,-(j) onto processor j, as
a comparison basis. During the redistribution phase from D%, t0 Dqn, each processor sends at least |a.D ]
of its elements. With the skewed distribution, we can compute the expected volume of communication
of Dean: E(RedistVol(DS,;, = Dean)) = D(P — 1)+ |aD]. The number of steps required to schedule the

P

redistribution phase from DS, to D.qy is equal to D with probability 1 — (1 — (%)D_LQDJ .

Figure 2 depicts the relative volume of communication and the relative number of redistribution steps
for the target distributions D,,; (obtained with Algorithm 1) and Dgeps (obtained with Algorithm 2),
normalized with the performance of the arbitrary target distribution D.4,. The simulations have been
conducted with P = 32 processors, D = 20 elements of data on each of them and « varying from 0 to 1.
When « is close to 0, Dy, is close to a random balanced data distribution and we retrieve the results of
the previous section. When « is larger than 0.2, for every component Py, (5), the proportion of data in
Piar(j) that are initially hosted by processor (j +1) mod P is significant. Thus, mapping Py, (j) onto
processor (j + 1) mod P becomes the best solution to reduce both the volume of communication and
the number of communication steps. We can see that, in this case, Algorithm 1 and Algorithm 2 provide
the same target data distribution. Both objectives decrease linearly with « since the proportion of data

that are initially mapped onto the correct processor increases linearly with «.

5 Coupling redistribution and stencil computations

In this section, we focus on a simple, yet realistic, application to assess the complexity of redistribution
when coupled to a computational kernel. We consider a 1D-stencil iterative algorithm, which updates
in parallel each element of an array, according to the value of its direct neighbors. Stencil computations
are widely used to numerically solve partial differential equations [24]. We first detail the application
model before establishing the NP-completeness of minimizing the cost of a redistribution followed by the
execution of the kernel.

5.1 Application model

We consider here a three-point stencil with circular arrangement of the data. More precisely, to compute
the value (4, t) of the data at position i at step ¢, we need its value and those of its left and right neighbors
at the previous step, namely x(i,t—1), 2(i—1 mod N,¢t—1), and 2(i+1 mod N,¢—1). If the neighbors
are not stored on the same processor, their value has to be received from the processors hosting them.
Thus, each iteration of the stencil algorithm consists in two phases, the communication phase when the
value of each data item is sent to the processors hosting its neighbors, and the computation phase, when
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Figure 2: Performance of Algorithm 1 and 2 compared to the canonical distribution for a skewed initial
distribution.

each data item is updated according to a given kernel using these values (see Algorithm 3). The update
kernel depends on the application.

Algorithm 3: One iteration of the unidimensional stencil algorithm

Result: N data items numbered from 0 to N — 1 and their distribution D on P processors
for 0 < d < N —1 in parallel do
Ly + (d—1) mod N;
rqg < (d+1) mod N;
if D(¢y) # D(d) then
L Processor D(d) receives data item ¢, from processor D({,);
if D(rq) # D(d) then
| Processor D(d) receives data item rq from processor D(rq);

for 0 < d < N —1 in parallel do
L Processor D(d) updates data item d using ¢4 and rg4;

Given a data partition Pyar, let N; ; be the number of data items sent by the processor hosting subset
Ptar () to the processor hosting subset Py, (j) during one communication phase of the stencil algorithm:
N; j is the number of left or right neighbors in Py, (i) of data items in Pya, (7)), and N; ; = {0 < d <
N —1s.t. Prar(d —1) = j or Pror(d+ 1) = j}|. The workload ¢; of the processor hosting subset Py,,(7)
isl; ={0<d< N —1st.D(d) =i}

