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Summary

We propose an adaptive scheme to reduce communication overhead caused by data movement

by selectively storing the diagonal blocks of a block-Jacobi preconditioner in different precision

formats (half, single, or double). This specialized preconditioner can then be combined with any

Krylov subspace method for the solution of sparse linear systems to perform all arithmetic in

double precision. We assess the effects of the adaptive precision preconditioner on the iteration

count and data transfer cost of a preconditioned conjugate gradient solver. A preconditioned con-

jugate gradient method is, in general, a memory bandwidth-bound algorithm, and therefore its

execution time and energy consumption are largely dominated by the costs of accessing the prob-

lem's data in memory. Given this observation, we propose a model that quantifies the time and

energy savings of our approach based on the assumption that these two costs depend linearly on

the bit length of a floating point number. Furthermore, we use a number of test problems from

the SuiteSparse matrix collection to estimate the potential benefits of the adaptive block-Jacobi

preconditioning scheme.
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1 INTRODUCTION

Krylov subspace-based iterative methods for the solution of sparse linear systems typically benefit from the integration of a preconditioner that

improves the conditioning of the linear system and, consequently, accelerates the convergence process.1

A popular preconditioner is the Jacobi preconditioner and its block-Jacobi variants. Preconditioners of this class are based on simple

(block-)diagonal scaling, which makes them highly parallel schemes suitable for fine-grained parallelism, and they have proven to provide a fair

acceleration for many applications. For example, block-Jacobi preconditioners can efficiently exploit the massive hardware concurrency of graphics

processing units (GPUs).2,3

For virtually all current hardware technologies, the computational performance of preconditioned Krylov methods is limited by the memory

bandwidth and depends heavily on the cost of memory access. Furthermore, for current architectures, data movement is not just a performance

constraint but also a major source of energy consumption. Therefore, with highly parallel high-performance computing (HPC) systems moving in

the direction of an increasing floating point operations (FLOP) per byte ratio, innovative techniques to reduce communication and data transfers

are critical for future applications. 4-7
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When a block-Jacobi preconditioner is combined with a simple Krylov iterative method, like the preconditioned conjugate gradient (PCG) method,

which is suitable for the solution of sparse linear systems with a symmetric positive–definite (SPD) coefficient matrix1—a significant portion of the

accesses to main memory is caused by the application of the preconditioner at each iteration. To decrease the costs of this stage, we analyze a version

of the block-Jacobi preconditioner that selectively stores part of its data in low precision. This strategy reduces the data access volume during the

application of the block-Jacobi preconditioner. We emphasize that, for a memory bandwidth-bound operation such as the PCG method, the time and

energy savings of operating with reduced precision mostly come from the reduction of the volume of data being transferred, not from the increase

in the single instruction multiple data (SIMD) capacity associated with using reduced precision arithmetic. Therefore, our solution aims to reduce

the cost of main memory data transfers due to the preconditioner application only. All other data (including the sparse matrix entries) as well as all

arithmetic occurs in the conventional double precision. In more detail, our work makes the following contributions.

• We propose an adaptive preconditioner that stores the diagonal Jacobi blocks in the preconditioner using half, single, or double precision, depend-

ing on the conditioning and data range. In our scheme, the preconditioner blocks are retrieved from memory in the corresponding format and

transformed into double precision once in the processor registers; all arithmetic operations are then performed at double precision level. As

stated earlier, the entries for the sparse matrix and recurrence vectors for the conjugate gradient (CG) method (or any other Krylov subspace

method) are maintained and retrieved in main memory using standard double precision.

• We investigate the impact that storing a block-Jacobi preconditioner in low precision exerts on the PCG convergence rate and the effectiveness

of the adaptive precision block-Jacobi at maintaining the reference convergence rate.

• We develop a model that quantifies the runtime and energy savings based on the assumption that these costs depend linearly on the bit length

of a floating point number.

• We use a set of test problems from the SuiteSparse matrix collection8 to analyze the robustness of the adaptive preconditioning in a CG method

and to estimate the potential energy savings.

The use of mixed precision in preconditioned iterative solvers was previously explored with a primary focus on reducing the cost of arithmetic

operations. Arioli and Duff9 showed that, when using a lower-upper (LU) preconditioner computed in single precision within a flexible generalized

minimal residual method (GMRES) based iterative solver (which enables one to use a non-constant preconditioning operator), backward stability

at double precision can be preserved even for ill-conditioned systems. Carson and Higham10 provides a detailed error analysis of LU-based mixed

refinement approaches for ill-conditioned systems. In another work of the aforementioned authors,11 the same authors go as far as using half preci-

sion for computing an LU preconditioner that is used in the solution process of a GMRES solver that is part of a mixed precision iterative refinement

process.

