
Parallel Simulation of Superscalar Scheduling

Blake Haugen
Innovative Computing Laboratory

University of Tennessee Knoxville

bhaugen@utk.edu

Piotr Luszczek
Innovative Computing Laboratory

University of Tennessee Knoxville

luszczek@eecs.utk.edu

Jakub Kurzak
Innovative Computing Laboratory

University of Tennessee Knoxville

kurzak@icl.utk.edu

Asim YarKhan
Innovative Computing Laboratory

University of Tennessee Knoxville

yarkhan@icl.utk.edu

Jack Dongarra
Innovative Computing Laboratory

University of Tennessee Knoxville

Oak Ridge National Laboratory

University of Manchester

dongarra@eecs.utk.edu

Abstract—Computers have been moving toward a multicore
paradigm for the last several years. As a result of the recent
multicore paradigm shift, software developers must design appli-
cations that exploit the inherent parallelism of modern computing
architectures. One of the areas of research to simplify this shift
is the development of dynamic scheduling utilities that allow the
developer to specify serial code that can be parallelized using
a library or compiler technology. While these tools certainly
increase the developer’s productivity, they can obfuscate perfor-
mance bottlenecks. For this reason, it is important to evaluate
algorithm performance in order to ensure that the performance
of a given algorithm is being realized using dynamic scheduling
utilities.

This paper presents the methodology and results of a new
performance analysis tool that aims to accurately simulate the
performance of various superscalar schedulers, including OmpSs,
StarPU, and QUARK. The process begins with careful timing of
each of the computational routines that make up the algorithm.
The simulation tool then uses the timing of the computational ker-
nels in conjunction with the dependency management provided by
the superscalar scheduler in order to simulate the execution time
of the algorithm. This tool demonstrates that simulation results
of various algorithms can accurately predict the performance of
a complex dynamic scheduling system.

I. INTRODUCTION

Multicore processors are prevalent in mobile, server, and
HPC computing, and their ubiquity continues to push for a
tremendous change in software development methodology. In
the single core era, software developers could write a single
routine and expect the performance to increase with each
newer, faster generation of processors. This trend of ever-
increasing CPU frequencies came to an end when new CPUs
presented multiple cores but clock frequency stagnated.

The multicore hardware required an enormous shift in the
way software was developed in order to achieve maximum
performance. As one of many paradigms, multi-threaded pro-
gramming allows software to use all of the available cores
to perform computations simultaneously in order to obtain a
much larger percentage of the theoretical peak performance
on cache-resident calculations, such as the ones originating
in dense linear algebra. While POSIX threads, or equivalent
interface on non-POSIX platforms, allow the developer to ex-
press parallel algorithms, the process of software development
can be quite challenging due to the tedious process of tracking

the data and control flow while maintaining correct concurrent
access and facilitate independent execution of code on the CPU
cores.

To address this, many tools have been developed to increase
the programmer’s productivity while allowing developers to
exploit the power of multicore architectures. Arguably the best
known example of this is the OpenMP standard [1]. OpenMP
allows the user to develop sequential code and then augment
with #pragma directives to annotate loops that the compiler
should parallelize across the cores. In July 2013, the latest
version of the OpenMP standard was released: version 4.0.
This included support for hardware accelerators such as GPUs
but also several extensions to allow the programmer to use
dynamic task scheduling. Currently, the standard only supports
control dependences. For many applications, the developer
is left with tracking all data dependences by, for example,
translating them into task dependences that are handled by
the OpenMP runtime.

Cilk is another software system that allows the developer to
specify the code that may be executed in parallel, and allows
the compiler to parallelize portions of the code [2]. The two
potential drawbacks of this approach are: 1) the developer
must explicitly recognize and annotate the parallelism for the
compiler, and 2) the BSP parallelism model [3], [4] incurs
unnecessary synchronization, which often does not allow for
the most efficient use of the computational resources as it leads
to memory contention and load imbalance.

Another class of parallel technologies employs superscalar
execution of tasks. In this paradigm, the developer creates
tasks with input and output (or both) dependences. These tasks
are then submitted to the scheduler in a serial fashion. The
tasks are scheduled dynamically at runtime by ensuring that
dependences are satisfied and the user data flows between the
tasks to trigger execution of new tasks that have all inputs
available.