Given a data partition Py, the running time of the stencil algorithm depends on the communication
model, but not on the actual data distribution, provided that it is compatible with Pi4,.. Let Teomm be
the time needed to perform one communication (see Section 3.3), and let 7.4 be the time needed to
perform one data update for the considered stencil application. The processing time for K iterations of
the stencil with the two communication models is the following (using the notations of Section 3.3):

e Total volume: For problem VOLPART&REDISTRIB, Teomp(Prar) = K x T (Pyyy), where

vol

ite —
Tgoir(/Ptar) = Tcomm X § E Nij
0<i<P—-1 j

+Teale X  max ¥;
calc 0<i<h-1 i

The first term corresponds to the serialization of all communications, and the second one to the
parallel processing of the updates.
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e Number of parallel steps: For problem STEPPART&REDISTRIB, Teomp (Prar) = KszifS;S(’PmT),
where

T (Pror) =  Te X max ZN-» ZN
Steps( ar ) comm 0<i<P—1 : 1] : Jt
J J

+Teale X  max £;
calc 0<i<h-1 i

5.2 Complexity

Assume without loss of generality that N is a multiple of P. There is a well-known optimal data
partition for the 1D-stencil kernel, namely the full block partition (data item ¢ is assigned to subset
[¢P/N]). This canonical partition P.q, minimizes the duration of the communication phase (only two
items are sent/received) and the computation phase is perfectly balanced.

Starting from an initial data distribution D,,;, we can use either Algorithm 1 or 2 to find a target
distribution D, which is compatible with the full-block partition P.., and whose redistribution cost is
minimal. However, redistributing from D;,,; to Dy, may induce a large overhead on the total execution
time, and is fully justified only when the number of iterations K is large enough. It may be useful
to avoid a costly redistribution for small values of K and to find a target redistribution which is a
trade-off between minimizing redistribution time and processing time. Actually, finding such a trade-off
distribution is an NP-complete problem for both communication models:

Theorem 3. VOLPART&REDISTRIB problem with the 1D-stencil kernel is strongly NP-complete.

Proof. The problem clearly belongs to NP: given a new distribution Dy, of data, it is possible to compute
the redistribution time and the cost of the K iteration of the stencil algorithm.

To establish the completeness, we use a reduction from the 3-Partition problem [25], which is known
to be NP-complete in the strong sense. We consider the following instance Inst; of the 3-Partition
problem: let a; be 3m integers and B an integer such that > a; = mB. We consider the variant of the
problem, also NP-complete, where Vi, B/4 < a; < B/2. To solve Inst;, we need to solve the following
question: is there a partition of the a;’s in m subsets S, ..., Sy, each containing exactly 3 elements, such
that, V.S, ZiESk a; = B.

We build the following instance Insts of the VOLPART& REDISTRIB problem, illustrated on Figure 3.
Figure 3 represents the initial data distribution D;,; of 96mB elements on 12m different processors. To
clarify the proof we split the 12m processors into 4 different groups. There are 3m processors in group
1, m processors in group 2, 4m processors in group 3 and 4m processors in group 4. Processors in group
k are denoted by B(k). As depicted on Figure 3, we can see that, for example, the 2B first consecutive
elements are stored on Pl(l), the first processor in group 1. The next 2B elements are stored on P1(4),
the first processor in group 4. We set K =1, o = B?, and Tyax = 8 + 5mB + 8B? for the cost of the
unidimensional stencil algorithm. The construction of Insts is polynomial in the size of Inst;. Let show
that Insty has a solution if and only if Inst; has a solution.

Assume first that Insts has a solution and let Dy, be the final distribution of data. Let C, be the
number of maximal connected components on processor p for this distribution. Thus:

T3 (Dyi Dyar) = Teomm X RedistVol(Dini — Diar)
+2 x max Cp, + B? x max |Dy,,(p)| < 8 + 5mB + 8B* (1)
p p

We first show that Vp, |Di.(p)| = 8B:

e maxy, |Dir(p)| < 8B because otherwise:
T3 (Dini) > B® x (8B +1) > Twax-
e There are a total of 96mB elements of data and 12m processors, thus Vp, |Diar(p)| = 8B.
Thus max,, | Dy (p)| = 8B and Equation 1 becomes:

RedistVol(Djni — Digr) + 8max C), < 84+ 5mB (2)
P

Then we show that RedistVol(Din; — Diqr) = 5mB:

11
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e Initially, in D;,;, the group-2 and group-3 processors hosts 7B elements of data and since Vp, |Diar(p)| =
8B in Dy,,, the group-2 and group-3 processors each have to received at least B elements of data
during the redistribution phase. There are 5m of them. Thus at least 5m B elements of data have
to be communicated during the redistribution phase: RedistVol(D;n; — Diar) > bmB.

o If 5mB + 1 elements of data are communicated during the redistribution phase, we would have
RedistVol(Djni — Diar) > bmB+1 and 2 xmax, C), < 7, so max, Cp, < 3. Initially, in D,,;, group-1
processors host 5 maximal connected components and could have at most 3 connected components
in Dyqp. There are only two different ways to decrease the number of maximal connected compo-
nents in a processor: sending one entire maximal connected components to another processor or
connecting two existing components by receiving all the data between them. Both options are im-
possible in this case, because group-1 processors each would have to send or receive more than 2B
elements during the redistribution phase (6mB elements in total), which is impossible according
to Equation 2.

Thus RedistVol(D;n; — Dier) = 5mB and Equation 2 becomes:

maxC)p < 4 (3)
P

We now bound the number of elements sent and received by processors in group 2, 3 and 4. For
each processor Pi(k)7 we note Si(k) (respectively ng)) the amount of elements the processor Pi(k) sends

(respectively receives) during the redistribution phase. We naturally have

378" = 3" R = RedistVol(Dini — Dyar) = 5mB.
P ki

e Each group-2 processor Pi(z) and each group-3 processor Pi(?’) hosts 7B elements in the initial
distribution D;,;, and 8B elements in the final distribution D;,,.. Thus, they each have to receive
at least B elements of data. There are 5m of them so they can receive only B elements of data
each and no other processors can receive any data. We have Vi: Rgl) =0, R§2) =B, Rgs) = B and

R =0.

e Each group-1 processor PZ-(D hosts 8 B+a; elements in D,,;, and 8 B elements in D;,,-. Each group-4

) hosts 9B elements in Dini, and 8B elements in Dy,,.. Again, this means that each

) )

(4
processor P,

group-1 processor PZ-(1 can send only a; elements of data, each group-4 processor Pi(4 can send only

B elements of data and no other processors can send any data. We have Vi: Si(l) = a;, 51(2) =0,
S® =0 and S = B.

Initially, in D;,;, each group-3 processor PZ-(B) hosts 4 maximal connected components and can have

at most 4 maximal connected components in Dy,,, and it has to receive B elements. There are only
two different ways to decrease the number of maximal connected components in a processor: sending
one connected components to another processor or connecting two existing components by receiving
all the data between them. The first option is impossible since we have shown that processor PZ.(S)
can not send any data during the redistribution phase (S ) = 0). The second option appears to be
impossible too because each maximal connected components of Pi(?’) are separated by strictly more than
B elements and we have shown that processor Pi(?’) can only receive B elements during the redistribution

phase (RZ(»?’) = B). Thus, during the redistribution phase, each processor Pi(g) has to receive B elements
without increasing its number of connected components. The only way to do so is to receive the data
from its direct neighbors in the distribution D;,;. The only neighbors of Pl-(g) in Dy are some processors
in group 2 (that can not send any data), some other processors in group 3 (that can not send any
data) and some processors in group 4. So only processors in group 4 can send data to processors in
group 3. Since each of the 4m group-3 processors has to receive exactly B elements and each of the
4m group-4 processors has to send exactly B elements, we know that during the redistribution phase,
group-4 processors only sends data to group-3 processors (which only receive from group-4 processors).
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In particular, group-1 and group-2 processors do not send or receive any data to or from a
group-3 or group-4 processor.

Gathering all the results shown above, we can state that group-1 processors can only send their
a; elements to group-2 processors during the redistribution phase. If a processor Pi(l) splits its a;
consecutive elements and send them to two different group-2 processors, this would create an extra
maximal connected component on the group-2 processors. Since each of the m group-2 processors hosts
one maximal connected component initially and has to host less than 4 maximal connected components
in Dyyy, they can only receive 3 maximal connected components each, meaning that each group-1

processor has to send its a; elements to the same group-2 processor.

