
192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

Scheduling Block-Cyclic Array Redistribution
Frédéric Desprez, Jack Dongarra, Member, IEEE, Antoine Petitet,

Cyril Randriamaro, and Yves Robert, Member, IEEE

Abstract —This article is devoted to the run-time redistribution of one-dimensional arrays that are distributed in a block-cyclic
fashion over a processor grid. While previous studies have concentrated on efficiently generating the communication messages to
be exchanged by the processors involved in the redistribution, we focus on the scheduling of those messages: how to organize the
message exchanges into “structured” communication steps that minimize contention. We build upon results of Walker and Otto, who
solved a particular instance of the problem, and we derive an optimal scheduling for the most general case, namely, moving from a
CYCLIC�r� distribution on a P-processor grid to a CYCLIC�s� distribution on a Q-processor grid, for arbitrary values of the
redistribution parameters P, Q, r, and s.

Index Terms —Distributed arrays, redistribution, block-cyclic distribution, scheduling, MPI, HPF.

—————————— ✦ ——————————

1 INTRODUCTION

UN-TIME redistribution of arrays that are distributed in
a block-cyclic fashion over a multidimensional proces-

sor grid is a difficult problem that has recently received con-
siderable attention. This interest is motivated largely by the
HPF [12] programming style, in which scientific applica-
tions are decomposed into phases. At each phase, there is
an optimal distribution of the data arrays onto the proces-
sor grid. Typically, arrays are distributed according to a
CYCLIC(r) pattern1 along one or several dimensions of the
grid. The best value of the distribution parameter r depends on
the characteristics of the algorithmic kernel, as well as on the
communication-to-computation ratio of the target machine [5].
Because the optimal value of r changes from phase to phase
and from one machine to another (think of a heterogeneous
environment), run-time redistribution turns out to be a critical
operation, as stated in [9], [20], [21] (among others).

Basically, we can decompose the redistribution problem
into the following two subproblems:

Message generation. The array to be redistributed should
be efficiently scanned or processed in order to build
up all the messages that are to be exchanged between
processors.

Communication scheduling. All the messages must be effi-
ciently scheduled so as to minimize communication
overhead. A given processor typically has several

messages to send, to all other processors, or to a subset
of these. In terms of MPI collective operations [15], we
must schedule something similar to an MPI_ALLTOALL
communication, except that each processor may send
messages only to a particular subset of receivers (the
subset depending on the sender).

Previous work has concentrated mainly on the first sub-
problem, message generation. Message generation makes it
possible to build a different message for each pair of proc-
essors that must communicate, thereby guaranteeing a vol-
ume-minimal communication phase (each processor sends
or receives no more data than needed). However, the ques-
tion of how to efficiently schedule the messages has re-
ceived little attention. One exception is an interesting paper
by Walker and Otto [20] on how to schedule messages in
order to change the array distribution from CYCLIC(r) on
a P-processor linear grid to CYCLIC(Kr) on the same grid.
Our aim here is to extend Walker and Otto’s work in order
to solve the general redistribution problem; that is, moving
from a CYCLIC(r) distribution on a P-processor grid to a
CYCLIC(s) distribution on a Q-processor grid.

The general instance of the redistribution problem turns out
to be much more complicated than the particular case consid-
ered by Walker and Otto. However, we provide efficient algo-
rithms and heuristics to improve the scheduling of the com-
munications induced by the redistribution operation. Our
main result is the following: For any values of the redistribu-
tion parameters P, Q, r, and s, we construct an optimal sched-
ule; that is, a schedule whose number of communication steps
is minimal. A communication step is defined so that each
processor sends/receives at most one message, thereby opti-
mizing the amount of buffering and minimizing contention on
communication ports. The construction of such an optimal
schedule relies on graph-theoretic techniques, such as the edge
coloring number of bipartite graphs. We delay the precise
(mathematical) formulation of our results until Section 4 be-
cause we need several definitions beforehand.

Without loss of generality, we focus on one-dimensional
redistribution problems in this article. Although we usually

1045-9219/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• F. Desprez and C. Randriamaro are with LIP, Ecole Normale Supérieure de
Lyon, 69364 Lyon Cedex 07, France.

 E-mail: {desprez, crandria}@lip.ens-lyon.fr.
• J. Dongarra, A. Petitet, and Y. Robert are with the Department of

Computer Science, University of Tennessee, Knoxville, TN 37996-
1301. J. Dongarra is also with the Mathematical Sciences Section, Oak
Ridge National Laboratory, Oak Ridge, TN 37831.

 E-mail: {dongarra, petitet, yrobert}@cs.utk.edu.

Manuscript received 20 Feb. 1997
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 103608.

R

1. The definition is the following: Let an array X[0 ... M - 1] be distributed
according to a block-cyclic distribution CYCLIC(r) onto a linear grid of P

processors. Then, element X[i] is mapped onto processor p = Î i/r ˚ mod P,

0 £ p £ P - 1. See Section 4.1 for further details.

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 193

deal with multidimensional arrays in high-performance
computing, the problem reduces to the “tensor product” of
the individual dimensions. This is because HPF does not
allow more than one loop variable in an ALIGN directive.
Therefore, multidimensional assignments and redistribu-
tions are treated as several independent one-dimensional
problem instances.

The rest of this article is organized as follows. In Section 2,
we provide some examples of redistribution operations to
expose the difficulties in scheduling the communications. In
Section 3, we briefly survey the literature on the redistribution
problem, with particular emphasis given to the Walker and
Otto paper [20]. In Section 4, we present our main results. In
Section 5, we report on some MPI experiments that demon-
strate the usefulness of our results. Finally, in Section 6, we
state some conclusions and future work directions.

1.1 Notations
The main variables used in the next sections are listed in Ta-
ble 1. The abbreviations “N.M.” and “S/R” are used in a few
communication tables. They respectively mean “Number of
Messages” and “Sender/Receiver”.

2 MOTIVATING EXAMPLES

Consider an array X[0 ... M - 1] of size M that is distributed
according to a block cyclic distribution CYCLIC(r) onto a
linear grid of P processors (numbered from p = 0 to p = P - 1).
Our goal is to redistribute X using a CYCLIC(s) distribu-
tion on Q processors (numbered from q = 0 to q = Q - 1).

For simplicity, assume that the size M of X is a multiple of
L = lcm(Pr, Qs), the least common multiple of Pr and Qs: This
is because the redistribution pattern repeats after each slice of
L elements. Therefore, assuming an even number of slices in
X will enable us (without loss of generality) to avoid dis-
cussing side effects. Let m = M ÷ L be the number of slices.

EXAMPLE 1. Consider a first example with P= Q = 16 proces-
sors, r = 3, and s = 5. Note that the new grid of Q proces-
sors can be identical to, or disjoint of, the original grid of
P processors. The actual total number of processors in
use is an unknown value between 16 and 32. All com-
munications are summarized in Table 2, which we refer
to as a communication grid. Note that we view the source
and target processor grids as disjoint in Table 2 (even if it
may not actually be the case). We see that each source
processor p Œ 3 = {0, 1, º, P - 1} sends seven messages

TABLE 1
MAIN NOTATIONS IN THE PAPER

TABLE 2
COMMUNICATION GRID AND COMMUNICATION STEPS FOR

P = Q = 16, r = 3, AND s = 5

 Message lengths are indicated for a vector X of size L = 240.

