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Abstract—The generalized minimum residual (GMRES)
method is a popular method for solving a large-scale sparse
nonsymmetric linear system of equations. On modern computers,
especially on a large-scale system, the communication is becom-
ing increasingly expensive. To address this hardware trend, a
communication-avoiding variant of GMRES (CA-GMRES) has
become attractive, frequently showing its superior performance
over GMRES on various hardware architectures. In practice,
to mitigate the increasing costs of explicitly orthogonalizing the
projection basis vectors, the iterations of both GMRES and CA-
GMRES are restarted, which often slows down the solution con-
vergence. To avoid this slowdown and improve the performance
of restarted CA-GMRES, in this paper, we study the effectiveness
of deflation strategies. Our studies are based on a thick restarted
variant of CA-GMRES, which can implicitly deflate a few Ritz
vectors, that approximately span an eigenspace of the coefficient
matrix, through the standard orthogonalization process. This
strategy is mathematically equivalent to the standard thick-
restarted GMRES, and it requires only a small computational
overhead and does not increase the communication or storage
costs of CA-GMRES. Hence, by avoiding the communication, this
deflated version of CA-GMRES obtains the same performance
benefits over the deflated version of GMRES as the standard
CA-GMRES does over GMRES. Our experimental results on
a hybrid CPU/GPU cluster demonstrate that thick-restart can
significantly improve the convergence and reduce the solution
time of CA-GMRES. We also show that this deflation strategy
can be combined with a local domain decomposition based
preconditioner to further enhance the robustness of CA-GMRES,
making it more attractive in practice.

I. INTRODUCTION

The cost of executing software can be modeled as a function

of its computational and communication costs (we ignore

the potential overlap of the computation and communication,

which could reduce the cost by a factor of two). For instance,

we can model the computational cost based on the number

of required arithmetic operations, while the communication

includes data movement or synchronization between parallel

execution units, as well as data movement between the levels

of the local memory hierarchy. On modern computers, the

communication is becoming increasingly expensive compared

to the computation, in terms of both time and energy con-

sumption. It is critical to take such hardware trends into

consideration when designing high-performance software for

new and emerging computers.

The Generalized Minimum Residual (GMRES) method [12]

is a popular Krylov subspace projection method for solving a

large-scale nonsymmetric linear system of equations, Ax = b.

To address the current hardware trend, the techniques, which

were originally proposed as a s-step method [20], have

been adapted to avoid communication of GMRES in recent

years [5]. We studied the performance of this communication-

avoiding variant of GMRES (CA-GMRES) on multicore CPUs

with multiple GPUs on a single compute node [22] and on a

hybrid CPU/GPU cluster [24]. Such a hybrid CPU/GPU archi-

tecture is becoming popular in high-performance computing

due to their potential of enabling exascale computing [3], but

the same hardware trend exists and its communication cost

is becoming increasingly expensive. Our performance results

demonstrated that CA-GMRES can obtain speedups of about

2× over GMRES by avoiding the communication on such

hybrid architectures (using up to 120 GPUs).

Using GMRES or CA-GMRES, the solution converges with

nonincreasing residual norm. However, each basis vector is

explicitly orthogonalized against the previous basis vectors,

and as the subspace dimension grows, it becomes increasingly

expensive to generate a new basis vector in terms of its

computation, communication, and storage requirements. To

mitigate this increasing costs of generating a large projection

subspace, the iteration is generally restarted after computing

a fixed number of basis vectors. Since the dimension of the

subspace is now limited, restarting the iteration often slows

down, or even prevents, the solution convergence. To mitigate

this convergence slowdown of GMRES, several techniques

have been proposed that deflate an approximate eigenspace

associated with the smallest eigenvalues of the coefficient

matrix A (such eigenspace is known to slow down the

GMRES’s convergence [17]). To examine the effectiveness

of deflation techniques on CA-GMRES, in this paper, we

adapt a thick restarting strategy [9] and integrate two deflation

techniques into CA-GMRES, implicit deflation [1] and implicit

restart [8]. Our experimental results demonstrate that thick-

restart requires only a small increase in the computation, while

greatly improving the convergence of CA-GMRES. These

deflation strategies are mathematically equivalent to those

proposed for GMRES and do not increase the communication

or storage cost of CA-GMERS. As a result, the deflated

variant of CA-GMRES obtains the same performance benefits

over the deflated GMRES as the standard CA-GMRES does

over GMRES, improving the robustness of CA-GMRES, and

making it more attractive in practice.