Let Aj be the set of the size of the maximal connected components received by P}gz) during the
redistribution phase. The Aj sets represent a partition of the a;’s and the cardinality of each set Ay is

exactly 3. Finally, Vk, zaieAk a; = R,(f) = B, which means that the Axs are a solution of Inst;.

Suppose now that Inst; has a solution. Let Ay be the 3-Partition of the integers a; and consider the
distribution D,,; described in Figure 3. To perform the redistribution from D;,; to D, each group-2
and group-3 processors have to send receive B elements of data, which means that RedistVol(D;n; —
Dsor) = bmB. In addition, in Dy, each processor hosts 8 B elements divided in 4 maximal connected
components. Thus, T/ (Ds,;) = 2 x 4+ B x 8B% = 8 +8B3 and T (D) = 8 + 5mB +8B3, which
means that Insty has a solution and concludes the proof. O

Theorem 4. STEPPART&REDISTRIB problem with the 1D-stencil kernel is strongly NP-complete.

Proof. The proof of Theorem 4 is similar to the one of Theorem 3. We consider the same instance
Insty of the 3-Partition problem [25]. We build the instance Insty depicted in Figure 3 for the STEP-
PART&REDISTRIB problem, as in the previous proof, except that we set Tyax = 8 + B +8B3. We want
to show that Insty has a solution if and only if Inst; has a solution.

Assume first that Inst, has a solution and let use the same notations as above. We have the inequality:

T:f:;:il (Dinis Diar) = RedistSteps(Dini — Dior) + 2 X max Cp + B? x max |Dyar(p)|
P P

<8+ DB+8B° (4)

As in the previous proof, we can easily show that Vp, |Di.(p)| = 8B.
Then we show that RedistSteps(Din; — Diar) = B:

e Initially, in D;,;, the processor P1(4) hosts 9B elements of data and since max, |Di,r(p)| = 8B in
Diar, the processor P1(4) has to send at least B elements of data during the redistribution phase.

So RedistSteps(Dini — Diar) > B.

e If one processor sends B + 1 elements of data during the redistribution phase, we would have
RedistSteps(Dini — Diar) > B + 1 and 2 X max, C, < 7, so max, C, < 3. Initially, in D;,;, pro-
cessor Pl(l) hosts 5 maximal connected components and could have at most 3 maximal connected
components in Dy,.. There are only two different ways to decrease the number of maximal con-
nected components in a processor: sending one entire maximal connected components to another
processor or connecting two existing components by receiving all the data between them. Both
options are impossible in this case, because processor Pl(l) would have to send or receive more than
2B elements during the redistribution phase, which is impossible according to Equation 4.

Thus RedistSteps(Din; — Diar) = B and Equation 4 becomes:

maxC)p < 4 (5)
p

We now bound the number of elements sent and received by processors in group 2, 3 and 4. We
naturally have

vPY, maz(SM, RM) < RedistSteps(Dini — Dyar) = B.
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e Each group-2 processor P¢(2) hosts 7B elements in the initial distribution D;,;, and 8 B elements in
the final distribution Dy,,.. This means that Rl@) — Sl-(2) = B. Since maw(S’i@), REZ)) < B, we have:
R{® =B and S{* = 0.

e Each group-3 processor P® hosts 7B elements in Dini, and 8B elements in Dy,.. Again, this

K3
means that RZ(.3) — Si(3) = B and since ma:c(Sl.(3),R§3)) < B, we necessarily have: Ri(3) = B and
s® —o.

e Each group-4 processor Pi(4) hosts 9B elements in Dy,;, and 8B elements in Dy,,-. Again, 51(4) —
RZ(»4) = B and we have Ri(4) =0 and Si(4) =B.

From this results, using the same reasoning as in the previous proof, we can show that:

e group-1 and group-2 processors do not send or receive any data to or from a group-3 or group-4
processor.

e Each group-1 processor do not keep any data it received during the redistribution phase.

e Each group-1 processor has to send its a; elements to the same group-2 processor.