194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

and that each processor q Œ 4 = {0, 1, º, Q - 1} receives
seven messages, too. Hence, there is no need to use a full
all-to-all communication scheme that would require 16
steps, with a total of 16 messages to be sent per proces-
sor (or more precisely, 15 messages and a local copy).
Rather, we should try to schedule the communication
more efficiently. Ideally, we could think of organizing
the redistribution in seven steps, or communication
phases. At each step, 16 messages would be exchanged,
involving 16 disjoint pairs of processors. This would be
perfect for one-port communication machines, where
each processor can send and/or receive at most one
message at a time.

Note that we may ask something more: We can try to or-
ganize the steps in such a way that, at each step, the eight
involved pairs of processors exchange a message of the
same length. This approach is of interest because the cost of
a step is likely to be dictated by the length of the longest
message exchanged during the step. Note that message
lengths may or may not vary significantly. The numbers in
Table 2 vary from one to three, but they are for a single slice
vector. For a vector X of length M = 240,000, say, m = 1,000,
and message lengths vary from 1,000 to 3,000 (times the
number of bytes needed to represent one data-type element).

A schedule that meets all these requirements, namely,
seven steps of 16 disjoint processor pairs exchanging messages
of the same length, will be provided in Section 4.3.2. We report
the solution schedule in Table 2. Entry in position (p, q) in this
table denotes the step (numbered from a to g for clarity), at
which processor p sends its message to processor q.

In Table 3, we compute the cost of each communication
step as (being proportional to) the length of the longest mes-
sage involved in this step. The total cost of the redistribution
is then the sum of the cost of all the steps. We further elabo-
rate on how to model communication costs in Section 4.3.1.
EXAMPLE 2. The second example, with P = Q = 16, r = 7, and

s = 11, shows the usefulness of an efficient schedule
even when each processor communicates with every
other processor. As illustrated in Table 4, message
lengths vary with a ratio from two to seven, and we
need to organize the all-to-all exchange steps in such
a way that messages of the same length are commu-
nicated at each step. Again, we are able to achieve
such a goal (see Section 4.3.2). The solution schedule
is given in Table 4 (where steps are numbered from
a to p), and its cost is given in Table 5. (We do check
that each of the 16 steps is composed of messages of
the same length.)

EXAMPLE 3. Our third motivating example is with P = Q = 15,
r = 3, and s = 5. As shown in Table 6, the communi-
cation scheme is severely unbalanced in that proc-
essors may have a different number of messages to
send and/or to receive. Our technique is able to
handle such complicated situations. We provide, in
Section 4.4 a schedule composed of 10 steps. It is no
longer possible to have messages of the same
length at each step (for instance, processor p = 0 has
messages only of length three to send, while proc-
essor p = 1 has messages only of length one or two),
but we do achieve a redistribution in 10 communi-
cation steps, where each processor sends/receives
at most one message per step. The number of com-
munication steps in Table 6 is clearly optimal, as
processor p = 1 has 10 messages to send. The cost of
the schedule is given in Table 7.

TABLE 4
COMMUNICATION GRID AND COMMUNICATION STEPS FOR

P = Q = 16, r = 7, AND s = 11

 Message lengths are indicated for a vector X of size L = 1,232.

TABLE 3
COMMUNICATION COSTS FOR
P = Q = 16, r = 3, AND s = 5

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 195

EXAMPLE 4. Our final example is with P π Q, just to show
that the size of the two processor grids need not be
the same. See Table 8 for the communication grid,
which is unbalanced. The solution schedule (see Sec-
tion 4.4) is composed of four communication steps,
and this number is optimal, since processor q = 1 has
four messages to receive.

3 LITERATURE OVERVIEW

We briefly survey the literature on the redistribution prob-
lem, with particular emphasis given to the work of Walker
and Otto [20].

3.1 Message Generation
Several papers have dealt with the problem of efficient
code generation for an HPF array assignment statement
like

A[l1 : u1 : s1] = B[l2 : u2 : s2],

where both arrays A and B are distributed in a block-
cyclic fashion on a linear processor grid. Some researchers
(see Stichnoth et al. [16], van Reeuwijk et al. [18], and
Wakatani and Wolfe [19]) have dealt principally with
arrays distributed by using either a purely scattered or
cyclic distribution (CYCLIC(1) in HPF) or a full block

distribution (CYCLIC � n
p), where n is the array size and

p the number of processors).
Recently, however, several algorithms have been pub-

lished that handle general block-cyclic CYCLIC(k) distribu-
tions. Sophisticated techniques involve finite-state machines
(see Chatterjee et al. [3]), set-theoretic methods (see Gupta et
al. [8]), Diophantine equations (see Kennedy et al. [10], [11]),
Hermite forms and lattices (see Thirumalai and Ramanujam
[17]), or linear programming (see Ancourt et al. [1]). A com-
parative survey of these algorithms can be found in Wang et
al. [21], where it is reported that the most powerful algo-
rithms can handle block-cyclic distributions as efficiently as
the simpler case of pure cyclic or full-block mapping.

At the end of the message generation phase, each proc-
essor has computed several different messages (usually
stored in temporary buffers). These messages must be sent
to a set of receiving processors, as the examples of Section 2
illustrate. Symmetrically, each processor computes the
number and length of the messages it has to receive and,
therefore, can allocate the corresponding memory space. To
summarize, when the message generation phase is com-
pleted, each processor has prepared a message for all those
processors to which it must send data, and each processor
possesses all the information regarding the messages it will
receive (number, length, and origin).

TABLE 5
COMMUNICATION COSTS FOR P = Q = 16, r = 7, AND s = 11

TABLE 6
COMMUNICATION GRID AND COMMUNICATION STEPS FOR

P = Q = 15, r = 3, AND s = 5

 Message lengths are indicated for a vector X of size L = 225.

TABLE 7
COMMUNICATION COSTS FOR P = Q = 15, r = 3, AND s = 5

196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

3.2 Communication Scheduling
Little attention has been paid to the scheduling of the com-
munications induced by the redistribution operation. Simple
strategies have been advocated. For instance, Kalns and Ni
[9] view the communications as a total exchange between all
processors and do not further specify the operation. In their
comparative survey, Wang et al. [21] use the following tem-
plate for executing an array assignment statement:

1) Generate message tables, and post all receives in ad-
vance to minimize operating systems overhead.

2) Pack all communication buffers.
3) Carry out barrier synchronization.
4) Send all buffers.
5) Wait for all messages to arrive.
6) Unpack all buffers.

Although the communication phase is described more pre-
cisely, note that there is no explicit scheduling: All mes-
sages are sent simultaneously by using an asynchronous
communication protocol. This approach induces a tremen-
dous requirement in terms of buffering space, and deadlock
may well happen when redistributing large arrays.

The ScaLAPACK library [4] provides a set of routines to
perform array redistribution. As described by Prylli and
Tourancheau [14], a total exchange is organized between
processors, which are arranged as a (virtual) caterpillar.
The total exchange is implemented as a succession of steps.
At each step, processors are arranged into pairs that per-
form a send/receive operation. Then, the caterpillar is
shifted so that new exchange pairs are formed. Again, even
though special care is taken in implementing the total ex-
change, no attempt is made to exploit the fact that some
processor pairs may not need to communicate.

The first paper devoted to scheduling the communica-
tions induced by a redistribution is that of Walker and Otto
[20]. They review two main possibilities for implementing
the communications induced by a redistribution operation.

Wildcarded nonblocking receives. Similar to the strategy
of Wang et al., described above, this asynchronous
strategy is simple to implement but requires buffering
for all the messages to be received (hence, the total
amount of buffering is as high as the total volume of
data to be redistributed).