Recently, we proposed a domain decomposition (DD) based
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preconditioning framework that have shown to work seam-

lessly with a CA-Krylov method [24]. We observed that in

many cases, the preconditioner is effective in reducing both

the iteration counts and the total solution time. This itself is a

significant contribution since one major reason why the CA-

Krylov method has not been widely adapted in practice is the

lack of such preconditioners. However, this DD preconditioner

is local in nature, and its effectiveness may degrade on a

larger number of subdomains. Since the deflation strategy

studied in this paper can be combined with any preconditioner,

it may provide a simple framework to introduce a global

preconditioner on top of the local DD preconditioner. We

present several experimental results to examine this potential.

The rest of the paper is organized as follows; in Sec-

tion II, we first review CA-GMRES and briefly describe

our implementation on a hybrid CPU/GPU cluster. We then

outline, in Section III, our thick-restarted CA-GMRES, and

in Sections IV and V, respectively, we describe the implicit

deflation and implicit restart strategies, which our thick-restart

strategy uses to generate its deflation subspace. Finally, in

Section VI, we study the effects of deflation on the perfor-

mance of CA-GMRES with and without preconditioning on

a hybrid CPU/GPU cluster. We provide our final remarks in

Section VII.

We use the following notations in the rest of the paper:

the j-th column of a matrix A is denoted by aj , while

Aj1:j2 is the submatrix consisting of the j1-th through the

j2-th column of A, Ai1:i2,j1:j2 is the submatrix consisting

of the i1-th through the i2-th rows of Aj1:j2 , and ai,j is

the (i, j)-th element of A. We use [x;y] to represent the

vector with a vector x stacked on top of another vector y,

i.e., [x;y] =

[
x
y

]
, while 0k is a k-length vector whose

elements are all zeros, and ek is the k-th column of an identity

matrix, whose dimension should be clear from the context. The

dimension of the coefficient matrix A is denoted by n.

II. COMMUNICATION-AVOIDING GMRES

GMRES’s j-th iteration generates a new basis vector qj+1

for a Krylov projection subspace [12]. This is done by

first multiplying the previously-generated basis vector qj

with the sparse coefficient matrix A (SpMV), and then or-

thonormalizing (Orth) the resulting vector against all the

previously-orthonormalized basis vectors q1,q2, . . . ,qj . This

explicit orthogonalization of the basis vectors becomes in-

creasingly expensive as the iteration proceeds. To avoid the

increasing cost of computing a large projection subspace,

the iteration is restarted after computing a fixed number

m + 1 of basis vectors. Before restart, GMRES updates

the approximate solution x̂ by solving a least-squares prob-

lem g := argmint ‖c−Ht‖2, where c := QT
1:m+1r =

[‖r‖2;0m], r is the residual vector (i.e., r = b − Ax̂),

H := QT
1:m+1AQ1:m, and the approximate solution is updated

by x̂ := x̂ + Q1:mg. Then, the iteration is restarted with the

new residual vector r as the starting vector (i.e., q1 = r/‖r‖2).

The matrix H , a by-product of the orthogonalization pro-

cedure, has an upper Hessenberg form. Hence, the least-

squares problem to update the approximate solution can be

efficiently solved, requiring only about 3(m+ 1)2 floating-

point operations (flops). On the other hand, for an n-by-n
matrix A with nnz(A) nonzeros, SpMV and Orth require

a total of about 2m · nnz(A) and 2m3n flops over the

m iterations, respectively (i.e., n, nnz(A) � m). Hence,

the GMRES’s computational cost is typically dominated by

SpMV and Orth. In addition, SpMV and Orth dominate the

communication cost of GMRES. This includes point-to-point

messages or neighborhood collectives for SpMV, and global

all-reduces in Orth, as well as data movement between the

levels of the local memory hierarchy (for reading the sparse

matrix and for reading and writing vectors, assuming they do

not fit in cache). On modern computers, such communication

is becoming increasingly expensive compared to computation,

and as a result, SpMV and Orth often dominate the solution

time of GMRES. CA-GMRES [5] aims to reduce this commu-

nication by redesigning the algorithm and replacing SpMV and

Orth with three new kernels – matrix powers kernel (MPK),

block orthogonalization (BOrth), and tall-skinny QR (TSQR)