Our approach is fundamentally different. We do not aim to employ reduced precision in the generation or application of the preconditioner nor

in any other arithmetical computation. Instead, we preserve full precision in all computations but store part of the preconditioner at a reduced

precision. After reading the preconditioner stored at reduced precision, all data is converted to full precision before proceeding with the arithmetic

operations in the actual preconditioner application. We argue that this approach has significantly higher potential for runtime- and energy savings

than the previously proposed strategies for three reasons. (1) Since the performance of sparse linear algebra algorithms is typically memory bound,

the performance benefit obtained by reducing the data access volume is greater than the benefit obtained by reducing the cost of FLOPs. (2) Since the

energy cost of data access is more than an order of magnitude greater than that of arithmetic operations,12 more resources can be saved by reducing

data accesses. (3) Running the preconditioner application at reduced precision results in a preconditioning operator not preserving orthogonality in

double precision, implying that previously orthogonal Krylov vectors may not be orthogonal after the preconditioner application. To account for this

situation, flexible variants that introduce an additional orthogonalization step are required to preserve convergence.13 Performing the arithmetic

operations in the distinct preconditioner applications in full precision (even though the preconditioner data is stored at reduced precision) preserves

the orthogonality of the Krylov subspace and removes the burden of expensive reorthogonalization. Hence, in our approach, we do not need to

employ a flexible Krylov solver.

Section 2 provides some background on the need for reorthogonalization when using non-constant preconditioning. We also discuss how our

strategy using full precision in the arithmetic operations results in a constant preconditioner, which avoids the need for a flexible Krylov method.

A brief recap/overview of block-Jacobi preconditioning is provided in Section 3. In Section 4, we introduce the concept of adaptive precision pre-

conditioning, and we introduce the evaluation criteria for selecting the storage format of the distinct diagonal blocks. Rounding error analysis to

support the criteria is given in Section 5. We report the experimental results in Section 6, which includes an analysis of “reckless” precision reduc-

tion in block-Jacobi preconditioning, the assessment of the evaluation criteria, and an energy consumption model that quantifies the savings owed

to adaptive precision preconditioning. We summarize our findings in Section 7 and provide details about the path forward for this research.

2 REDUCED PRECISION PRECONDITIONING IN THE PCG METHOD

2.1 Brief review

Figure 1 shows the PCG method for the solution of the linear system Ax = b, where the coefficient matrix, ie, A ∈ R
n×n, is SPD and sparse with

nz nonzero entries; b ∈ R
n is the right-hand side; and x ∈ R

n is the sought-after solution. The most challenging operations in this algorithm are
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FIGURE 1 Mathematical formulation of the PCG method. Here, 𝜏max is the relative residual stopping criterion

the computation of the preconditioner (before the iteration commences), the computation of the sparse matrix-vector product (SPMV) (at each

iteration), and the preconditioner application (at each iteration). The remaining operations are scalar computations or simple vector kernels like the

dot product (DOT) and AXPY-type vector updates.14

In the PCG method, the DOT operations present a one-to-one ratio of FLOPs to memory accesses (MEMOPS), and the AXPY-type operations

present a two-to-three ratio of FLOPs to MEMOPS, which clearly identifies these operations as memory bandwidth-bound kernels. For simplicity,

moving forward, we make no distinction between the cost of reading a number and the cost of writing a number. Assuming the sparse matrix is stored

in compressed sparse row (CSR) format1, and is using 64 bits for double precision numbers/values (fp64) and 32 bits for integers/indices (int32), the

ratio of FLOPs:MEMOPS for SPMV is 2nz∕((n + nz) · fp64 +(n + nz) · int32). As a consequence, this operation is also memory bounded. An analysis of

the operations using the preconditioner is provided later in this section.

2.2 Orthogonality-preserving mixed precision preconditioning

In general, using a reduced precision preconditioner (ie, 32-bit or 16-bit arithmetic) instead of “full” 64-bit, double precision arithmetic requires a

careful consideration of the numerical effects. In this section, we discuss how our preconditioning strategy results in a constant preconditioning

operator. This preserves the orthogonality of the generated Krylov search directions and therefore allows us to employ the standard CG solver

based on the Fletcher-Reeves orthogonalization instead of the flexible CG based on the Polak-Ribière formula.

The PCG method presented in Figure 1 assumes that the preconditioner is a constant operator acting on the input vector, r = rk+1 as z = zk+1 ∶=
M−1r.1 In this case, rT

k
zk+1 = 0; that is to say, the orthogonality with respect to the previous residual is preserved. Strictly speaking, even when using

double precision, the preconditioner application introduces some rounding error so that the computed operator satisfies z = M−1r+(𝜀d), where 𝜀d

stands for fp64 machine precision. Hence, a preconditioner in double precision can also have an impact on the orthogonality. However, as the effects

are in the order of the approximation accuracy, the non-consistency of the preconditioning operator is typically disregarded in practice.

In contrast, when applying a preconditioner in less than double precision, this issue becomes more relevant, because the rounding error now

grows to z = M−1r+(𝜀r), where𝜀r is the machine precision of the reduced format. As a result, the orthogonality error increases to𝜀r, which becomes

relevant if convergence beyond 𝜀r is desired.