Synchronous schedules. A synchronized algorithm involves
communication phases or steps. At each step, each par-
ticipating processor posts a receive, sends data, and then
waits for the completion of the receive. But several fac-
tors can lead to performance degradation. For instance,
some processors may have to wait for others before they
can receive any data. Or, hot spots can arise if several
processors attempt to send messages to the same proces-
sor at the same step. To avoid these drawbacks, Walker
and Otto propose to schedule messages so that, at each
step, each processor sends no more than one message
and receives no more than one message. This strategy
leads to a synchronized algorithm that is as efficient as
the asynchronous version, as demonstrated by experi-
ments (written in MPI [15]) on the IBM SP-1 and Intel
Paragon, while requiring much less buffering space.

Walker and Otto [20] provide synchronous schedules only
for some special instances of the redistribution problem,
namely, to change the array distribution from CYCLIC(r) on
a P-processor linear grid to CYCLIC(Kr) on a grid of same
size. Their main result is to provide a schedule composed of
K steps. At each step, all processors send and receive ex-
actly one message. If K is smaller than P, the size of the
grid, there is a dramatic improvement over a traditional all-
to-all implementation.

Our aim in this article is to extend Walker and Otto’s work
in order to solve the general redistribution problem, that is,
moving from a CYCLIC(r) distribution on a P-processor grid
to a CYCLIC(s) distribution on a Q-processor grid. We retain
their original idea: Schedule the communications into steps. At
each step, each participating processor neither sends nor re-
ceives more than one message, to avoid hot spots and resource
contentions. As explained in [20], this strategy is well suited to
current parallel architectures. In Section 4.3.1, we give a precise
framework to model the cost of a redistribution.

4 MAIN RESULTS

4.1 Problem Formulation
Consider an array X[0 ... M - 1] of size M that is distributed
according to a block-cyclic distribution CYCLIC(r) onto a
linear grid of P processors (numbered from p = 0 to p = P - 1).
Our goal is to redistribute X by using a CYCLIC(s) distribu-
tion on Q processors (numbered from q = 0 to q = Q - 1).
Equivalently, we perform the HPF assignment Y = X, where
X is CYCLIC(r) on a P-processor grid, while Y is CYCLIC(s)
on a Q-processor grid.2

2. The more general assignment Y[a : ..] = X[b : ..] can be dealt with simi-
larly.

TABLE 8
COMMUNICATION GRID AND COMMUNICATION STEPS FOR

P = 12, Q = 8, r = 4, AND s = 3

 Message lengths are indicated for a vector X of size L = 48.

TABLE 9
COMMUNICATION COSTS FOR P = 12, Q = 8, r = 4, AND s = 3

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 197

The block-cyclic data distribution maps the global index
i of vector X (i.e., element X[i]) onto a processor index p, a
block index l, and an item index x, local to the block (with
all indices starting at zero). The mapping i → (p, l, x) may
be written as

i p i r P l
i r
P x i rÆ = = =(mod , , mod). (1)

We derive the relation

i = (Pl + p)r + x. (2)

Similarly, since Y is distributed CYCLIC(s) on a Q-processor
grid, its global index j is mapped as j → (q, m, y), where j =
(Qm + q)s + y. We then get the redistribution equation

i = (Pl + p)r + x = (Qm + q)s + y. (3)

Let L = lcm(Pr, Qs) be the least common multiple of Pr
and Qs. Elements i and L + i of X are initially distributed
onto the same processor p = Îi/r˚ mod P (because L is a
multiple of Pr, hence, r divides L, and P divides L ÷ r). For a
similar reason, these two elements will be redistributed
onto the same processor q = Îi/s˚ mod Q. In other words,
the redistribution pattern repeats after each slice of L ele-
ments. Therefore, we restrict the discussion to a vector X of
length L in the following. Let g = gcd (Pr, Qs) (of course Lg =
PrQs). The bounds in (3) become

0 0
0 0
0 0

£ < £ <
£ < = £ < =
£ < £ <

%

&
K

'
K

p P q Q
l m
x r y s

L Qs L
QsPr g

Pr
g

.
 (4)

DEFINITION 1. Given the distribution parameters r and s, and the
grid parameters P and Q, the redistribution problem is to
determine all the messages to be exchanged; that is, to find all
values of p and q such that the redistribution equation (3) has
a solution in the unknowns l, m, x, and y, subject to the
bounds in (4). Computing the number of solutions for a given
processor pair (p, q) will give the length of the message.

We start with a simple lemma that leads to a handy sim-
plification:

LEMMA 1. We can assume that r and s are relatively prime, that
is, gcd(r, s) = 1.

PROOF. The redistribution equation (3) can be expressed as

pr - qs = z + (Prl - Qsm), (5)

where z = y - x Œ [1 - r, s - 1]. Let D = gcd(r, s), r = Dr ¢
and s = Ds¢. Equation (3) can be expressed as

D(pr ¢ - qs¢) = z + D(Pr ¢l - Qs ¢m).

If it has a solution for a given processor pair (p, q),
then D divides z, z = Dz ¢, and we deduce a solution for
the redistribution problem with r ¢, s ¢, P, and Q. �

Let us illustrate this simplification on one of our moti-
vating examples.

4.1.1 Back to Example 3
Note that we need to scale message lengths to move from
a redistribution operation where r and s are relatively
prime to one where they are not. Let us return to Example
3 and assume, for a while, that we know how to build the

communication grid in Table 6. To deduce the communica-
tion grid for r = 12 and s = 20, say, we keep the same mes-
sages, but we scale all lengths by D = gcd(r, s) = 4. This
process makes sense because the new size of a vector slice is
DL rather than L. See Table 10 for the resulting communica-
tion grid. Of course, the scheduling of the communications
will remain the same as with r = 3 and s = 5, while the cost
in Table 7 will be multiplied by D.

4.2 Communication Pattern
LEMMA 2. Consider a redistribution with parameters r, s, P, and

Q, and assume that gcd(r, s) = 1. Let g = gcd(Pr, Qs). The
communication pattern induced by the redistribution op-
eration is a complete all-to-all operation if and only if

g £ r + s - 1.

PROOF. We rewrite (5) as pr - qs = z + lg because Prl - Qsm
is an arbitrary multiple of g. Since z lies in the interval
[1 - r, s - 1] whose length is r + s - 1, it is guaranteed
that a multiple of g can be found within this interval if
g £ r + s - 1. Conversely, assume that g ≥ r + s: We will
exhibit a processor pair (p, q) exchanging no mes-
sage. Indeed, p = P - 1 and q = 0 is the desired
processor pair. To see this, note that pr - qs = -r
mod g (because g divides Pr); hence, no multiple of
g can be added to pr - qs so that it lies in the inter-
val [1 - r, s - 1], Therefore, no message will be sent
from p to q during the redistribution.3

�

In the following, our aim is to characterize the pairs of
processors that need to communicate during the redistri-
bution operation (in the case g ≥ r + s). Consider the fol-
lowing function f:

{ . .] [. .]
(,) (,) mod .

0 1 0 1P Q
p q f p q pr qs

- ¥ - Æ
Æ

%
&
' = -

Zg

g

Function f maps each processor pair (p, q) onto the con-
gruence class of pr - qs modulo g. According to the proof of
Lemma 2, p sends a message to q if and only if f(p, q) Œ [1 - r,
s - 1] (mod g). Let us illustrate this process by using one of
our motivating examples.