By noting A the set of the size of the maximal connected components received by P,52) during the
redistribution phase, we show that the Ags are a solution of Inst.

Suppose now that Inst; has a solution. As in the previous proof, we can show that the distribution
Dsor described in Figure 3 is a solution for Insts, which concludes the proof.
O

6 Experiments

6.1 Setup

We have implemented the 1D-stencil kernel of Section 5 on top of the PARSEC runtime [26, 27]. In addi-
tion, we have also implemented a QR factorization algorithm on top of PaRSEC, in order to experiment
with a widely used computation-intensive, numerical linear algebra routine.

The PaRSEC runtime deals with computational threads and MPI communications. It allows the
user to define the initial distribution of the data onto the platform, as well as the target distribution
for the computations. Data items are first moved from their initial data distribution to the target
data distribution. Then computations take place, and finally data items are moved back to their initial
position. It is important to stress that the PARSEC runtime will overlap the initial communications due
to the redistribution with the processing of the stencil algorithm, so that the total execution time does
not strictly obeys the simplified model of the previous sections. However, choosing a good data partition
(leading to an efficient implementation of the computational kernel, either 1D-stencil or QR), and an
efficient compatible data distribution (leading to less communication during the redistribution) is still
important to achieve high performance.

Experiments have been conducted on Dancer, a small cluster hosted at the Innovative Computing
Laboratory (ICL) in Knoxville, TN. This cluster has 16 multi-core nodes, each equipped with 8 cores,
and an InfiniBand 10G interconnection network. FEach node features two Intel Westmere-EP E5606
CPUs at 2.13GHz. The system is running the Linux 64bit operating system, version 3.7.2-x86_64. The
software was compiled with the Intel Compiler Suite 2013.3.163. BLAS kernels were provided by the
MKL library, and OpenMPI 1.4.3 was used for MPI communications by the PaRSEC runtime version
1.1. Each computational thread is bound to a single core using the HWLOC 1.7.1 library. We use all 16
nodes, whose aggregated theoretical peak performance is 1,091 GFLOP /sec.
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6.2 Stencil

The stencil algorithm described in Algorithm 3 can use diverse patterns to update the data, depending
upon the target application. In our experiments, data items operated upon are blocks of 1.6 x 10°
double-precision floats. Experimentally we observe that the average communication time of such blocks
between two nodes of Dancer is 100 milliseconds. The data items are initially distributed on the 16
processors according to a random balanced distribution as described in Section 4.3. We used a set of 30
randomly generated initial data distributions.

Figure 4 depicts the performance of the 1D-stencil algorithm when the update kernel takes in average
100 milliseconds to compute the new value of one data item, so that the communication-to-computation
ratio iS Teomm/Teate = 1. Each sub-figure represents a different number of stencil iterations (K = 0 to
9). In each sub-figure, we have executed K stencil iterations with 4 different strategies. In the owner-
computes strategy, the data items are not moved and the stencil algorithm is applied on the initial
distribution. In the other strategies, we redistribute the data items towards three target distributions,
each compatible with the canonical data partition P.., described in Section 5.2: (i) the distribution
Dean = Pean with the original (arbitrary) labeling of the processors; (ii) the distribution that minimizes
the volume of communications D,,,;; and (iii) the distribution that minimizes the number of redistribution
steps Dsieps- We compute the processing time of the redistribution followed by the K stencil iterations.
Each cross shows the performance for one of the 30 initial data distributions, and the plain lines shows
the average performance on the 30 initial data distributions. In all sub-figures, we observe that the
performances for target distributions D, and Dgeps are indistinguishable. This is in accordance with
the results in Section 4.3 showing that, on random balanced initial distributions, Algorithm 1 and
Algorithm 2 provide similar performances for both metrics. We observe that the processing time of the
three redistribution strategies slightly increases with the number of stencil iterations, i.e. one stencil
iteration is achieved very fast (roughly 400 milliseconds for 16 data items per processor) when processed
on the optimal data partition described in Section 5.2. However, the owner-computes strategy is less
efficient as soon as we have to process more than one stencil iteration. In the top-left sub-figure, K = 0 so
that no iteration is executed. Data items are moved from their initial processor to their target processor
and then moved back onto their initial position. It thus depicts the performance of two consecutive
redistributions. The owner-computes strategy has a processing time close to zero which corresponds
to the overhead of the PaRSEC runtime. Both redistribution strategies computed by Algorithm 1 and
Algorithm 2 provide a 20% improvement over D.,,. This improvement decreases when the number of
iterations increases. Indeed, the only difference between the performances of Dgp,, Dyor and Diyeps comes
from the redistribution phase: the heavier the computation, the less significant the redistribution phase.