A straightforward workaround is to introduce an additional orthogonalization step to account for the loss in orthogonality. Concretely, replacing

the Fletcher-Reeves formula from Figure 1,

𝛽k ∶= 𝛾k+1∕𝛾k =
rT

k+1
zk+1

rT
k

zk

, (1)

with the Polak-Ribière formula,

𝛽k ∶=
(rk+1 − rk)T zk+1

rT
k

zk

, (2)

naturally accounts for zk+1 losing orthogonality with respect to the previous residual, rk.13 Compared with the original formulation of the CG method,

this orthogonality-preserving “flexible CG” (FCG)13 incurs an overhead that corresponds to keeping the last residual vector in memory and comput-

ing an additional vector operation and DOT product. The benefits are that the iterative method can handle a flexible (non-constant) preconditioner,15

which is needed when applying a preconditioner in reduced precision.

Obviously, with a constant preconditioner, rT
k

zk+1 = 0, ie, both formulas (1) and (2) are identical. For rT
k

zk+1 ≠ 0, the Polak-Ribière formula specifies

a locally optimal search direction, which means that the convergence rate of this method will not be slower than that of a locally optimal steepest
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FIGURE 2 Algorithmic formulation (in MATLAB) of the PCG method. For a problem of size n containing nz nonzero elements in the system matrix
stored in CSR format, ignoring the preconditioner application, each PCG iteration requires (14n + nz) · fp64 + (nz + n) · int32 memory transactions

FIGURE 3 Algorithmic formulation (in MATLAB) of the FCG method. For a problem of size n containing nz nonzero elements in the system matrix
stored in CSR format, ignoring the preconditioner application, each FCG iteration requires (21n + nz) · fp64 + (nz + n) · int32 memory transactions

descent method.16 We complement the preconditioned CG method, based on the Fletcher-Reeves formula shown in Figure 2, with the flexible con-

jugate gradient (FCG) method based on the Polak-Ribière formula in Figure 3. The two codes differ only in lines 6-8 (computation ofgamma_newand

additional recurrence for vectort), which results in 7n additional memory accesses. A faster preconditioner application (ie, using reduced precision

arithmetic operations in the actual preconditioner application) could barely compensate for this overhead.

In our approach, we store the preconditioner at reduced precision, but we convert the data to double precision right after reading it from memory

and before invoking the arithmetic computations of the preconditioner application. Hence, although stored at a reduced precision, the precondi-

tioner itself remains constant across all iterations. This strategy does introduce some overhead in terms of converting the preconditioner data to

double precision and using double precision in all arithmetic operations, but it comes with the benefit of using the Fletcher-Reeves formula (1) for

the orthogonalization step, which results in the more attractive (in terms of memory) standard PCG solver.

3 BLOCK-JACOBI PRECONDITIONING

The Jacobi method splits the coefficient matrix as A = L + D + U, with a diagonal matrix D = ({aii}), a lower triangular factor L = ({aij ∶ i > j}), and

an upper triangular factor U = ({aij ∶ i < j}). The block-Jacobi variant is an extension that gathers the diagonal blocks of A into D = (D1,D2, … ,DN),
with Di ∈ R

mi×mi , i = 1,2, … ,N, and n =
∑N

i=1 mi. The remaining elements of A are then partitioned into matrices L and U such that L contains

the elements below the diagonal blocks in D, while U contains those above them.2 The block-Jacobi method is well defined if all diagonal blocks
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are nonsingular. The resulting preconditioner, ie, M = D, is particularly effective if the blocks succeed in reflecting the nonzero structure of the

coefficient matrix, ie, A. Fortunately, this is the case for many linear systems that, eg, exhibit some inherent block structure because they arise from

a finite element discretization of a partial differential equation (PDE).2

There are several strategies to integrate a block-Jacobi preconditioner into an iterative solver like CG. In this work, we adopt an approach that

explicitly computes the block-inverse matrix, ie, D−1 = (D−1
1
,D−1

2
, … ,D−1

N
) = (E1, E2, … , EN), before the iterative solution process commences, and

then applies the preconditioner in terms of a dense matrix-vector multiplication (GEMV) per inverse block Ei.17 Note that GEMV is still a memory

bandwidth-bound kernel, independent of the block size. In practice, this strategy shows numerical stability similar to the conventional alternative

that computes the LU factorization (with partial pivoting)18 of each block (Di = LiUi) and then applies the preconditioner using two triangular solvers

(per factorized block). By comparison, the GEMV kernel is highly parallel, whereas the triangular solves offer only limited parallelism.

4 ADAPTIVE PRECISION BLOCK-JACOBI PRECONDITIONING

The main goal of this work is to assess the potential benefits of a specialized version of a block-Jacobi preconditioner that selectively stores part of

its data at low precision, a technique that reduces the memory access volume during the application of a block-Jacobi preconditioner. Concretely,

we employ three precision formats, ie, (1) 16-bit, half precision arithmetic (fp16); (2) 32-bit, single precision arithmetic (fp32); and (3) 64-bit, (full)

double precision arithmetic (fp64). The fp32 and fp64 roughly correspond to the two IEEE standards that are currently supported by practically all

commodity processors used in everything from desktop systems to high-performance servers. On the other hand, fp16 has only recently received

considerable attention because of its usefulness in deep learning applications, and hardware support for this format is now included in the most

recent many-core architectures from NVIDIA.