4.2.1 Back to Example 4
In this example, P = 12, Q = 8, r = 4, and s = 3. We have g = 24.
Take p =11 (as in the proof of Lemma 2). If q = 0, f(p, q) = -4 ∉
[-3, 2], and q receives no message from p. But, if q = 6, f(p, q) =
2 Œ [-3, 2], and q does receive a message (see Table 8 to
check this).

DEFINITION 2. For 0 £ k < g, let class() ()k f k= -1 , that is,

f k p q P Q f p q k- = Œ - ¥ - =1 0 1 0 1() {(,) [. .] [. .]; (,) }.

To characterize classes, we introduce integers u and v
such that

ru - sv = 1

(the extended Euclid algorithm provides such numbers for
relatively prime r and s). We have the following result:

3. For another proof, see Petitet [13].

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

PROPOSITION 1. Assume that gcd(r, s) = 1. For 0 £ k < g,

class k
p
q

s
r k u

v
P
Q

PQ
() mod ;= �

�
�
�

= �
�

�
� + �

�
�
�

�
�

�
� £ <

%
&
'

(
)
*

l l0 g .

PROOF. First, to see that PQ
g indeed is an integer, note that

PQ = PQ (ru - sv) = PrQu - QsPv. Since g divides both
Pr and Qs, it divides PQ.

Two different classes are disjoint (by definition). It
turns out that all classes have the same number of
elements. To see this, note that for all k Œ [0, g - 1],

(p, q) Œ class(0) ⇔ (p + ku mod P, q + kv mod Q) Œ class(k).

Indeed, p + ku mod P = p + ku + dP for some integer d,
q + kv mod Q = q + kv + d¢Q for some integer d¢, and

f(p + ku mod P, q + kv mod Q)

 = (p + ku + dP)r - (q + kv + d′Q) s mod g

 = pr - qs + k + dPr + d′Qs mod g

 = f(p, q) + k mod g.

Since there are g classes, we deduce that the number
of elements in each class is PQ

g .

Next, we see that

(,) (mod , mod) ()p q s P r Q classl l l l= Œ 0

for 0 £ <l PQ
g (because p r q s gl l- = 0 mod).

Finally, (,) (,)p q p ql l l l= ¢ ¢ implies that P divides

(l - l¢)s and Q divides (l - l¢)r. Therefore, both Pr

and Qs divide (l - l¢)rs; hence, L lcm Qs= =(,)Pr PrQs
g

divides (l - l¢)rs. We deduce that PQ
g divides (l - l¢);

hence, all the processors pairs (,)p ql l for 0 £ <l PQ
g

are distinct. We have thus enumerated class(0). �

DEFINITION 3. Consider a redistribution with parameters r, s, P,
and Q, and assume that gcd(r, s) = 1. Let length(p, q) be

the length of the message sent by processor p to processor q to
redistribute a single slice vector X of size L = lcm(Pr, Qs).

As we said earlier, the communication pattern repeats
for each slice, and the value reported in the communication
grid tables of Section 2 are for a single slice; that is, they are
equal to length(p, q). Classes are interesting because they
represent homogeneous communications: All processor pairs
in a given class exchange a message of same length.

PROPOSITION 2. Assume that gcd(r, s) = 1, and let L = lcm(Pr,
Qs) be the length of the vector X to be redistributed. Let
vol(k) be the piecewise function given by Fig. 1 for k Œ [1 - r,
s - 1].

• If r + s - 1 £ g, then for k Œ [1 - r, s - 1],

(p, q) Œ class(k) fi length(p, q) = vol(k)

 (recall that, if (p, q) Œ class(k), where k ∉ [1 - r, s - 1],
 then p sends no message to q).
• If g £ r + s, then for k Œ [0, g - 1],

(,) () (,) .
[,]; mod

p q class k length p q
k r s k k

Œ fi = ¢
¢Œ - - ¢ =

Â vol(k)
g1 1

PROOF. We simply count the number of solutions to the redis-
tribution equation pr -qs = y - x mod g, where 0 £ x < r
and 0 £ y < s. We easily derive the piecewise linear vol
function represented in Fig. 1. �

We now know how to build the communication tables in
Section 2. We still have to derive a schedule; that is, a way
to organize the communications as efficiently as possible.

4.3 Communication Schedule
4.3.1 Communication Model
According to the previous discussion, we concentrate on
schedules that are composed of several successive steps. At
each step, each sender should send no more than one mes-
sage; symmetrically, each receiver should receive no more
than one message. We give a formal definition of a schedule
as follows.

TABLE 10
COMMUNICATIONS FOR P = Q = 15, r = 12, AND s = 20

 Message lengths are indicated for a vector X of size L = 900.

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 199

DEFINITION 4. Consider a redistribution with parameters r, s, P,
and Q.

• The communication grid is a PQ table with a nonzero
entry length(p, q) in position (p, q) if and only if p has
to send a message to q.

• A communication step is a collection of pairs {(p1,
q1), (p2, q2), º, (pt, qt)} such that pi π pj for 1 £ i < j £ t,
qi π qj for 1 £ i < j £ t, and length(pi, qi) > 0 for 1 £ i £ t.
A communication step is complete if t = min(P, Q)
(either all senders or all receivers are active) and is in-
complete otherwise. The cost of a communication step is
the maximum value of its entries; in other words, max
{length(pi, qi); 1 £ i £ t}.

• A schedule is a succession of communication steps such
that each nonzero entry in the communication grid ap-
pears in one and only one of the steps. The cost of a
schedule may be evaluated in two ways:

1) the number of steps 1, which is simply the num-
ber of communication steps in the schedule; or

2) the total cost 7, which is the sum of the cost of each
communication step (as defined above).

The communication grid, as illustrated in the tables of
Section 2, summarizes the length of the required communi-
cations for a single slice vector; that is, a vector of size L =
lcm(Pr, Qs). The motivation for evaluating schedules via
their number of steps or via their total cost is as follows:

• The number of steps 1 is the number of synchroni-
zations required to implement the schedule. If we
roughly estimate each communication step involving
all processors (a permutation) as a measure unit, the
number of steps is the good evaluation of the cost of
the redistribution.

• We may try to be more precise. At each step, several
messages of different lengths are exchanged. The du-
ration of a step is likely to be related to the longest
length of these messages. A simple model would state
that the cost of a step is a + max {length(pi, qi)}t, where
a is a start-up time and t the inverse of the band-
width on a physical communication link. Although
this expression does not take hot spots and link con-
tentions into account, it has proven useful on a vari-
ety of machines [4], [6]. The cost of a redistribution,

according to this formula, is the affine expression

a1 + b7,

which motivates our interest in both the number of
steps and the total cost.

4.3.2 A Simple Case
There is a very simple characterization of processor pairs in
each class, in the special case where r and Q, as well as s
and P, are relatively prime.

PROPOSITION 3. Assume that gcd(r, s) = 1. If gcd(r, Q) = gcd(s, P)
= 1, then for 0 £ k < g,

(,) () () mod () modp q class k q s pr k p r qs kŒ ¤ = - ¤ = +- -1 1g g

(s-1 and r-1, respectively, denote the inverses of s and r
modulo g).

PROOF. Since gcd(r, s) = gcd(r, Q) = 1, r is relatively prime
with Qs, hence, with g. Therefore, the inverse of r
modulo g is well-defined (and can be computed by
using the extended Euclid algorithm applied to r and g).
Similarly, the inverse of s modulo g is well-defined,
too. The condition pr - qs = k mod g easily translates
into the conditions of the proposition. �

In this simple case, we have a very nice solution to our
scheduling problem. Assume first that g ≥ r + s - 1. Then,
we simply schedule communications class by class. Each
class is composed of PQ

g processor pairs that are equally

distributed on each row and column of the communication
grid: In each class, there are exactly Q

g sending processors

per row, and P
g receiving processors per column. This is a

direct consequence of Proposition 3. Note that g does divide
P and Q: Under the hypothesis gcd(r, Q) = gcd(s, P) = 1, g =
gcd(Pr, Qs) = gcd(P, Qs) = gcd(P, Q).