– that generate and orthogonalize a set of s basis vectors all at

once. In theory, CA-GMRES generates these s basis vectors

with the communication cost that is no more than that of a

single GMRES iteration (plus a lower-order term) [7].

The combined cost of MPK, BOrth, and TSQR to generate

the basis vectors typically dominates the total cost of CA-

GMRES. To accelerate the solution process, our CA-GMRES

implementation on a hybrid CPU/GPU cluster generates the

basis vectors on the GPUs, while each MPI process re-

dundantly solves the least squares problem on the CPUs.

We use either a matrix reordering or a graph partitioning

algorithm to distribute both the matrix A and the basis

vectors q1,q2, . . . ,qm+1 over the GPUs in a 1D block row

format (see Section VI). A more detailed description of our

implementation can be found in [22], [24].

III. THICK-RESTARTED CA-GMRES

Restarting slows down the solution convergence because

some useful information (e.g., eigenspace associated with the

smallest eigenvalues) is discarded and must be recomputed

during each restart loop. In this section, we outline the thick

restart strategy to improve the solution convergence of CA-

GMRES by retaining some of the useful information at each

restart. In particular, this strategy restarts the iteration with

a few approximate eigenvectors, called Ritz vectors, of A in

addition to the current residual vector r. It is based on the

application of the Krylov Schur method for solving an eigen-

value problem [16] to GMRES to solve a linear system. Our

approach is mathematically equivalent to the implicit deflation

and implicit restart [1], [8]. However, our implementation

is based on a thick restart algorithm, and is different from

these approaches [1], [8] which are based on the implicitly

restarted Arnoldi algorithm [14]. A thick restarted variant of
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CA-GMRES(A, M , b, s, m):
repeat (restart-loop)

1.Generate Krylov Basis: O(m · nnz(|A|) + m2n) flops on GPUs.

(x̂ = 0n, q1 = r/‖r‖2, r = b−Ax̂, and k = 0, initially)
1.1. Initialization

Sparse Matrix Vector Multiply (SpMV):
qk+1 := Aqk

Orthogonalization (Orth):
orthonormalize qk+1 against Q1:k

1.2. Restart-loop
for j = k + 1, 1 + s, . . . ,m do

Matrix Powers Kernel (MPK):
for k = j, j + 1, . . . , j + s− 1 do
qk+1 := Aqk (SpMV)

end for
Block Orthonormalization (BOrth):

orthogonalize Qj+1:j+s against Q1:j , i.e.,
Qj+1:j+s := Qj+1:j+s −Q1:jR1:j,j+1:j+s

Tall-Skinny QR (TSQR) factorization:
orthonormalizing Qj+1:j+s against each other, i.e.,
Qj+1:j+sRj+1:j+s,j+1:j+s = Qj+1:j+s

Projected Matrix Computation
compute Hj:j+s−1,j+1:j+s

from H1:j,1:j+1 and R1:j+s,j+1:j+s

end for

2.Restart: O(m2) and O(nmk) flops on CPUs and GPUs, respectively.