For our experiments, we use a PCG Krylov solver to expose the effects of storing parts of a block-inverse preconditioner at a reduced precision.

Before we introduce our preconditioning scheme and the strategy for selecting the appropriate storage format, we note that, for the type of systems

that can be tackled using a CG method, the diagonal blocks of A in the preconditioner D are all symmetric. Therefore, a significant amount of storage

(and data transfer cost) can already be saved by explicitly storing only the lower or upper triangular part of each block. We also recognize that some

computational cost can be saved by exploiting the symmetry and positive definiteness information of these diagonal blocks. However, as these two

cost-saving techniques are orthogonal to those we propose, we refrain from mixing the distinct strategies.

In general, the design of a block-Jacobi preconditioner with adaptive precision is based on the following observations.

1. In the preconditioner matrix, ie, D, each one of the blocks, ie, Di, is independent.

2. Except for cases where the iterative solver converges quickly, the overhead incurred by determining an appropriate storage format for the

preconditioner (before the iteration commences) is irrelevant.

3. The application of each block, ie, Di, (ie, multiplication with the inverse block Ei) should be done with care to guarantee “enough” precision in the

result. As we will show in Section 5, the accuracy of this application is largely determined by the condition number of Di with respect to inversion,

denoted hereafter as 𝜅1(Di) = ||Di||1||D−1
i
||1 = ||Di||1||Ei||1,.18

Armed with these observations, we propose the following adaptive precision block-Jacobi preconditioner.

1. Before the iteration commences, the inverse of each block, ie, Di, is computed explicitly using fp64: Di → Ei. We note that even if Di is sparse, its

inverse, ie, Ei, is likely a dense matrix. For this reason, we store the inverse, ie, Ei, following the conventional column-major order using mi × mi

real numbers.

2. At the same stage (ie, before the iteration), we compute 𝜅1(Di) = 𝜅1(Ei) = ||Di||1||Ei||1 and we note that, given Ei is explicitly available, computing

𝜅1(Di) is straightforward and inexpensive compared with the inversion of the block.

3. In principle, we store Ei, which was computed in fp64, in the format determined by its condition number, truncating the entries of the block if

necessary, as

⎧⎪⎪⎨⎪⎪⎩

fp16, if 𝜏L
h
< 𝜅1(Di) ≤ 𝜏U

h
,

fp32, if 𝜏L
s < 𝜅1(Di) ≤ 𝜏U

s , and

fp64, otherwise,

(3)

with 𝜏L
h
= 0 and 𝜏U

h
= 𝜏L

s . As we will discuss in Section 5, the values for the bounds 𝜏U
h

and 𝜏U
s are selected by taking into account the unit roundoff

for each format, ie, uh ≈ 4.88e − 04 for half precision, us ≈ 5.96e − 08 for single precision, and ud ≈ 1.11e − 16 for double precision.

4. During the iteration, we recover the block Ei stored in the corresponding format in memory, transform its entries to fp64 once in the processor

registers, and apply it in terms of a fp64 GEMV to the appropriate entries of rk+1 to produce those of zk+1. This is a memory bandwidth-bound
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FIGURE 4 Control flow for deciding whether or not to select a reduced format

FIGURE 5 Details of the procedure for deciding whether or not to select a reduced format

operation, and, therefore, its cost is dominated by the overhead of recovering the data for the preconditioner matrix and the vectors from

memory (ie, MEMOPS). Thus, we can expect that in practice the FLOPs will be completely “amortized” (ie, overlapped) with the data transfers.

The truncation procedure for converting fp64 data to a reduced precision format requires some care to deal with overflows/underflows and their

consequences, as described below.

• The truncation of a “large” (in magnitude) value in Ei, represented in fp64, can produce an overflow because the number is too large to be rep-

resented in the reduced format, resulting in an “Inf” value in that format. In those cases, we can either discard the use of the reduced format for

the complete block Ei or replace the truncated value with the largest number (in magnitude) representable in that format (eg, for positive values,

65,504 in fp16 and about 3.40e + 38 in fp32).

• Conversely, the truncation of a “small” (in magnitude) value, in fp64, may yield an underflow that returns a value that is zero. This can turn a

nonsingular matrix Ei into a singular matrix. For example, if all entries of Ei are below the minimum representable number in the reduced format,

the result of truncation will produce a block that comprises only zeros, and the preconditioned solver will not converge. This could be mitigated

to some extent by scaling all the values of the block. Furthermore, even if some of the entries are nonzero the truncated representation of Ei

may still become ill-conditioned, thereby causing numerical difficulties for the convergence. In order to avoid this issue, we propose checking the

condition number of the truncated representation and not using the corresponding reduced precision if it is above the relevant threshold, ie, 𝜏𝜅 .

