
Simplified Grid Computing through Spreadsheets and NetSolve

David Abramson1, Jack Dongarra2, Eric Meek2, Paul Roe3, Zhiao Shi2
1Monash University, Australia

2University of Tennessee, Knoxville, USA
3Queensland University of Technology, Australia

David.Abramson@infotech.monash.edu.au, dongarra@cs.utk.edu, meek@cs.utk.edu,
p.roe@qut.edu.au, shi@cs.utk.edu

Abstract

Grid computing has great potential but to enter
the mainstream it must be simplified. Tools and
libraries must make it easier to solve problems by
being simpler and at the same time more
sophisticated. In this paper we describe how Grid
computing can be achieved through spreadsheets. No
parallel programming or complex tools need to be
used. So long as dependencies allow it, formulae in a
spreadsheet can be evaluated concurrently on the
Grid. Thus Grid computing becomes accessible to all
those who can use a spreadsheet. The story is
completed with a sophisticated backend system,
NetSolve, which can solve complex linear algebra
systems with minimal intervention from the user. In
this paper we present the architecture of the system
for performing such simple yet sophisticated grid
computing and a case study which performs a large
singular value decomposition.

1. Introduction

Many have written about the potential of Grid
computing. Yet it is only accessible to the few with
expert knowledge on how to use this powerful
resource. Real users want to use the Grid through
simple and familiar tools such as Matlab™, Excel™,
and web browsers.

In this paper we show how an end user tool,
spreadsheets, can be used to drive the Grid through
sophisticated libraries, in particular NetSolve [2]. We
are able to use the Excel spreadsheet application to
transparently drive the Grid. No special use need be
made of Excel – nor is a special spreadsheet
application required. Functions from NetSolve
which are available on the Grid may be imported into

Excel and used in spreadsheet formulae. Formulae
are subject to data parallel evaluation and task
parallel evaluation. That is, independent cells and
formulae will be evaluated concurrently with no
special effort on behalf of the user. Thus spreadsheets
may be used to script the Grid. Spreadsheets are
popular because they are easy to use and modify, and
they support numerical data analysis without
programming. Thus the Grid becomes accessible to
all those who can use a spreadsheet.

A feature of modern spreadsheets is their
capability to be extended; in particular custom
functions may be incorporated into them, for example
complex simulation functions and computational
experiments. For these reasons spreadsheets make an
ideal front-end for numeric computing since they
support pre and post processing of data without the
need for programming.

Existing spreadsheets, such as Microsoft Excel,
have inbuilt sequential calculation mechanisms.
Thus, they are unable to evaluate multiple cells
concurrently using the standard execution mechanism
in the calculation engine. To solve these problems we
have constructed an architecture for Grid computing
using Active Sheets [1,6] and NetSolve.

Active Sheets comprises a plug-in for Excel and a
database (job manager) to cache results. It supports
the asynchronous evaluation of spreadsheet formulae.
This enables jobs to be generated from Excel and
results to be received, and cached in the database for
subsequent use. Results can be returned in any order
and “downstream” calculations only fire when all of
the inputs are available. Thus, the spreadsheet can be
used to perform quite complex parallel computations.
The database also has the side effect of allowing off-
line evaluation.

NetSolve users normally have to write code, either
in a conventional language like FORTRAN or C, or a

high level mathematic language like MatLab, to
perform computations. Thus, the scripting of
NetSolve functions needs to be specified
programmatically. Using Active Sheets, meta-data
which describes NetSolve functions can be
downloaded and used to automatically generate
proxy code for Excel functions. This enables web
services to connect Active Sheets to NetSolve with
no programming required. At the backend, the
NetSolve system is able to schedule computation
across NetSolve servers thereby minimizing any
intervention needed by the user to drive the Grid.

This paper describes how a conventional
spreadsheet may be evaluated in parallel without
modifying Excel’s core execution engine. The
parallel evaluation mechanism is encoded using
custom functions, and works in conjunction with the
standard built in sequential evaluation mechanism of
spreadsheets. The paper begins with an overview of
Active Sheets and NetSolve. We then discuss an
architecture for Grid computing using these systems.
This is followed by a case study that illustrates the
power of such a system.