2.1 solve g = mint ‖Ht−QT
1:m+1r‖2, and

compute x̂ = x̂+Q1:mg and r = b−Ax̂
2.2 compute k Ritz vector v1,v2, . . . ,vk to keep

(see Sections IV and V)
2.3 orthogonalize [V1:kr] to generate Q1:k+1

2.4 compute H1:k+1,1:k

until solution convergence

Fig. 1. Thick-restarted CA-GMRES(s, k,m).

an implicitly-restarted GMRES has been described in [9]. In

this section, we extend that to CA-GMRES.1

We assume that to restart the iteration, the approximate

eigenpairs, called Ritz pairs, (θi,vi), have been generated such

that their residual vectors, Avi − θivi, align with the current

residual vector, r, of the linear system (i.e., r = b−Ax̂). We

show two approaches to generate such vectors in Sections IV

and V. When k such vectors are kept at restart, they satisfy

the following relation:

AV1:k = [V1:k, r̄] T1:k+1,1:k, (1)

where V1:k are the k kept Ritz vectors, T1:k+1,1:k =[
Σ1:k,1:k; t

T
]
, Σ1:k,1:k is a diagonal matrix with the cor-

responding kept Ritz values on diagonal (i.e., Σ1:k,1:k =
diag(θ1, θ2, . . . , θk)), the i-th element of t is equal to the

residual norm of the i-th Ritz pairs (i.e., ti = ‖Avi− θivi‖2),

and r̄ = r/‖r‖2. To restart the iteration, we compute a QR

factorization of the k+1 kept vectors, Q̂1:k+1R̂1:k+1,1:k+1 :=

[V1:kr̄], where Q̂1:k+1 has orthonormal columns, R̂1:k+1,1:k+1

is upper-triangular, and we put the “hat” over the next basis

vectors Q̂1:k+1 to distinguish them from the current basis

vectors Q1:m+1. Then, the relation (1) becomes

AQ̂1:k = Q̂1:k+1Ĥ1:k+1,1:k, (2)

1It was pointed out that similar studies have been independently conducted
in [19].

where Ĥ1:k+1,1:k = R̂1:k+1,1:k+1T1:k+1,1:kR̂
−1
1:k,1:k. When we

encounter a complex Ritz value, we keep its conjugate pairs

to form a real Schur decomposition and avoid the complex

arithmetic.

By their construction (see Sections IV and V), these k + 1
basis vectors Q̂1:k+1 span a Krylov subspace [1], [8], which

can be expanded using MPK, BOrth, and TSQR, as in CA-

GMRES without thick-restart. The projected matrix Ĥ1:k+1,1:k

is expanded correspondingly, using the formula similar to

those in CA-GMRES without thick-restart [5, Section 3.3.4].

The only difference is that when computing Ĥk+1,k+1:k+s, the

(k+1)-th row of Ĥ1:k+1,1:k is no longer in a Hessenburg form.

Hence, extra computation is needed to compute Ĥk+1,k+1:k+s

(i.e., O(sk) flops). In addition since the leading (k + 1)-by-k
block, Ĥ1:k,1:k, of the projected matrix is now fully dense,

the computational cost of solving the least square problem is

slightly increased:

g = argmin
t

‖ĉ− Ĥ1:m+1,1:mt‖2, (3)

where ĉ = QT
1:m+1r̄ = [QT

1:k+1r̄;0m−k]. Moreover, a general

eigensolver is needed to compute the eigenpairs of Ĥ1:m,1:m at

restart (e.g., xGEEV instead of xHEEV of LAPACK). However,

these computational overheads are insignificant in comparison

to the cost of generating the basis vectors (i.e., O(m(nnz(A)+
mn) flops). Figure 1 shows the pseudocode of the thick-

restarted CA-GMRES, which is mathematically equivalent to

the thick-restarted GMRES. Aside from the restarting pro-

cedure, the rest of the thick-restarted algorithm is identical

to that of the CA-GMRES algorithm without thick-restart.

In particular, the approximate eigenspace, V1:k, of A is im-

plicitly deflated during BOrth. In Section VI, we present

performance results to demonstrate that thick-restart requires

only an insignificant overhead, while the convergence can be

dramatically improved. As a result, the solution time may be

greatly reduced by thick-restarting the CA-GMRES iteration.