Figure 4 summarizes the global precision selection process, and the pseudocode in Figure 5 provides a practical implementation of the truncation

procedure and the various thresholds, taking Ei and 𝜅1(Ei) as inputs. The routine given in the pseudocode, ie, force_reduction, simply truncates

the fp64 block to a reduced format. The rest of the code uses several metrics to determine whether the use of the reduced format is safe.
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5 ROUNDING ERROR ANALYSIS

As previously elaborated, we invert the diagonal blocks explicitly using double precision, eg, via (batched) Gauss-Jordan Elimination.2,17 Let Ei = D−1
i

be the inverse of block i computed in double precision arithmetic with unit roundoff ud. By storing the inverse in reduced precision (Êi) with unit

roundoff u, we introduce the error ΔEi and get19,20[secs. 14.3, 14.4]

Êi = Ei + ΔEi, ||ΔEi||1 ≤ cmi
𝜅1(Di)||Êi||1ud + u||Êi||1, (4)

for some constant cmi
. For the vector segments in zi and ri corresponding to the diagonal block i, the subsequent multiplication in double precision

results in20[sec. 3.5]

ẑi = 𝑓 l(Êiri) = Êiri + Δzi, ||Δzi||1 ≤ c′mi
ud||Êi||1||ri||1. (5)

Hence,

ẑi = (Ei + ΔEi)ri + Δzi = Eiri + Δzi, (6)

where combining (4) and (5) gives

||Δzi||1 = ||ΔEiri + Δzi||1

≤ cmi
𝜅1(Di)||Êi||1||ri||1ud + u||Êi||1||ri||1 + c′mi

ud||Êi||1||ri||1

=
(

cmi
𝜅1(Di)ud + u + c′mi

ud

) ||Êi||1||ri||1. (7)

We may assume that the constant term c′mi
ud becomes negligible when storing the diagonal block in the reduced precision format with unit roundoff

u ≫ ud. With this assumption,

||Δzi||1 ≤ cmi
(𝜅1(Di)ud + u) ||Êi||1||ri||1. (8)

Noting that ri = E−1
i

zi = Dizi, this bound yields

||Δzi||1 ≤ cmi
(𝜅1(Di)ud + u) ||Êi||1||Di||1||zi||1

≈ cmi
(𝜅1(Di)ud + u) 𝜅1(Di)||zi||1, (9)

so that

||Δzi||1

||zi||1
≤ cmi

(𝜅1(Di)ud + u) 𝜅1(Di). (10)

As expected, the relative error depends on the conditioning of the diagonal block Di. With the unit roundoff being a format-specific constant (uh ≈
4.88e − 04 for half precision, us ≈ 5.96e − 08 for single precision, and ud ≈ 1.11e − 16 for double precision), (10) provides bounds for the relative

error.

Recalling that we are within a preconditioner framework, by ignoring all entries outside the block-diagonal in the inversion process, we may have

already introduced a significant error. In fact, experiments reveal that preconditioners based on block-Jacobi often come with an error as large as

1.0e − 2 to 1.0e − 1. This makes it reasonable to allow for similar errors in (10), which yields the bounds for the condition numbers that are allowed

in the respective formats. In the experimental section, we use the bounds 𝜏U
h
= 𝜏L

s ∶= 1.0e + 2 and 𝜏U
s ∶= 1.0e + 6.

6 EXPERIMENTAL ANALYSIS

6.1 Experimental framework

In this section, we assess the potential benefits of the adaptive precision block-Jacobi preconditioner with a collection of experiments performed

in GNU Octave version 3.8.1. We implement the PCG method according to the work of Golub and Ye13 (Figure 2) with an integrated block-Jacobi

preconditioner that performs an explicit inversion of the diagonal blocks. We apply supervariable agglomeration to optimize the block diagonal

structure of the block-Jacobi preconditioner for the specific problems used here.21 This procedure aims to identify and capture the block structure

of the matrix in the Jacobi blocks of the preconditioner, thereby accumulating multiple blocks into a larger superstructure with the upper bound of

the blocksize set to 24.

For the evaluation, we consider a subset comprised of 63 SPD test problems of small to moderate dimension from the SuiteSparse matrix

collection.8 We list the matrices along with some key characteristics in Table 1.
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TABLE 1 Left: Test matrices along with key properties. Right: Iteration count of the PCG method with the preconditioner
stored in double, single, half, or adaptive precision. The “–” symbol indicates cases where the iterative solver did not reach
the relative residual threshold 𝜏max = 1.0e − 9 after 5,000 iterations

ID Matrix # rows # nonzeros cond. number #PCG iterations
double single half adaptive