2. NetSolve

 NetSolve is a client-server system that enables
users to solve complex scientific problems remotely.
The system allows users to access both hardware and
software computational resources distributed across a
network. Some of the goals of the NetSolve project
include ease-of-use for the user, efficient use of the
resources, and the ability to integrate any arbitrary
software component as a resource into the NetSolve
system. Figure 1 shows the infrastructure of
NetSolve and its relation to the application that use it.
The shaded parts of the figure represent NetSolve
system. We can observe that NetSolve acts as glue
layer that brings application or user together with the
hardware and/or software it requires to complete its
useful work, which is the reason why systems like
NetSolve are sometimes called grid middleware.

 The major components of the NetSolve system
are the NetSolve agent, an information service and
resource scheduler, NetSolve server, a networked
resource that serves up computational hardware and
software resources, and the NetSolve client libraries,
which allows users to instrument their applications
with NetSolve calls for remote computational
services. NetSolve agent is the gateway to the
system. As an information service, the agent
maintains a database of NetSolve servers along with
their capabilities (including hardware performance

and available software) and dynamic usage statistics.
The agent attempts to find the server that will service
the request the quickest using the information it
possesses. It also balances the load amongst its
servers and keeps track of failed servers.

The NetSolve server is the computational
backbone of the system. A computer host becomes a
NetSolve server when it is configured to run the
NetSolve serve daemon. The server can run on single
workstation, clusters of workstations, symmetric
multi-processors or machines with massively parallel
processors. NetSolve problem description file (PDF)
is used to describe a computational problem formally.
The PDF specifies basic information about a problem
such as problem name, inputs and outputs. It also
contains the information of libraries that implements
any underlying functions or services being interfaced
by NetSolve. In essence, the PDF defines a wrapper
that NetSolve uses to call the function being
incorporated

Figure 1. An architectural overview of
NetSolve system

 At the top tier of Figure 1, the NetSolve client
library is linked with the user application. NetSolve
supports program development in a variety of
programming environments. Interactive
environments such as Matlab [7] and Mathematica

[8] are easy to use and often relieve the user from
details of variable declaration, memory allocation and
other routine tasks. The programming interfaces for
which NetSolve APIs have been developed are
FORTRAN and C. Currently a native .NET interface
is being developed, which will allow all native .NET
applications to leverage the power of grid computing
using NetSolve.
 NetSolve continues to emerge as one of the
leading programming paradigms for the Grid. Its
light-weight and ease of use make it an ideal
candidate for middleware and as it continues to
evolve, the NetSolve system will be extended to
become applicable to and even wider range of
applications.

3. Active Sheets

Active Sheets features a component based spread

sheet interface for specifying computational
experiments. Figure 1 gives an overview of the
Active Sheets vision. This allows computational
experiments to be simply and easily driven from a
spreadsheet.

Backend computations are expressed through

spreadsheet formula. These are automatically
scheduled according to functional dependencies in a
dataflow style, see Figure 3:. In addition operations
themselves may be data parallel, implemented
through Excel array formulae.

 A B C D
1 1 2 3 4
2 =A1+B1 =C1+D1
3 =A2*C2

We have chosen to use Microsoft Excel as the

base spreadsheet application, and have used
Microsoft .NET plug-in to control Excel. The plug-
in uses .NET remoting to connect to a local job
manager, which caches results and manages
connections to back-end machines such as NetSolve.
Figure 4 shows the Active Sheets architecture.

The job manager caches results and hence

decouples Excel from backend servers. This allows
Excel to be used in a disconnected mode, and for the
backend computations to be undertaken without
Excel running. The job manager also supports a plug-
in architecture for adapters; this enables different
backend machines to be supported through
corresponding adapters. The adapters are .NET
assemblies which are dynamically loaded by the job
manager.