Recently, a CA formulation [2] of a deflation technique [13]

was integrated into a CA variant of the Conjugate Gradient

(CG) method. This formulation is mathematically equivalent

to a classical deflated CG [13], and can be viewed as a

type of preconditioner based on a low-rank matrix, where

a general low-rank subspace is explicitly deflated from each

basis vector (their experiments were based on the low-rank

matrices, which consist of the eigenvectors corresponding to

the smallest eigenvalues of the coefficient matrix, while in our

experiments, we used the thick-restart strategy to implicitly

reflate the approximation to the same eigenspace). In contrast,

by restricting our deflation subspace to a subspace spanned

by the Ritz and residual vectors, thick-restarting strategy only

requires a small computational overhead of recomputing the

Ritz vectors at each restart, and it can implicitly deflate the

subspace during the standard orthogonalization process. Fi-

nally, it has been proposed to exploit data sparsity in the matrix

powers computation by representing a general sparse matrix

as a combination of a low-rank matrix and a remaining matrix

which has a sparsity structure more favorable for MPK [6]. We
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are currently investigating a general low-rank preconditioner

for CA-GMRES based on this idea. The deflation techniques

studied in this paper can be combined with such low-rank

preconditioners.

IV. IMPLICIT DEFLATION

Implicit deflation [1] aims to retain some information at

restart by keeping a few Ritz vectors in addition to the new

residual vector, r = v − Ax̂. Before computing the Ritz

vectors, the projected matrix H1:m,1:m is rotated such that

the residual vectors, Avi − θivi, of the Ritz pairs (θi,vi) are

aligned with the residual vector r;

AQ1:m = Q1:mH̄1:m,1:m + h̄m+1,mr̄eTm, (4)

where H̄ = H1:m,1:m − 1
ζ ze

T
m, h̄m+1,m =

hm+1,m

ζ , z =

QT
1:mr, and ζ = qT

m+1r. Then, the Ritz pairs are computed

as (θi,vi = Q1:mxi), where (θi,xi) is the eigenpairs of

H̄1:m,1:m;

H̄1:m,1:mX1:m = X1:mΣ1:m,1:m, (5)

where Σ1:m,1:m = diag(θ1, θ2, . . . , θm). Moreover, because of

(4) and (5), the residual vectors of the Ritz pairs satisfy

AV1:m − V1:mΣ1:m,1:m = hm+1,mqm+1e
T
mX1:m.

Hence, the i-th residual norm ti of (1) can be computed

cheaply by ti = hm+1,m|xm,i|. We refer to the thick-restarted

CA-GMRES using these Ritz pairs associated with H̄1:m,1:m

as ID-CAGMRES.

V. IMPLICIT RESTART

Instead of using Ritz vectors, implicit restart [8] restarts the

iteration, using harmonic Ritz pairs (θi,vi = Q1:mxi), where

(θi,xi) is now the eigenpairs of a generalized eigenvalue

problem,

HT
1:m,1:mxi =

1

θi
(HT

1:m,1:mH1:m,1:m + h2
m+1,memeTm)xi.

In our implementation, we solve an equivalent standard eigen-

value problem,

(H1:m,1:m + h2
m+1,mfeTm)xi = θixi,

where f = H−T
1:m,1:mem. In many cases, harmonic Ritz

values provide more accurate approximation to the smallest

eigenvalues than the standard Ritz values do [10]. With the

harmonic Ritz pairs, the residual vectors are now given by

AV1:m − V1:mΣ1:m,1:m

= hm+1,m(hm+1,mV1:mf + qm+1)e
T
mX1:m, (6)

and the residual norm can be still computed cheaply for

the convergence check. In our implementation, instead of

using (6) to compute the residual norms, we recover the

Arnoldi relation (2) by computing the i-th element ti of the

vector t based on the following equalities:

ti = (Avi − θivi)
T r̄

= −θiv
T
i r̄

= −θiR̂
T
1:i,i(Q̂

T
1:kr̄),

Name Source n nnz/n

sherman3 UF collection 5, 005 4.0
PDE(1.0275) Trillinos 1, 030, 301 26.5

Fig. 2. Test matrices.

where the second equality follows since (Avi)
T r̄ = 0 [8,

Lemma 5.3], and Q̂T
1:kr̄ in the third equality is needed to solve

the least-squares problem (3) at the next restart. Hence, the

residual norms can be computed without significant computa-

tional overhead. We refer to the thick-restarted CA-GMRES

using these harmonic Ritz pairs as IR-CAGMRES.