1 1138_bus 1,138 4,054 1.2100e+07 784 778 – 782

2 494_bus 494 1,666 3.8900e+06 269 269 271 269

3 662_bus 662 2,474 8.2100e+05 179 179 179 179

4 685_bus 685 3,249 4.0500e+05 171 171 – 172

5 bcsstk01 48 400 1.6000e+06 35 34 – 34

6 bcsstk03 112 640 6.2700e+06 46 48 – 48

7 bcsstk04 132 3,648 5.5500e+06 72 72 – 72

8 bcsstk05 153 2,423 3.5300e+04 95 95 – 95

9 bcsstk06 420 7,860 1.1900e+07 255 254 – 254

10 bcsstk07 420 7,860 1.1900e+07 255 254 – 254

11 bcsstk08 1,074 12,960 2.3200e+06 231 231 – 231

12 bcsstk09 1,083 18,437 3.6000e+03 325 325 – 325

13 bcsstk10 1,086 22,070 1.3200e+06 517 517 – 517

14 bcsstk11 1,473 34,241 4.2100e+06 768 764 – 764

15 bcsstk12 1,473 34,241 2.9000e+06 768 764 – 764

16 bcsstk13 2,003 83,883 5.6400e+08 1,639 1,631 – 1,444

17 bcsstk14 1,806 63,454 1.3100e+10 276 276 – 276

18 bcsstk15 3,948 117,816 1.9800e+07 585 584 – 583

19 bcsstk16 4,884 290,378 7.0100e+09 263 261 – 263

20 bcsstk19 817 6,853 5.8600e+10 1,775 1,773 – 1,768

21 bcsstk20 485 3,135 7.4800e+12 2,125 2,113 – 2,114

22 bcsstk21 3,600 26,600 2.6000e+06 565 565 – 565

23 bcsstk22 138 696 2.7600e+04 75 75 – 75

24 bcsstk24 3,562 159,910 7.1800e+10 2,505 2,630 – 2,336

25 bcsstk26 1,922 30,336 8.0800e+06 1,979 1,957 – 1,957

26 bcsstk27 1,224 56,126 1.4900e+04 213 213 – 213

27 bcsstk28 4,410 219,024 6.2800e+09 2,182 2,115 – 2,115

28 bcsstm07 420 7,252 1.3400e+04 46 46 46 46

29 bcsstm12 1,473 19,659 8.8800e+05 26 26 1,220 26

30 lund_a 147 2,449 9.8900e+05 89 90 – 90

31 lund_b 147 2,441 6.0300e+04 47 47 48 47

32 nos1 237 1,017 7.5900e+06 157 165 – 165

33 nos2 957 4,137 1.8300e+09 2,418 2,409 – 2,409

34 nos3 960 15,844 7.3500e+04 137 137 137 137

35 nos4 100 594 2.7000e+03 46 46 47 47

36 nos5 468 5,172 3.5900e+03 235 235 – 235

37 nos6 675 3,255 8.0000e+06 77 77 – 77

38 nos7 729 4,617 4.0000e+09 68 68 – 68

39 plat1919 1,919 32,399 2.2200e+18 4,117 4,049 3,772 4,081

40 plat362 362 5,786 7.0800e+11 982 1,112 1,115 1,095

41 mhdb416 416 2,312 5.0500e+09 19 19 – 19

42 bcsstk34 588 21,418 2.6700e+04 185 185 – 185

43 msc00726 726 34,518 8.5500e+05 160 160 – 160

44 msc01050 1,050 26,198 9.0000e+15 1,594 1,593 – 1,593

45 msc01440 1,440 44,998 7.0000e+06 929 928 – 928

46 msc04515 4,515 97,707 4.7800e+05 2,348 2,349 – 2,349

47 ex5 27 279 1.3200e+08 10 25 – 10

48 nasa1824 1,824 39,208 2.3100e+05 896 896 – 896

49 nasa2146 2,146 72,250 2.8100e+03 352 353 – 353

50 nasa2910 2,910 174,296 1.3000e+06 1,369 1,369 – 1,369

51 nasa4704 4,704 104,756 6.4500e+06 4,171 4,123 – 4,123

52 mesh1e1 48 306 8.2000e+00 14 14 14 14

53 mesh1em1 48 306 3.4000e+01 23 23 23 23

54 mesh1em6 48 306 8.8500e+00 14 14 15 15

55 mesh2e1 306 2,018 4.0700e+02 79 79 83 83

56 mesh2em5 306 2,018 2.7900e+02 77 77 81 75

57 mesh3e1 289 1,377 9.0000e+00 18 18 18 18

58 mesh3em5 289 1,377 5.0000e+00 17 17 17 17

59 sts4098 4,098 72,356 3.5600e+07 342 342 – 340

60 Chem97ZtZ 2,541 7,361 3.2900e+02 30 30 30 30

61 mhd3200b 3,200 18,316 2.0200e+13 17 17 – 17

62 mhd4800b 4,800 27,520 1.0300e+14 16 16 – 16

63 plbuckle 1,282 30,644 2.9200e+05 260 260 – 260
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FIGURE 6 Boxplot for the distribution of the condition numbers of the diagonal blocks (𝜅1(Di)) using supervariable agglomeration with the block
size set to 24. For each matrix, the blue central box shows where most of the condition numbers are located and the red crosses indicate outliers

In the adaptive precision preconditioner, we use the evaluation strategy shown in Figures 4 and 5 to determine the precision at which the

individual diagonal blocks should be stored. According to the heuristics presented in Section 5, we set 𝜏L
h
∶= 0, 𝜏U

h
= 𝜏L

s ∶= 1.0e + 2, 𝜏U
s ∶=

1.0e+6, and 𝜏𝜅 ∶= 1.0e−3∕ud (see also (3)). Specifying an upper block size bound of 24 in the supervariable agglomeration, we show in Figure 6

the condition number distribution of the blocks for each test matrix. These condition numbers are one of the metrics considered when selecting

the storage format in the adaptive precision block-Jacobi preconditioner.