To schedule a class, we want each processor p = ag + p¢,
where 0 £ <a P

g , 0 £ p¢ < g, to send a message to each proc-

essor q = bg + q¢, where 0 £ b Q
g , 0 £ q¢ < g, and q¢ = s-1 (p¢r - k)

mod g (or equivalently, p¢ = r-1 (q¢s + k) mod g if we look at

Fig. 1. The piecewise linear function vol.

200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

the receiving side). In other words, the processor in position
p¢ within each block of g elements must send a message to
the processor in position q¢ within each block of g elements.
This can be done in max(,)P Q

g complete steps of min(P, Q)

messages. For instance, if there are five blocks of senders
(P = 5g) and three blocks of receivers (Q = 3g), we have five
steps where three blocks of senders send messages to three
blocks of receivers. We can use any algorithm for generat-
ing the block permutation; the ordering of the communica-
tions between blocks is irrelevant.

If g = r + s - 1, we have an all-to-all communication
scheme, as illustrated in Example 2, but our scheduling by
classes leads to an algorithm where all messages have the
same length at a given step. If g < r + s - 1, we have fewer
classes than r + s - 1. In this case, we simply regroup classes
that are equivalent modulo g and proceed as before.

We summarize the discussion by the following result:

Proposition 4. Assume that gcd(r, s) = 1. If gcd(r, Q) = gcd(s, P)
= 1, then scheduling each class successively leads to an op-
timal communication scheme, in terms of both the number
of steps and the total cost.

PROOF. Assume, without loss of generality, that P ≥ Q. Ac-
cording to the previous discussion, if g ≥ r + s - 1, we
have r + s - 1 (the number of classes) times P

g (the num-

ber of steps for each class) communication steps. At each
step, we schedule messages of the same class k, hence, of
same length vol(k). If g < r + s - 1, we have g times P

g

communication steps, each composed of messages of the
same length (namely, vol k

k r s k g k
()

[,]; mod
¢

¢Œ - - ¢ =Â 1 1
 when

processing a given class k Œ [0, g - 1]. �

REMARK 1. Walker and Otto [20] deal with a redistribution
with P = Q and s = Kr. We have shown that going from
r to Kr can be simplified to going from r = 1 to s = K. If
gcd(K, P) = 1, the technique described in this section
enables us to retrieve the results of [20].

4.4 The General Case
When gcd(s, P) = s¢ > 1, entries of the communication grid
may not be evenly distributed on the rows (senders). Simi-
larly, when gcd(r, Q) = r ¢ > 1, entries of the communication
grid may not be evenly distributed on the columns (receivers).

4.4.1 Back to Example 3
We have P = 15 and s = 5; hence, s¢ = 5. We see in Table 6
that some rows of the communication grid have five nonz-
ero entries (messages), while other rows have nine. Simi-
larly, Q = 15 and r = 3; hence, r ¢ = 3. Some columns of the
communication grid have six nonzero entries, while other
columns have 10.

Our first goal is to determine the maximum number of
nonzero entries in a row or a column of the communication
grid. We start by analyzing the distribution of each class.

LEMMA 3. Let gcd(s, P) = s¢ and gcd(r, Q) = r ¢. Let P = P¢s¢ and

Q = Q¢r¢, and g0 = gcd(P¢, Q¢). Then, g = r¢s¢g0, and in

any class class(k), k Œ [0, g - 1], the processors pairs are
distributed as follows:

• There are ¢P
g0

 entries per column in Q¢ columns of the

grid, and none in the remaining columns.
• There are ¢Q

g0
 entries per row in P¢ rows of the grid, and

none in the remaining rows.

PROOF First, let us check that g = r¢s¢g0. We write r = r¢r¢¢ and

s = s¢s¢¢. We have Pr = (P¢s¢)(r¢r¢¢) = (r¢s¢)(P¢r¢¢). Simi-
larly, Qs = (r¢s¢)(Q¢s¢¢). Thus, g = gcd(Pr, Qs) = r¢s¢
gcd(P¢r¢¢, Q¢s¢¢). Since r¢¢ is relatively prime with Q¢ (by
definition of r¢) and with s¢¢ (because gcd(r, s) = 1), we
have gcd(P¢r¢¢, Q¢s¢¢) = gcd(P¢, Q¢s¢¢). Similarly, gcd(P¢,
Q¢s¢¢) = gcd(P¢, Q¢) = g0.

There are PQ
g elements per class. Since all classes

are obtained by a translation of class(0), we can restrict
ourselves to discussing the distribution of elements in
this class. The formula in Lemma 1 states that

class
p
q

s
r

P
Q() mod0 = �

�
�
�

= �
�
�
�

�
�
�
�

%
&
'

(
)
*

l

for 0 £ <l PQ
g . But ls mod P can take only those val-

ues that are multiple of s¢ and lr mod Q can take only
those values that are multiple of r¢, hence, the result.
To check the total number of elements, note that
PQ
g

P s Q r
r s g

P Q
g= =¢ ¢ ¢ ¢

¢ ¢
¢ ¢()()

0 0
. �

Let us illustrate Lemma 3 with one of our motivating
examples.

4.4.2 Back to Example 3
Elements of each class should be located on ¢ = =P

g0

3
1 3

rows and ¢ = =Q
g0

5
1 5 columns of the processor grid. Let us

check class(1), for instance. Indeed, we have the following:

class(1) =

 {(2, 1), (7, 4), (12, 7), (2, 10), (7, 13), (12, 1), (2, 4),

(7, 7), (12, 10), (2, 13), (7, 1), (12, 4), (2, 7), (7, 10), (12, 13)}.

Lemma 3 shows that we cannot use a schedule based on
classes: Considering each class separately would lead to in-
complete communication steps. Rather, we should build up
communication steps by mixing elements of several classes,
in order to use all available processors. The maximum num-
ber of elements in a row or column of the communication
grid is an obvious lower bound for the number of steps of
any schedule, because each processor cannot send (or re-
ceive) more than one message at any communication step.

PROPOSITION 5. Assume that gcd(r, s) = 1 and that r + s - 1 £ g
(otherwise, the communication grid is full). If we use the
notations of Lemma 3,

1) the maximum number mR of elements in a row of the

communication grid is mR
Q
g

r s
s= ¢ + -
¢0

1 ; and

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 201

2) the maximum number mC of elements in a column of the

communication grid is mC
P
g

r s
r= ¢ + -
¢0

1 .

PROOF. According to Lemma 1, two elements of class(k) and
class(k¢) are on the same row of the communication
grid if ls + ku = l¢s + k¢u mod P for some l and l¢ in
the interval [,]0 1PQ

g - . Necessarily, s¢, which divides P

and (l - l¢)s, divides (k - k¢)u. But, we have ru - sv = 1,
and s is relatively prime with u. A fortiori s¢ is rela-
tively prime with u. Therefore, s¢ divides k - k¢.

Classes share the same rows of the processor grid if
they are congruent modulo s¢. This induces a partition
on classes. Since there are exactly ¢Q

g0
 elements per

row in each class, and since the number of classes
congruent to the same value modulo s¢ is either

r s
s

+ -
¢

1 or r s
s

+ -
¢

1 , we deduce the value of mR. The

value of mC is obtained similarly. �

It turns out that the lower bound for the number of steps
given by Lemma 5 can indeed be achieved.