VI. EXPERIMENTAL RESULTS

We now study the effectiveness of the thick-restart strategy

to improve the convergence and performance of CA-GMRES

with restart. Table 2 lists the two test matrices used for

our experiments. All the experiments were conducted on the

Keeneland system2 at the Georgia Institute of Technology.

Each of its compute nodes consists of two six-core Intel Xeon

CPUs and three NVIDIA M2090 GPUs, with 24GB of main

CPU memory per node and 6GB of memory per GPU. We

used the GNU gcc 4.4.6 compiler and CUDA nvcc 5.0

compiler with the optimization flag -O3, and linked with

Intel’s Math Kernel Library (MKL) version 2011 sp1.8.273

and OpenMPI 1.6.1.

To distribute the matrix among the GPUs, we used a k-

way graph partitioning algorithm of METIS3. The performance

of CA-GMRES depends critically on the orthogonalization

algorithms. For all of our experiments in this paper, we used

the classical Gram-Schmidt process [4] for BOrth and the

Cholesky QR factorization [15] for TSQR. In order to ensure

the numerical stability, we always performed the full reorthog-

onalization for both BOrth and TSQR. To compute SpMV, the

local submatrix of the coefficient matrix A is stored in the

ELLPACKT sparse matrix storage format on each GPU [18].

Though our implementation allows each MPI process to man-

age multiple GPUs on a node, in this paper, we let each process

manage one GPU. In our previous experiments [22], [24],

these configurations gave good performance of CA-GMRES

without deflation. Finally, for solving symmetric eigenvalue

problems, there are several heuristics to select the Ritz pairs

to keep at each restart [21], [23]. For our experiments with

ID-CAGMRES and IR-CAGMRES for solving nonsymmetric

linear systems in this paper, we simply kept the fixed number k
of the Ritz vectors corresponding to the smallest Ritz values,

unless otherwise specified.

Figure 3 compares the convergence history of CA-

GMERS(s,m) with those of ID-CAGMRES(k,s,m) and IR-

CAGMRES(k,s,m), in terms of the residual norm. The test

matrix used for this experiment is called sherman3 and arises

from an oil reservoir simulation. This matrix belongs to the

group of the test matrices used in the original papers [1],

[8], and is available from the University of Florida Sparse

2http://keeneland.gatech.edu/KDS
3www.cs.umn.edu/∼metis
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Fig. 3. Residual norm convergence for sherman3 matrix, 6 GPUs.
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Fig. 4. Residual norm convergence for PDE(1.0275) matrix, 6 GPUs.

Matrix Collection4. Figure 3(a) clearly demonstrates that the

convergence rate can be greatly improved by deflating the

approximate eigenspace. CA-GMRES achieved about the same

convergence using s = 1 and 5, where CA-GMRES is

equivalent to GMRES when s = 1. In all of our experiments,

both implicit deflation and implicit restart strategies obtained

similar improvements. Figure 3(b) shows the convergence

history against time. Using a larger value of s (i.e., s = 5),

CA-GMRES avoids communication, and reduced the iteration

time significantly. The solution time was further reduced by

deflating the approximate eigenspace. Figure 4 compares the

convergence histories for one of the PDE matrices used in our

previous paper [24]. The matrix is symmetric indefinite, and

we see more significant benefits of deflation.