Using Octave, we emulate the procedure for truncation of fp64 values to reduced precision formats (force_reduction shown in Figure 5)

as follows. First, we transform the full precision value to a text string and then truncate that string to keep only the two most significant decimal

digits for fp16 and the seven most significant decimal digits for fp32. This is a rough approximation of the precision level that can be maintained

with the bits dedicated to the mantissa in the IEEE standards for fp16/fp32. To emulate overflow, we set values exceeding the data range of the

low precision format to the largest representable number in the target format, ie, Rmax, which is Rmax = 65,504 for fp16 and Rmax = 3.40e+38

for fp32. We preserve the sign in this truncation process. To emulate underflow, values that are smaller than the minimum value that can

represented in the low precision format, ie, Rmin, are set to zero, which is Rmin = 6.10e−5 for fp16 and Rmin = 1.17e−38 for fp32. We stop the

PCG iterations once the relative residual has dropped below the threshold 𝜏max ∶= 1.0e − 9. We allow for, at most, 5,000 PCG iterations.

6.2 Reduced precision preconditioning

In the first experiment, we investigate how a reckless/adaptive reduction of the precision for the representation of the block-Jacobi preconditioner

impacts the convergence rate of the PCG iterative solver. By recklessly reducing the precision format used for storing the block-diagonal inverse,

essential information may be lost, which slows down the convergence of the iterative solver. In the worst case, the diagonal blocks may become

singular, or the entries may fall outside of the data range that can be represented in the chosen precision; both cases would likely result in the algo-

rithm's breakdown. We emphasize that the distinct preconditioners only differ in the format that is leveraged to store the block inverse. Conversely,

the problem-specific diagonal block pattern is not affected, and all computations are realized in fp64.

The three leftmost columns in the right part of Table 1 report the iterations required for convergence of the PCG method when storing the

block-inverse preconditioner in fp64, fp32, or fp16. We observe that storing the preconditioner in fp32 usually has only a mild impact on the pre-

conditioner quality. In most cases, the PCG iteration count matches the one where the preconditioner is stored in fp64. In a few cases, the PCG

converges even faster when storing the preconditioner in fp32. Conversely, if the preconditioner is stored in fp16, the PCG does not converge in most

cases. Therefore, fp16 storage cannot be recommended as the default choice. In the right-most column of Table 1, we report the iteration count for

the PCG method preconditioned with adaptive precision block-Jacobi. We observe that, except for some noise, the adaptive precision block-Jacobi

preserves the quality of the preconditioner and the convergence rate of the fp64 solver. Figure 7 shows that most of the time the adaptively chosen

precision is single or half precision, with relatively few instances o of double.

6.3 Energy model

Having validated that the adaptive precision block-Jacobi preconditioner preserves the convergence rate of the iterative solver, we next quantify

the advantage of the adaptive precision block-Jacobi over a standard block-Jacobi using double precision. For this purpose, we specifically focus on

the energy efficiency, as this has been identified as an important metric (on par with performance) for future exascale systems.

In terms of energy consumption, the accesses to main memory (MEMOPS) are at least an order of magnitude more expensive than FLOPs, and

this gap is expected to increase in future systems.12 For this reason, in the energy model, we ignore the arithmetic operations (including the access
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FIGURE 7 Details on the adaptive precision block-Jacobi. Breakdown of the diagonal blocks stored in fp64, fp32, or fp16

to the data in the processor registers as well as caches) and consider the data transfers from main memory only. Our energy model for estimating

the global energy consumption of the solver builds on the premise that the energy cost of memory accesses is linearly dependent on the bit length

of the data.

Furthermore, as we only aim to estimate the energy efficiency of the adaptive precision block-Jacobi preconditioner relative to the standard fp64

block-Jacobi preconditioner, we will set the (normalized) energy cost of accessing a single bit of data as 1 (energy-unit). The precision formats we

consider employ 64, 32, and 16 bits.

For a problem of size n with nz nonzero elements, the PCG method presented in Section 2 and preconditioned with a block-Jacobi preconditioner

(consisting of N diagonal blocks of dimensions m1 × m1, … ,mN × mn) performs

14n · fp64
⏟⏞⏞⏞⏟⏞⏞⏞⏟

vector memory transfers

+ (2n + nz) · fp64 + (n + nz) · int32
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

CSR−SpMV memory transfers

+ 2n · fp64 +
N∑

i=1

m2
i · fpxxi

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
preconditioner memory transfers

(11)

data transfers (from memory) per iteration, where fpxxi denotes the precision format selected for the ith diagonal block of the preconditioner. The

data transfer volume of the block-Jacobi preconditioner thus depends on the format employed to store the block inverse. For example, with the PCG

running in fp64, the approach also employs fp64 to maintain the block-Jacobi preconditioner. Furthermore, we also consider variants that store the

preconditioner entirely in fp32 or fp16 and a more sophisticated strategy that adapts the format of the distinct preconditioner blocks to the data.