*

1

+

2

+

3 4

Job
Manager

AS
.NET …

Adapters

NetSolve

Web Svc.

…

Excel
Add-in

Figure 4. Active Sheets Architecture

Figure 2: Active Sheets Overview

Figure 3. Data flow and spreadsheet equivalent

4. Driving NetSolve from Active Sheets

We have constructed two options for connecting
Active Sheets to NetSolve. The first is to produce a
custom NetSolve adapter for Active Sheets which
understands the native NetSolve communications
protocol. This protocol operates over various TCP
ports, and is in widespread use. The disadvantage of
this is that it requires the designated TCP ports to be
open and so does not always work across the
Internet. The second approach is to create a web
service wrapper for NetSolve using Microsoft .NET.
This allows Active Sheets to drive NetSolve from
any network so long as HTTP (port 80) is available.
This is shown in Figure 5.

Figure 5. Active Sheets NetSolve
Architecture

The system can be monitored at all points. Active

Sheets has an option to show the jobs which are
outstanding in the spreadsheet. The Job manager has
a user interface which allows the status of all jobs,
cached values, backend connections, and loaded
adapters to be viewed. Finally a GUI tool enables the
status of the NetSolve back-ends to be viewed.

5. An application: SVD

 A SVD application has been developed to
demonstrate the unique combination of NetSolve and
Active Sheets. Singular Value Decomposition (SVD)
[9] is a useful mathematical tool for finding and
removing information stored in matrix form based on
its significance to the rest of the data. SVD is widely
used in the area of, digital signal processing [10],

information retrieval [11] and analysis of gene
expression [12].

Figure 6. Usage Scenario of NetSolve-Active
Sheets

Figure 6 shows the execution scenario of an SVD
application using the Active Sheets/NetSolve
system. Two matrices are laid out as separate tables
in an Excel spreadsheet. When the user then submits
a problem, Active Sheets dispatches and manages
the tasks from the Excel spreadsheet to the back-end
grid computing server(s). It also handles the
completion of the tasks by ensuring the data is
returned to the correct cell(s) in the spreadsheet. A
plug-in adapter is used by Active Sheets to
encapsulate the connection to the computational
grid. When the user submits a problem and selects
NetSolve as the computational grid, the Active
Sheets engine will use the NetSolve adaptor to
handle communication with NetSolve. The
NetSolve adaptor will then forward all the user
requests from the spreadsheet to the NetSolve
servers in parallel. After the problems have been
solved simultaneously and the results are ready, the
NetSolve adaptor will retrieve the results from the
NetSolve server(s).

The NetSolve adaptor contacts NetSolve through
.NET web services [13] that have been implemented
via SOAP over HTTP. The NetSolve web services
are created for the sake of better interoperability and
avoidance of firewall issues. Currently, the prototype

NetSolve web service implements dgesvd (a singular
value decomposition routine from the LAPACK [14]
mathematical library) in a non-blocking fashion.
Invoking the dgesvd web method creates a new
thread and immediately returns. The web service
employs a .NET DLL which is built from an
unmanaged NetSolve DLL. The unmanaged DLL
takes care of all the underlining communication with
NetSolve. The problem is then submitted to NetSolve
using the dgesvd problem and solved. The result is
returned to Active Sheets through the adapter and put
into the correct cells. Finally, the singular values
returned from the NetSolve server can be merged and
placed in a results table in Excel.

If C was used to perform the same operation, a
high level of programming proficiency would be
required. For example, several hundred lines of
nontrivial C code would be necessary to import the
data, submit the data to NetSolve and finally merge
the results. This is very complicated compared to the
simple importing of data into, and the problem
submission from, an Excel spreadsheet.

6. Related work

 There are a few commercial products for
performing parallel Monte Carlo simulation using
spreadsheets. However these are restricted to Monte
Carlo simulation applications constructed using the
supplied modeling functions. Palisade has a product
called @RISKAccelerator™; this supports the
parallel evaluation of @RISK simulations [4].
Decisioneering has a similar product called Crystal
Ball Turbo™ which parallelises their Monte Carlo
simulation addin for Excel (Crystal Ball) [3].
Platform computing also have an Excel add-in for
performing the data parallel evaluation of cells in its
Platform Symphony™ software [5]. However, none
of these systems supports the general parallel
evaluation of spreadsheet functions, as does Active
Sheets, nor do they support pluggable backend Grid
computers.