— Onwer-computes
0 stencil step 1 stencil step 14 3 stencil steps . Targetn,

— TargetD,,

— Target D,

7 6 8 10 12 14 16 T 6 8 10 12 14 16 @ 6 8 10 12 14 16
Data items per proc Data items per proc Data items per proc

5 stencil steps 7 stencil steps 40 9 stencil steps

T 6 g 10 12 1 16 @ 6

8 1 12 14 16
Data items per proc Data items per proc

Figure 4: Performance of the stencil algorithm for Teomm /Teaie = 1.

Figure 5 depicts the performance of the 1D-stencil algorithm when the update kernel is less expensive,
0 that Teomm /Teate = 10. Hence, in this experiment, the cost of communicating a data element is greater
than the computation time and we have to take special care to the redistribution. With a faster computing
kernel, the overall computation time is inferior to the one in Figure 4 but the -owner-computes strategy
is still less efficient the redistributing strategies as soon as we have to do more than one iteration. The
difference between the performances of Deapn, Dyor and Dgteps is smaller in percentage than in Figure 4.
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Figure 5: Performance of the stencil algorithm for 7¢omm /Teale = 10.

Altogether, the experiments show that (i) redistributing towards a better data distribution is better
than performing the algorithm in place with the random initial distribution, as soon as the computational
cost in non-negligible; and (ii) redistributing towards a data distribution that minimizes the cost of the
redistribution phase rather than towards an arbitrary one does improve the performance, especially when
the time to communicate a data item is significant.

6.3 QR factorization

In this section, we deal with a more compute-intensive kernel, namely the QR factorization, which consists
in decomposing a square matrix A in the product of two matrices @@ x R such that @ is an orthogonal
matrix and R is an upper triangular rectangle matrix. QR factorization is a widely used linear algebra
algorithm allowing to solve linear systems and linear least squares problems.

6.3.1 Framework

To optimize performance, the matrix is usually stored in tiled form: A has n tiles per row or column
and each tile is a block of ny x n; floating point numbers. The matrix is then factored with a tiled QR
factorization algorithm using orthogonal Householder matrices, as in [28, 29]

The N = n? matrix tiles are the data items of the application. Initially, the tiles are arbitrarily
distributed, and this initial distribution may not be suitable for the QR factorization. We aim to
redistribute the N data items towards a better data partition. However, contrarily to the 1D-stencil
algorithm, the QR factorization algorithm has a complex workflow and it is impossible to predict its
processing time accurately: given a data partition P, we cannot easily compute Tormp (P).

Even though there is no explicit model for the cost of a QR factorization performed on a specific
data partition, some distributions are known to be well-suited. A widely-used data partition consists in
mapping the tiles onto the processors following a 2D block cyclic partition. The P processors (numbered
from 0 to P — 1) are arranged in a p x ¢ grid where p x ¢ = P. Matrix tile 4, ; is then mapped onto
processor (i mod p) X p+ (5 mod ¢). In the following, this data partition will be referred to as Piar,
and the objective is to redistribute the IV data items towards a distribution compatible with Py,

Similarly to Section 6.2, we compare 4 redistribution strategies. In the owner-computes strategy,
data items are not moved and the QR factorization is performed in place. In the other strategies, we
redistribute data items towards three target distributions compatible with Piq: (1) the distribution
Dean = Piar with the original (arbitrary) labeling of the processors; (ii) the distribution that minimizes
the volume of communications D,,;; and (iii) the distribution that minimizes the number of redistribution
steps Dsieps-