THEOREM 1. Assume that gcd(r, s) = 1 and that r + s - 1 £ g
(otherwise, the communication grid is full), and use the no-
tations of Lemma 3 and Lemma 5. The optimal number of
steps 1opt for any schedule is

1opt = max {mR, mC}.

PROOF. We already know that the number of steps 1 of any
schedule is greater than or equal to max {mR, mC}. We
give a constructive proof that this bound is tight: We de-
rive a schedule whose number of steps is max {mR, mC}.
To do so, we borrow some material from graph theory.
We view the communication grid as a graph G = (V, E),
where

• V = 3 < 4, where 3 = {0, 1, º, p - 1} is the set of
sending processors, and 4 = {0, 1, º, q - 1} is the
set of receiving processors; and

• e = (p, q) Œ E if and only if the entry (p, q) in the
communication grid is nonzero.

G is a bipartite graph (all edges link a vertex in 3 to
a vertex in 4). The degree of G, defined as the
maximum degree of its vertices, is dG = max {mR, mC}.
According to König’s edge coloring theorem, the
edge coloring number of a bipartite graph is equal
to its degree (see [7, vol. 2, p. 1,666] or [2, p. 238]).
This means that the edges of a bipartite graph can
be partitioned in dG disjoint edge matchings. A con-
structive proof is as follows: Repeatedly extract
from E a maximum matching that saturates all
maximum degree nodes. At each iteration, the ex-
istence of such a maximum matching is guaranteed
(see [2, p. 130]). To define the schedule, we simply
let the matchings at each iteration represent the
communication steps. �

REMARK 2. The proof of Theorem 1 gives a bound for the
complexity of determining the optimal number of

steps. The best known algorithm for weighted, bi-
partite matching has cost O(|V|3) (Hungarian
method, [7, vol. 1, p. 206]). Since there are, at most,
max(P, Q) iterations to construct the schedule, we
have a procedure in O((|P| + |Q|)4) to construct a
schedule whose number of steps is minimal.

4.5 Schedule Implementation
Our goal is twofold when designing a schedule:

• Minimize the number of steps of the schedule, and
• Minimize the total cost of the schedule.

We have already explained how to view the communica-
tion grid as a bipartite graph G = (V, E). More accurately,
we view it as an edge-weighted bipartite graph: The edge of
each edge (p, q) is the length length (p, q) of the message sent
by processor p to processor q.

We adopt the following two strategies:

Stepwise. If we specify the number of steps, we have to
choose at each iteration a maximum matching that
saturates all nodes of maximum degree. Since we are
free to select any of such matchings, a natural idea is
to select among all such matchings one of maximum
weight (the weight of a matching is defined as the
sum of the weight of its edges).

Greedy. If we specify the total cost, we can adopt a greedy
heuristic that selects a maximum weighted matching
at each step. We might end up with a schedule having
more than 1opt steps but whose total cost is less.

To implement both approaches, we rely on a linear pro-
gramming framework (see [7, chapter 30]). Let A be the
|V| ¥ |E| incidence matrix of G, where

a
j i

ij = %&
'
1
0

if edge is incident to vertex
otherwise .

Since G is bipartite, A is totally unimodular (each square
submatrix of A has determinant 0, 1, or -1). The matching
polytope of G is the set of all vectors x Œ Q|E| such that

x e e E

x e v V
e v

()
()

≥ " Œ
£ " Œ

%
&
K

'K 'Â
0

1 (7)

(intuitively, x(e) = 1 iff edge e is selected in the matching).
Because the polyhedron determined by (7) is integral, we
can rewrite it as the set of all vectors x Œ Q|E| such that

x Ax b where b V≥ £ =

�

�

�
�
�
�

�

�

�
�
�
�

Œ0

1
1

1

, .
�

Q (8)

To find a maximum weighted matching, we look for x such
that

max{ctx; x ≥ 0, A x £ b}, (9)

where c Œ N|E| is the weight vector.
If we choose the greedy strategy, we simply repeat the

search for a maximum weighted matching until all com-
munications are done. If we choose the stepwise strategy,
we have to ensure that, at each iteration, all vertices of

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

maximum degree are saturated. This task is not difficult:
For each vertex v of maximum degree in position i, we
replace the constraint (Ax)i £ 1 by (Ax)i = 1. This trans-
lates into YtAx = k, where k is the number of maximum
degree vertices and Y Œ {0, 1}|V|, whose entry in position
i is 1 iff the ith vertex is of maximum degree. We note
that, in either case, we have a polynomial method. Be-
cause the matching polyhedron is integral, we solve a
rational linear problem but are guaranteed to find inte-
ger solutions.

To see the fact that the greedy strategy can be better than
the stepwise strategy in terms of total cost, consider the
following example.

EXAMPLE 5. Consider a redistribution problem with P = 15,
Q = 6, r = 2, and s = 3. The communication grid and
the stepwise strategy are illustrated in Table 11: The
number of steps is equal to 10, which is optimal, but
the total cost is 20 (see Table 12). The greedy strategy
requires more steps, namely, 12 (see Table 13), but its
total cost is 18 only (see Table 14).

4.5.1 Comparison with Walker and Otto’s Strategy
Walker and Otto [20] deal with a redistribution where P = Q
and s = Kr. We know that going from r to Kr can be sim-
plified to going from r = 1 to s = K. If gcd(K, P) = 1, we
apply the results of Section 4.3.2 (see Remark 1). In the
general case (s¢ = gcd(K, P) ≥ 1), classes are evenly distrib-
uted among the columns of the communication grid
(because r¢ = r = 1), but not necessarily among the rows.

However, all rows have the same total number of nonzero
elements because s¢ divides r + s - 1 = K. In other words,
the bipartite graph is regular. And, since P = Q, any maxi-
mum matching is a perfect matching.

Because r = 1, all messages have the same length:
length(p, q) = 1 for every nonzero entry (p, q) in the commu-
nication grid. As a consequence, the stepwise strategy will
lead to an optimal schedule, in terms of both the number of
steps and the total cost. Note that 1opt = K under the hypothe-
ses of Walker and Otto: Using the notations of Lemma 5, we
have g = P = Q. Since r = r¢ = 1, Q¢ = Q; s¢ = gcd(K, P), P = s¢ P¢,
and g0 = P¢. We have

m
Q
g

r s
s s K

m
P
g

r s
r

P
P

s
s s K

R

C

=
¢ + -

¢
�

"

#
= =

=
¢ + -

¢
�

"

#
= ¢ ¢ = =

0

0

1

1

,

.

Note that the same result applies when r = 1 and P π Q.
Because the graph is regular and all entries in the commu-
nication grid are equal, we have the following theorem,
which extends Walker and Otto’s main result [20].

PROPOSITION 6. Consider a redistribution problem with r = 1
(and arbitrary P, Q, and s). The schedule generated by the
stepwise strategy is optimal, in terms of both the number of
steps and the total cost.

The strategy presented in this article makes it possible to
directly handle a redistribution from an arbitrary CYCLIC(r)

TABLE 11
COMMUNICATION GRID AND COMMUNICATION STEPS (STEPWISE

STRATEGY) FOR P = 15, Q = 6, r = 2, AND s = 3

 Message lengths are indicated for a vector X of size L = 90.

TABLE 12
COMMUNICATION COSTS (STEPWISE STRATEGY) FOR

P = 15, Q = 6, r = 2, AND s = 3.