For the rest of this section, we study the effects of de-

flation on the preconditioned CA-GMRES convergence. Our

preconditioner is based on domain decomposition (DD) tech-

niques proposed in [24]. This DD preconditioner is similar

4http://www.cise.ufl.edu/research/sparse/matrices/

to block Jacobi preconditioner, but each diagonal block is

split into smaller diagonal blocks so that the preconditioner

can be applied without requiring any additional commu-

nication from what is already needed by MPK (i.e., the

number of GPUs is equal to the number of subdomains

or diagonal blocks). For our experiments in this paper,

we focused on the right preconditioning, that generates the

right-preconditioned Krylov subspace Km+1(AM−1,q1) ≡
span(q1, AM−1q1, . . . , (AM−1)mq1), where M is our DD

preconditioner and q1 is a starting vector. For the inexact

solution of each subdomain problem, we used an ILU(0) pre-

conditioner while diagonal Jacobi preconditioners were used

on both underlap and overlap. Each MPI process computes its

local ILU(0) preconditioner on the CPU, using the ITSOL

package5, copies it to the corresponding local GPU, and

applies the preconditioner using the CuSPARSE triangular

solver at each iteration.

Figure 5 shows the convergence history of the precondi-

5http://www-users.cs.umn.edu/∼saad/software/ITSOL/
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Fig. 5. Residual norm convergence for PDE(1.0275) matrix with Preco, 6 GPUs.

tioned CA-GMRES for the PDE matrix. The figure indicates

that, though the convergence rate was significantly improved

using this DD preconditioner, it can be further improved by

deflating the approximate eigenspace. The effectiveness of our

DD preconditioner degraded with a greater step size s. This

is because in order not to increase the communication for

the larger step size, the diagonal blocks of the preconditioner

must be split into smaller blocks. Even when the deflation

technique is used in combination with the DD preconditioner,

the convergence rates still degraded with a larger step size. In

fact, when s = 5 with the deflation, the iteration count was

greater using the preconditioner. This is because the effective-

ness of the deflation depends on the spectrum distribution of

the coefficient matrix A or the preconditioned matrix AM−1.

The PDE matrix A has a few negative eigenvalues. Deflating

the eigenspace associated with these eigenvalues significantly

improves the convergence. In contrast, the spectral distribution

of the preconditioned matrix AM−1 may not be as favorable

for the deflation. In the end, with the overhead of applying

the preconditioner, the solution time was shorter, using only

the deflation technique without the preconditioner, for this

particular test matrix.

Figure 6 shows the convergence histories with different

numbers of subdomains. Our DD preconditioner is local in

nature, and the iteration count of the preconditioned CA-

GMRES often increases with the number of subdomains.

With deflation, the number of iterations was about the same

on 6 and 12 GPUs. However, compared to using 12 GPUs,

both the iteration count and the solution time still increased

on 24 GPUs. Figure 7 shows the results, still using the

preconditioner, but now with different configurations of the

kept Ritz values (i.e., five smallest, four smallest plus one

largest, and three smallest plus two largest Ritz values). In

comparison to keeping just the smallest Ritz values, keeping

the largest Ritz values seems to slow down the convergence.

These results indicate that these largest Ritz values converge

quickly. On the other hand, the smallest Ritz values seem to

Sma/CASma/ID Sma/IR PDE/CAPDE/ID PDE/IR Pre/CA Pre/ID Pre/IR
0

0.2

0.4

0.6
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1

1.2

 

 

Other
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Fig. 8. Breakdown of average restart-loop time (normalized with stan-
dard CA-GMRES), 6 GPUs. In the figure, “Sma” and “PDE” denote the
sherman3 and PDE(1.0275) matrices, respectively, while “CA,” “ID,”
and “IR” respectively denote CA-GMRES, ID-CAGMRES, and IR-GMRES.

converge slowly. Since these Ritz values must be recomputed

during each restart loop, the solution convergence slowed

down. As a result, for this test matrix, it was more effective to

keep the smallest Ritz values rather than keeping the largest

Ritz values at restart.

Figure 8 shows the breakdown of the average time spent

generating m + 1 basis vectors and restarting the iteration.