6.3.2 Setup

A highly optimized version of the QR factorization implemented on top of the PaRSEC runtime is
available in the DPLASMA library [30]. We have modified this implementation to deal with different
data distribution. We use a wide range of matrix sizes, with tiles of size n, = 200 x 200 double-precision
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floating point numbers. Our objective is to highlight the impact of the targeted data distribution on
the performance of the QR algorithm, but a tile size of 200 x 200 is reasonable as ensures near peak
performance on the target execution platform.

As already mentioned, real-life distributions are not random. We conduct experiments on 2 different
sets of initial distributions for the matrix tiles, one artificially generated and one modeling an Earth
Science application [31]:

o SkewedSet: Matrix tiles are first distributed following an arbitrary 2D block cyclic distribution
(used as reference) and, then, half of the tiles are randomly moved onto another processor. The
processor with index ¢ € [0, P — 1] has a probability % to receive each tile. Thus, the work
load among processor is likely to be imbalanced. The redistribution strategies toward D,,; and
Dyteps should find the 2D block cyclic distribution used as reference and move only half of the tiles,
while the redistribution towards the arbitrary distribution D, can potentially move all of them.

e ChunkSet: This distribution set comes from an Earth Science application [31]. Astronomy tele-
scopes collect data over days of observations and process them into a 2D or 3D coordinate system,
which is usually best modeled as a matrix. Then, linear algebra routines such as QR factorization
must be applied to the resulting matrix. The collected data are stored on a set of processor in a
round-robin manner, ensuring spacial locality of data that are observed near in time. If a certain
region of Earth is observed twice, the latest data overwrites the previous one. We generated a set
of initial distribution fitting the telescopes behavior. Figure 6 depicts the data distribution of a
matrix in ChunkSet where matrix tiles of the same color are initially stored on the same processor.

Figure 6: The initial distribution of a tiled matrix in ChunkSet.

6.3.3 Results

Table la presents the results of the experiments for initial distributions in SkewedSet. Each line cor-
responds to the average results on 50 matrices with n x n tiles. Columns 1 to 4 give the volume of
tiles communicated during the redistribution phase for the four strategies. As expected, redistributing
towards the arbitrary distribution D, requires moving almost every tile while redistributing towards
Dyot O Dgeps involves almost twice as less communications. Columns 5 to 8 present the number of
redistribution steps required to schedule the redistribution for the four strategies. We observe that D,
or Dgeps are identical, since Algorithm 1 and Algorithm 2 manage to find the 2D block-cyclic distri-
bution used as reference when building SkewedSet. Columns 9 and 10 present the total volume of tiles
communicated during the QR factorisation. It appears that redistributing towards a 2D block-cyclic
partition divides by more than 3 the amount of communications involved in the QR factorization. The
gain obtained by redistributing the data according to a suitable partition is significant, and can be seen
in the total completion times shown in columns 11 to 14.

18



SUOTINQLIISIP [RIIUL JUSISHIP oY) I0] S}MSY :T o[e],

12g3umy) 10§ sYMsaY ()