TABLE 13
COMMUNICATION GRID AND COMMUNICATION STEPS (GREEDY

STRATEGY) FOR P = 15, Q = 6, r = 2, AND s = 3

 Message lengths are indicated for a vector X of size L = 90.

TABLE 14
COMMUNICATION COSTS (GREEDY STRATEGY) FOR

P = 15, Q = 6, r = 2, AND s = 3

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 203

to an arbitrary CYCLIC(s). In contrast, the strategy advo-
cated by Walker and Otto requires two redistributions: one
from CYCLIC(r) to CYCLIC(lcm(r, s)) and a second one
from CYCLIC(lcm(r, s)) to CYCLIC(s).

5 MPI EXPERIMENTS

This section presents results for runs on the Intel Paragon
for the redistribution algorithm described in Section 4.

5.1 Description
Experiments have been executed on the Intel Paragon XP/S 5
computer with a C program calling routines from the MPI
library. MPI is chosen for portability and reusability reasons.
Schedules are composed of steps, and each step generates at
most one send and/or one receive per processor. Hence, we
used only one-to-one communication primitives from MPI.

Our main objective was a comparison of our new sched-
uling strategy against the current redistribution algorithm
of ScaLAPACK [14], namely, the “caterpillar” algorithm,
that was briefly summarized in Section 3.2. To run our
scheduling algorithm, we proceed as follows:

1) Compute schedule steps using the results of Section 4.
2) Pack all the communication buffers.
3) Carry out barrier synchronization.
4) Start the timer.
5) Execute communications using our redistribution al-

gorithm (resp. the caterpillar algorithm).
6) Stop the timer.
7) Unpack all buffers.

The maximum of the timers is taken over all processors. We
emphasize that we do not take the cost of message genera-
tion into account: We compare communication costs only.

We use the same physical processors for the input and
the output processor grid. Results are not very sensitive to
having the same grid or disjoint grids for senders and re-
ceivers.

5.2 Results
Three experiments are presented below. The first two ex-
periments use the schedule presented in Section 4.3.2,
which is optimal in terms of both the number of steps 1
and the total cost 7. The third experiment uses the sched-
ule presented in Section 4.4, which is optimal only in
terms of 1.

5.2.1 Back to Example 1
The first experiment corresponds to Example 1, with P =
Q = 16, r = 3, and s = 5. The redistribution schedule re-
quires seven steps (see Table 3). Since all messages have
same length, the theoretical improvement over the cater-
pillar algorithm, which as 16 steps, is 7/16 < 0.44. Fig. 2
shows that there is a significant difference between the
two execution times. The theoretical ratio is obtained for
very small vectors (e.g., of size 1,200 double-precision
reals). This result is not surprising because start-up times
dominate the cost for small vectors. For larger vectors, the
ratio varies between 0.56 and 0.64. This is due to conten-
tion problems: Our scheduler needs only seven steps, but
each step generates 16 communications, whereas, each of

the 16 steps of the caterpillar algorithm generates fewer
communications (between six and eight per step), thereby
generating less contention.

5.2.2 Back to Example 2
The second experiment corresponds to Example 2, with P =
Q = 16 processors, r = 7, and s = 11 (see Fig. 3). Our redistri-
bution schedule requires 16 steps, and its total cost is 7 = 77
(see Table 5). The caterpillar algorithm requires 16 steps,
too, but at each step, at least one processor sends a mes-
sage of length (proportional to) seven, hence, a total cost
of 112. The theoretical gain 77/112 < 0.69 is to be ex-
pected for very long vectors only (because of start-up
times). We do not obtain anything better than 0.86, be-
cause of contentions. Experiments on an IBM SP2 or on a
Network of Workstations would most likely lead to more
favorable ratios.

Fig. 2. Time measurements for the caterpillar and greedy schedules, for
different vector sizes, redistributed from P = 16, r = 3 to Q = 16, s = 5.

Fig. 3. Time measurements for the caterpillar and greedy schedules, for
different vector sizes, redistributed from P = 16, r = 7 to Q = 16, s = 11.

204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

5.2.3 Back to Example 4
The third experiment corresponds to Example 4, with P = 12,
Q = 8, r = 4, and s = 3 (see Fig. 4). This experiment is similar
to the first one in that our redistribution schedule requires
much fewer steps (four) than does the caterpillar (12). There
are two differences, however: P π Q, and our algorithm is
not guaranteed to be optimal in terms of total cost. Instead
of obtaining the theoretical ratio of 4/12 < 0.33, we obtain
results close to 0.6. To explain this, we need to take a closer
look at the caterpillar algorithm. As shown in Table 15, six
of the 12 steps of the caterpillar algorithm are indeed empty
steps, and the theoretical ratio rather is 4/6 <0.66.

6 CONCLUSION

In this article, we have extended Walker and Otto’s work in
order to solve the general redistribution problem; that is,
moving from a CYCLIC(r) distribution on a P-processor
grid to a CYCLIC(s) distribution on a Q-processor grid. For
any values of the redistribution parameters P, Q, r, and s,
we have constructed a schedule whose number of steps is
optimal. Such a schedule has been shown optimal in terms
of total cost for some particular instances of the redistribu-
tion problem (that include Walker and Otto’s work). Future
work will be devoted to finding a schedule that is optimal
in terms of both the number of steps and the total cost for
arbitrary values of the redistribution problem. Since this
problem seems very difficult (it may prove NP-complete),

another perspective is to further explore the use of heuris-
tics like the greedy algorithm that we have introduced, and
to assess their performances.

We have run a few experiments, and these generated op-
timistic results. One of the next releases of the ScaLAPACK
library may well include the redistribution algorithm pre-
sented in this article.

ACKNOWLEDGMENTS

We thank the reviewers whose comments and suggestions
have greatly improved the presentation of the paper. This
work was supported in part by the U.S. National Science
Foundation Grant no. ASC-9005933; by the U.S. Defense Ad-
vanced Research Projects Agency under contract DAAH04-
95-1-0077, administered by the U.S. Army Research Office;
by the U.S. Department of Energy Office of Computational
and Technology Research, Mathematical, Information, and
Computational Sciences Division under Contract DE-
AC05-84OR21400; by the U.S. National Science Founda-
tion Science and Technology Center Cooperative Agree-
ment no. CCR-8809615; by the CNRS–ENS Lyon–INRIA
project ReMaP; and by the Eureka Project EuroTOPS.

Yves Robert is on leave from Ecole Normale Supérieure
de Lyon and is partly supported by DRET/DGA under
contract ERE 96-1104/A000/DRET/DS/SR. The authors
acknowledge the use of the Intel Paragon XP/S 5 computer,
located in the Oak Ridge National Laboratory Center for
Computational Sciences, funded by the U.S. Department of
Energy’s Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Computa-
tional and Technology Research.

REFERENCES

[1] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell, “A Linear Alge-
bra Framework for Static HPF Code Distribution,” Scientific Pro-
gramming, to appear. Available as CRI–Ecole des Mines Technical
Report A-278-CRI, http://www.cri.ensmp.fr.

[2] C. Berge, Graphes et Hypergraphes. Dunod, 1970. English transla-
tion by Elsevier, Amsterdam (1985).

[3] S. Chatterjee, J.R. Gilbert, F.J.E. Long, R. Schreiber, and S.-H.
Teng, “Generating Local Addresses and Communication Sets for
Data-Parallel Programs,” J. Parallel and Distributed Computing, vol. 26,
no. 1, pp. 72–84, 1995.