In the figure, “Other” includes the restarting time, and shows

that the thick-restarting based on both the implicit deflation

and the implicit restart slightly increased the restarting time.6

With preconditioning, the relative cost of the thick-restart

increased further since we need to apply the preconditioner

to update the approximate solution (i.e., x̂ = x̂ + W1:mg,

where W1:m = M−1Q1:m and Q1:m is the orthonormal

6In our current implementation, the Ritz vectors V1:k are explicitly orthog-
onalized against each other to form (2). The cost of the orthogonalization and
of the thick restarting may be further reduced by, instead of orthogonalizing
the Ritz vectors, orthogonalizing the kept eigenvectors X1:k of the projected
matrix H1:m,1:m [9].
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Fig. 6. Residual norm convergence for PDE(1.0275) matrix with Preco and different numbers of subdomains.
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Fig. 7. Residual norm convergence for PDE(1.0275) matrix with Preco and different configurations of kept Ritz values, 6 GPUs.

basis vectors). More specifically, our implementation of CA-

GMRES without deflation is based on a flexible version

of GMRES [11], and saves the preconditioned basis vec-

tors. Hence, without deflation, our CA-GMRES computes

H̃1:m+1,1:m := QT
1:m+1AW̃1:m, where W̃1:m spans the same

subspace as W1:m, but is generated during MPK and before

BOrth. As a result, the solution can be updated without

an additional application of the preconditioner. Though the

projected matrices H̃1:m,1:m is different from H1:m,1:m for

s > 1, the computed solution is mathematically the same. With

thick-restart, we use H1:m,1:m to update the solution because

the Ritz pairs are computed from H1:m,1:m (see Sections III

through V). Hence, we must update the solution vector based

on x̂ = x̂+M−1Q1:mg, requiring one additional application

of M−1 to the vector Q1:mg. Finally, when k+1 Ritz vectors

are kept at restart, CA-GMRES iterates k less time to generate

m − k additional basis vectors (i.e., the dimension of the

projection subspace is always the same, m). Hence, “SpMV”

and “Orth” times were both slightly reduced, using deflation.

In the end, the thick-restart introduced only a small overhead,
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Fig. 9. Parallel strong scaling of IR-CAGMRES(5,5,60)’s restart-loop for
PDE(1.0275) matrix.

while significantly reducing the iteration count, and the total

solution time of CA-GMRES was reduced using the deflation.

Our focus of the paper is to study the effectiveness of
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deflation to improve the robustness of CA-GMRES, while our

previous papers [22], [24] demonstrated the effectiveness and

scalability of CA-GMRES without deflation. Before conclud-

ing this experimental section, we include Figure 9 to show

the scaling of CA-GMRES on a hybrid CPU/GPU cluster

just for a reference. More parallel performance studies of

our implementation can be found in [22], [24], where we

demonstrated that CA-GMRES can obtain the speedups of

about two over GMRES on multicore CPUs with multiple

GPUs on single compute node and on a hybrid CPU/GPU

cluster. The current studies are the improvements over these

previous results.

VII. CONCLUSION

We studied a thick-restarting strategy to improve the conver-

gence and performance of CA-GMRES with restart. This strat-

egy restarts the iteration using a subspace spanned by a few

Ritz vectors in addition to the current residual vector, and it

is mathematically equivalent to thick-restarted GMRES. Since

the subspace is implicitly deflated during the standard orthogo-

nalization process, this restarting strategy requires only a small

computational overhead without increasing the communication

or storage cost. Our experimental results demonstrated that the

thick-restarting strategy can greatly improve the convergence

of CA-GMRES, reducing the time to solution. Hence, this

strategy can improve the robustness of CA-GMRES, making

it more attractive in practice.

We also studied the effects of the deflation on the perfor-

mance of a preconditioned CA-GMRES. Our preconditioner

is based on a domain decomposition (DD) [24], and is local

in nature. As a result, iteration count can increase on a larger

number of subdomains. The thick-restarting strategy may pro-

vide a potential to introduce global preconditioning on top of

the local DD preconditioning. Unfortunately, the effectiveness

of the deflation depends on the spectral distribution of the

coefficient and preconditioned matrices, and even using the

thick restart strategy, the iteration count may increase on

a larger number of subdomains. We are currently studying

a more general framework to integrate a global low-rank

preconditioner on top of our local DD preconditioner (i.e.,

not restricted to a subspace spanned by the Ritz vectors of

the preconditioned matrix AM−1). The deflation techniques

studied in this paper can be combined with these local DD

and global low-rank preconditioners.
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