9¢°66 | 0L°96 | 88°00T | 69°FIT 156 ‘69 11€ 'SP 156 1S6 | €96 0 ove ‘L 661°L | TLGL 0 88
13°8S | 6°¢S | TFP€S | 9119 ove‘Le 909 ‘6% 659 099 | 189 0 GLS'Y | 657 T | 86S ‘T 0 0L
1€°6¢ | 196s | ¢1°9%¢ | g 0¢ 699 ‘91 G6G ‘61 8¢e¢ 8¢¢ | 6%¢ 0 816G Ge¥ ‘G | 925 °C 0 45
198 | €28 | LL8 | SO'IT 0gL‘s 08¢ ‘9 (41! erT | €ST 0 gL0'1T 700°'T | L80°T 0 7e
68T | 681 6T £9°¢C 1¢8 0F11T ¢ 1€ | 78 0 £6G S0G Vg 0 91
doys | [oa | uuweo | mumo doys-joa-uued | 10umo doys | [oa | uweo | moumo doys | [oa | uweo [ wumo [ uw
awry uonerduo)) “10e] Y Ul wrwod Jo [oA || oseyd -ystpax oy ur sdogs Jo N || oseyd -)SIpal oY) Ul ‘WO JO TOA
195pamayg 103 synsey] (e)
¥1°66 | 1976 | L8°00T | Z6°FVE 1$6 ‘69 LGL°61¢ || 6I0°T | 6I0°T | 60°T 0 g9 c19°¢ | T6¥ L 0 88
ge'eS | 1T°0S | ¥¥'€S | 96°C8I o6 ‘LE LTI 711 8€9 8¢9 089 0 982 ‘% 982G | 68L°F 0 0L
16°2¢ | L0'€T | GL°9T | T1°8L 699 ‘9T L0L ‘6¥ gge £ge 8LE 0 1821 LG2°T | 919°C 0 45
87’8 | ¥I'8 906 (44 03L ‘S 81T 'GT 671 671 281 0 8€S 86C | 6TT'T 0 7e
68°T | g0c | ¥6'1 7e'¢e 1€8 €L6°T 48 45 Lg 0 611 611 67 0 91
doys [ oa [ wueo [ oumo de)s-Toa-uued IoUMO doys | [oa | uwuen | mumo doys | (oa | wumeo | moumo [ uw

o) uorgerduwos [ela],

“10%J M) Ul "WUWO0D JO “[OA

oseyd -gsipar oy} ur sdeis jo ‘qN

oseyd -3sIpol oY) Ul

“UIW0d JO ‘TOA

19



Table 1b presents the results of the experiments for initial distributions in ChunkSet. Each line
corresponds to the average results on 50 matrices, as before. The three redistribution strategies perform
similarly, with around 90% of the tiles moved during the redistribution phase. Contrarily to the previous
case, it appears that redistributing towards a 2D block-cyclic partitioning does not lead to a reduction
of the volume of communication involved during the QR factorization. Indeed, the owner-computes
strategy requires fewer communications than the other strategies for larger matrices in ChunkSet, due
to the chunk distribution of the tiles. However, it does not lead to better performance results. Indeed,
the three redistribution strategies require more communications to ensure a better load balancing, which
leads to a 10-15% improvement on the total completion times compared to the owner-compute strategy.

In summary, we conclude that redistributing towards a suitable data partition for the QR factorization
leads to significant improvement compared to not redistributing the data as for the owner-computes
strategy. Initial distributions in SkewedSet are a good example where redistributing data is essential.
Sometimes, like in ChunkSet, redistribution strategies involve to a bigger amount of communications
during the QR factorization but lead to a better load balancing across processors, which is enough to be
profitable in the end.

7 Conclusion

In this paper, we have studied the problem of finding the best data redistribution, given a target data
partition. We have used two cost metrics, the total volume of communication and the number of par-
allel redistribution steps. We have provided optimal algorithms for both metrics, and shown through
simulations that they achieve significant gain over redistributing to an arbitrary fixed distribution. We
have also proved that finding the optimal data partition that minimizes the completion time of the re-
distribution followed by a 1D-stencil kernel is NP-complete. Altogether, these results lay the theoretical
foundations of the data partition problem on modern computers.

Admittedly, the platform model used in this paper will only be a coarse approximation of actual
parallel performance, because state-of-the-art runtimes use intensive prefetching and overlap commu-
nications and computations. Thus, experimental validation of the optimal algorithms on a multicore
cluster have been presented for an 1D-stencil kernel and a dense linear algebra routine. The new redis-
tribution strategies presented in this paper lead to better performance in all cases, and the improvement
is significant when the initial data distribution is not well-suited for the computational kernel.

Future work will be devoted to further investigating the Earth Science application. We have restricted
to redistributing data towards the canonical 2D block-cyclic partition, but more experiments are needed
to determine the best partition, given the initial distributions that typically arise for this application.
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