[4] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Pe-
titet, K. Stanley, D. Walker, and R.C. Whaley, “ScaLAPACK: A
Portable Linear Algebra Library for Distributed Memory Com-
puters—Design Issues and Performance,” Proc. Computer Physics
Comm., vol. 97, pp. 1–15, 1996. (also LAPACK Working Note #95).

[5] J.J. Dongarra and D.W. Walker, “Software Libraries for Linear
Algebra Computations on High Performance Computers,” SIAM
Review, vol. 37, no. 2, pp. 151–180, 1995.

[6] G.H. Golub and C.F. Van Loan, Matrix Computations, second ed.
Johns Hopkins, 1989.

[7] R.L. Graham, M. Grötschel, and L. Lovász. Handbook of Combina-
torics. Elsevier, 1995.

[8] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan,
“Compiling Array Expressions for Efficient Execution on Distrib-
uted-Memory Machines,” J. Parallel and Distributed Computing,
vol. 32, no. 2, pp. 155–172, 1996.

[9] E.T. Kalns and L.M. Ni, “Processor Mapping Techniques Towards
Efficient Data Redistribution,” IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 12, pp. 1,234–1,247, Dec. 1995.

Fig. 4. Time measurements for the caterpillar and greedy schedules, for
different vector sizes, redistributed from P = 15, r = 4 to Q = 6, s = 3.

TABLE 15
COMMUNICATION COSTS FOR P = 12, Q = 8, r = 4, AND s = 3

WITH THE CATERPILLAR SCHEDULE.

DESPREZ ET AL.: SCHEDULING BLOCK-CYCLIC ARRAY REDISTRIBUTION 205

[10] K. Kennedy, N. Nedeljkovic, and A. Sethi, “Efficient Address Gen-
eration for Block-Cyclic Distributions,” Proc. 1995 ACM/IEEE Super-
computing Conf., http://www.supercomp.org/sc95/proceedings,
1995.

[11] K. Kennedy, N. Nedeljkovic, and A. Sethi, “A Linear-Time Algo-
rithm for Computing the Memory Access Sequence in Data-
Parallel Programs,” Proc. Fifth ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, pp. 102–111, 1995.

[12] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and
M.E. Zosel, The High Performance Fortran Handbook. MIT Press,
1994.

[13] A. Petitet, “Algorithmic Redistribution Methods for Block Cyclic
Decompositions,” PhD thesis, Univ. of Tennessee, Knoxville, Dec.
1996.

[14] L. Prylli and B. Tourancheau, “Efficient Block-Cyclic Data Redis-
tribution,” Proc. EuroPar’96, Lectures Notes in Computer Science,
vol. 1,123, pp. 155–164. Springer Verlag, 1996.

[15] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J. Don-
garra, MPI: The Complete Reference. MIT Press, 1996.

[16] J.M. Stichnoth, D. O’Hallaron, and T.R. Gross,” Generating
Communication for Array Statements: Design, Implementation,
and Evaluation,” J. Parallel and Distributed Computing, vol. 21, no. 1,
pp. 150–159, 1994.

[17] A. Thirumalai and J. Ramanujam, “Fast Address Sequence Genera-
tion for Data-Parallel Programs Using Integer Lattices,” Languages and
Compilers for Parallel Computing, C.-H. Huang, P. Sadayappan, U. Ban-
erjee, D. Gelernter, A. Nicolau, and D. Padua, eds., Lectures Notes in
Computer Science, vol. 1,033, pp. 191–208. Springer Verlag, 1995.

[18] K. van Reeuwijk, W. Denissen, H.J. Sips, and E.M.R.M. Paalvast,
“An Implementation Framework for HPF Distributed Arrays on
Message-Passing Parallel Computer Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 7, no. 9, pp. 897–914, Sept. 1996.

[19] A. Wakatani and M. Wolfe, “Redistribution of Block-Cyclic Data
Distributions Using MPI,” Parallel Computing, vol. 21, no. 9, pp. 1,485–
1,490, 1995.

[20] D.W. Walker and S.W. Otto, “Redistribution of Block-Cyclic Data
Distributions Using MPI,” Concurrency: Practice and Experience,
vol. 8, no. 9, pp. 707–728, 1996.

[21] L. Wang, J.M. Stichnoth, and S. Chatterjee, “Runtime Performance
of Parallel Array Assignment: An Empirical Study,” Proc. 1996
ACM/IEEE Supercomputing Conf.,
http://www.supercomp.org/sc96/proceedings, 1996.

Frédéric Desprez received his PhD in computer
science from the Institut National Polytechnique de
Grenoble in 1994 and his MS in computer science
from ENS Lyon in 1990. He is a researcher at
INRIA and holds a position at the LIP laboratory
(ENS Lyon, France). His research interests in-
clude parallel libraries for scientific computing on
parallel distributed memory machines and paral-
lelization tools for High Performance Fortran. See
http://www.ens-lyon.fr/~desprez for further in-
formation.

Jack Dongarra holds a joint appointment as
distinguished professor of computer science in
the Computer Science Department at the Uni-
versity of Tennessee (UT) and as a distinguished
scientist in the Mathematical Sciences Section at
Oak Ridge National Laboratory (ORNL) under
the UT/ORNL Science Alliance Program. He
specializes in numerical algorithms in linear
algebra, parallel computing, use of advanced-
computer architectures, programming methodol-
ogy, and tools for parallel computers. Other cur-

rent research involves the development, testing, and documentation of
high quality mathematical software. He was involved in the design and
implementation of the software packages EISPACK, LINPACK, the
BLAS, LAPACK, ScaLAPACK, Netlib, PVM/HeNCE, MPI, the National
High-Performance Software Exchange, and NetSolve; and is currently
involved in the design of algorithms and techniques for high perform-
ance computer architectures.

His professional activities include membership in SIAM, the IEEE, the ACM,
and a fellow of the AAAS. He has published numerous articles, papers, reports,
and technical memoranda, and has given many presentations on his research
interests. See http://www.netlib.org/utk/people/JackDongarra/ for fur-
ther information.

Antoine Petitet received the Engineer of Com-
puter Science degree from the Ecole Nationale
Supérieure d’Electrotechnique, d’Electronique,
d’Informatique, et d’Hydraulique de Toulouse
(ENSEEIHT), Toulouse, France, in 1990. He
was awarded the PhD in computer science
from the University of Tennessee, Knoxville, in
1996. Since the beginning of September 1997,
Dr. Petitet has been employed as a research
staff member at the NEC Research Laborato-
ries in Sankt Augustin, Germany. His research

interests primarily focus on parallel computing, numerical linear al-
gebra, and the design of parallel numerical software libraries for
distributed memory concurrent computers.

Cyril Randriamaro received his MS in computer
science from the Ecole Normale Supérieure de
Lyon (ENS Lyon), France, in 1995. He is now a
PhD student at the LIP laboratory (ENS Lyon). He
specializes in data mapping and parallelization
tools for parallel distributed memory architectures.
See http://www.ens-lyon.fr/~crandria for fur-
ther information.

Yves Robert is a professor and head of the Computer
Science Laboratory LIP at ENS Lyon. He is the author
of two books, more than 60 papers in international
journals, and more than 65 papers in international
conference proceedings. His main research interests
are parallel algorithms for distributed memory archi-
tectures and automatic compilation/parallelization
techniques. He is leading the CNRS–ENS Lyon–
INRIA project ReMaP. He is a member of the ACM
and the IEEE. See http://www. ens-lyon.fr/~yrobert
for further information.