For the adaptive precision block-Jacobi approach, we visualize the use of fp64, fp32, and fp16 for storing the diagonal blocks (Figure 7). Compar-

ing this information with the data in Figure 6, we can identify a relationship between the conditioning of the blocks and the storage precision format:

fp64 is primarily employed for those cases comprising very ill-conditioned blocks. Furthermore, the information in Figure 7 also shows the savings

that can be attained in terms of (1) memory usage to store the preconditioner and (2) data transfers per iteration to retrieve data from main memory.

However, note that these savings do not take into account the total cost of the PCG method but only those costs strictly associated with the pre-

conditioner application. Furthermore, the data in Figure 7 does not reflect the potentially slower convergence caused by using reduced precision

storage.

To avoid the previous two pitfalls, in our final experiment, we compute the total data transfers of a single iteration of the PCG method with the

block-Jacobi preconditioner stored in fp64, fp32, fp16, or adaptive precision, see Equation (11). To obtain an estimated total data transfer volume,

we then combine the data transfer volume per iteration with the number of iterations needed to reach convergence in each case, ignoring those

cases for which half precision does not converge.

In Figure 8, we show the total energy balance relative to the standard approach that maintains the block-Jacobi preconditioner in double precision.

Some key observations from this last experiment are listed below.

• Storing the block-Jacobi preconditioner in fp32 often reduces the total energy cost. However, for those cases where the information loss

increases the PCG iteration count, storing the preconditioner in fp32 can have a negative impact on the energy balance.

• For the (few) cases where the block-inverse matrix can be stored in fp16 without the PCG losing convergence, the total energy cost can be

decreased by up to 50%.

• Using the adaptive precision block-Jacobi preconditioner never increases the total energy consumption.

• In most cases, the adaptive precision block-Jacobi preconditioner matches or outperforms the efficiency of storing the preconditioner in fp32. If

the problem characteristics allow for it, the adaptive precision block-Jacobi preconditioner employs fp16 to match the half precision efficiency

while maintaining convergence for the other cases.
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FIGURE 8 Energy efficiency analysis of the PCG with block-Jacobi preconditioning using different floating point formats for storing the
preconditioner. The energy cost of all methods is normalized to the energy cost of the standard implementation using fp64 for storing the
block-Jacobi preconditioner

• The adaptive precision block-Jacobi preconditioner “automatically” detects the need to store a diagonal block in fp64 to avoid convergence

degradation.

Finally, we note that, for memory bandwidth-bound operations like the block-Jacobi preconditioned CG considered here, the performance is

largely determined by the data transfer volume. Therefore, the results shown in Figure 8 and the insights gained from that experiment carry over to

the runtime performance of the adaptive precision block-Jacobi preconditioner. In summary, these experiments prove that the adaptive precision

block-Jacobi preconditioner is an efficient strategy for improving the resource usage, energy consumption, and runtime performance of iterative

solvers for sparse linear systems.

7 CONCLUDING REMARKS AND FUTURE WORK

We have proposed and validated a strategy to reduce the data transfer volume in a block-Jacobi preconditioner. Concretely, our technique indi-

vidually selects an appropriate precision format to store the distinct blocks of the preconditioner based on their characteristics but performs

all arithmetic (including the generation of the preconditioner) in fp64. We note that the condition numbers can be obtained cheaply as our pre-

conditioner is based on explicit inversion of the diagonal blocks. Furthermore, the overhead from selecting the appropriate storage format in the

preconditioner setup can easily be amortized by the reduced cost of the preconditioner application in the solver iterations.

Our experimental simulation using Octave on an Intel architecture shows that, in most cases, storing a block-Jacobi preconditioner in fp32 has

only a mild impact on the preconditioner quality. On the other hand, the reckless use of fp16 to store a block-Jacobi preconditioner fails in most

cases and is therefore not recommended. The adaptive precision block-Jacobi preconditioner basically matches the convergence rate of the conven-

tional double precision preconditioner in all cases and automatically adapts the precision to be used on an individual basis. As a result, the adaptive

precision preconditioner can decide to store some of the blocks at precisions even less than fp32, thereby outperforming a fixed precision strategy

that relies on only a single precision in terms of data transfers and, consequently, energy consumption.

As part of our future work, we plan to investigate the effect of using other, non IEEE-compliant data formats in the adaptive block-Jacobi pre-

conditioner, prioritizing the exponent range at the cost of reducing the bits dedicated to the mantissa. In this endeavor, we expect to reduce

the problems with underflows/overflows while maintaining the “balancing” properties of the preconditioner. Furthermore, we will also develop a

practical implementation of the adaptive precision block-Jacobi using IEEE formats with 16, 32, and 64 bits for modern GPUs.
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