7. Conclusions

This paper has shown how Grid computing may
be simplified through an architecture which enables
spreadsheets to use sophisticated numeric libraries
through a web service enabled NetSolve. A
mechanism for parallelizing traditional spreadsheets
has been defined. The mechanism is based on the
idea of dataflow and is particularly useful in that it
does not require modification to spreadsheet

applications. The parallel spreadsheet tool interfaces
with NetSolve through both custom TCP protocols
and web services. The latter uses a web service
wrapper to web enable NetSolve. On going work
concerns how to use large datasets resident outside
Excel. For further information on Active Sheets and
NetSolve see [1,2], both systems are available for
download and use.

8. Acknowledgements

This research was funded in part by Microsoft
research and by the Applied Mathematical Sciences
Research Program of the Office of Mathematical,
Information, and Computational Sciences, U.S.
Department of Energy under contract DE-AC05-
00OR22725 with UT-Battelle, LLC. We wish to
thank Gavin Cheuk for his contribution towards the
development of Active Sheets, and the DSTC
(www.dstc.edu.au) for their continued support.

9. References

[1] Abramson, D., Roe, P., Kotler L and Mather, D.,
“Active Sheets: Super-Computing with Spreadsheets”. 2001
High Performance Computing Symposium (HPC'01),
Advanced Simulation Technologies Conference, April 22-
26, 2001, pp 110 – 115, Seattle, Washington (USA).
http://www.citi.qut.edu.au/ActiveSheets/

[2] NetSolve: Past, Present, and Future - a Look at a Grid
Enabled Server, S. Agrawal, J. Dongarra, K. Seymour, and
S. Vadhiyar, Grid Computing: Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and T. Hey,
eds., John Wiley & Sons, April 2003, ISBN 0-470-85319-
0. http://icl.cs.utk.edu/netsolve

[3] Decisioneering Inc. http://www.decisioneering.com/

[4] Palisade Corporation, http://www.palisade.com/

[5] Platform Computing, “Adapter for Excel”
http://www.platform.com/products/symphony/adapter/inde
x.asp

[6] Abramson D., Sosic R., Giddy J. and Hall B., “Nimrod:
A Tool for Performing Parametised Simulations using
Distributed Workstations”, The 4th IEEE Symposium on
High Performance Distributed Computing, Virginia,
August 1995.

[7] The MathWorks Inc. Using MATLAB Version 5. The
MathWorks Inc., 1992.

[8] Wolfram S. The Mathematica Book(3rd edition).
Wolfram Media Inc. and Cambridge University Press,
1996.

[9] Golub G., Van Loan C. F., Matrix Computations. The
John Hopkins University Press. ISBN 0-8018-5414-8.
1996.

[10] Deprette, E. F, ed. SVD and signal processing,
Algorithms, Applications and Architectures. North Holland.
1988.

[11] Furnas G.W., Deerwester S., Dumais S. T., Landauer
T. K., Harshman R. A., Streeter L. A., and Lochbaum K. E.
Information retrieval using a singular value decomposition
model of latent semantic structure. In Proceedings of the
Eleventh International Conference on Research &
Development in Information Retrieval, pages 465-480,
1988.

[12] Wall, M.E., Dyck P.A., Brettin T.S. SVDMAN –
singular value decomposition analysis of microarray data.
Bioinformatics 6:566-568. 2001.

[13] Microsoft Web Services Developer Center:
http://msdn.microsoft.com/webservices/

[14] LAPACK Users’ Guide, 3rd Edition, E. Anderson, Z.
Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammaring, A. McKenney,
and D. Sorensen, SIAM Publication, Philadelphia, 1999,
ISBN 0-89871-447-8.