Superscalar runtime schedulers are effective when exploit-
ing parallelism by guaranteeing fulfillment of dependences
found in serial code. These systems generally make scheduling
decisions at runtime and respond dynamically to any slow-
downs to execution. This makes modeling such systems a very
difficult task because any changes to the execution environ-
ment, such OS jitter, could change the order of execution and

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.21

121

alter memory traffic patterns, thus affecting the performance
of tasks, which might cascade throughout the execution. The
goal of this work is to answer this challenge by providing a
model of the performance of superscalar scheduling using a
discrete event simulation and make it portable across a variety
of schedulers. The simulation relies on the scheduler to resolve
the task dependencies and make scheduling decisions while
the simulator keeps track of kernel execution times and builds
a virtual execution trace. The accuracy of the simulation is
evaluated using two dense linear algebra factorizations and
three schedulers.

II. RELATED WORK

Since the Minimum Multiprocessor Scheduling Problem
is NP-complete [5], nearly all optimal scheduling problems
in complex environments are NP-complete. This means most
scheduling decisions are reached using heuristic algorithms,
many of which can be found in the survey article [6].
The combination of complicated hardware configurations and
scheduling heuristics make the search space too large and
complex for analytical models. As an alternative to most
analytical models, developers often resort to empirical and
simulation-based models [7], [8].

Discrete-Event Simulations (DES) have been used to model
problems in a variety of fields from healthcare to manufactur-
ing. A DES is an excellent tool for understanding the per-
formance obtained when scheduling various tasks. In general,
each task is considered a single unit that does not change the
system while it is occurring. The only changes to the system
occur when a new task starts or ends. This simplification
allows the simulation to ignore each time slice in a traditional
continuous simulation.

Simulation is not a new concept to computer scientists, and
simulation tools seem to fall into two broad categories. The
first is architecture simulation where the goal is to simulate
the operation of a processor or system in order to analyze
the accuracy of the output or performance characteristics.
These simulations often do not focus on parallelism, but rather
focus on fine-grain, instruction level simulation. The gem5 [9]
and SESC [10] simulators are two examples of this type of
simulator. An important aspect of both of these tools is the
ability to simulate out of order executions, which are common
in modern computer architectures.

At the other end of the spectrum are large scale simulations
of parallel computing systems. The grid computing community
has been particularly interested in simulation. Grid computing
resources may be heterogeneous in nature and dispersed geo-
graphically, and, for this reason, reproducibility of performance
results may vary widely. Each allocation of grid resources may
be very different and drastically change the performance of a
grid computing job. Simulations have been commonly used to
evaluate algorithms in this type of environment where it may
not be possible to obtain reproducible results.

The diverse array of computing resources used in grid
computing makes scheduling a very challenging problem, and
the lack of reproducibility in the performance of each run
made simulation a logical choice. Tools like SimGrid [11] and
GridSim [12] were designed for these types of simulations.
ChicSim [13] was another simulator built on top of a simula-
tion language called Parsec.

The Optorsim project [14] is another example of a grid

computing simulator, and was developed to evaluate the per-
formance of various data duplication algorithms. Data is often
duplicated in a grid computing environment in order to deal
with the geographic distribution of computing resources. The
duplication of data decreases data access times and accelerates
job performance. The Optorsim project aimed to simulate the
performance of grid computations based on the data replication
strategies employed.

III. CONTRIBUTIONS

Novel Simulation Environment for Modern Multi-threaded
Workloads. The goal of the work presented in this paper is to
create a hybrid of the two simulation methodologies described
in Section II. The tasks being simulated will be larger than a
single instruction modeled in the architectural simulator, but
may have similar or smaller task sizes to those scheduled in a
grid computing environment. The concept of out-of-order task
completion, however, will need to be addressed similarly to
the architectural simulations. The authors are not aware of any
other work performing simulations of superscalar scheduling
at the time of this writing.

Parallel Simulation. Our simulation runs execute in parallel
and the only limiting factor is the speed of the scheduler. The
users tend to make the tasks’ running times become longer to
reduce the overhead of the scheduler, and at the same time,
such long tasks benefit our simulation approach.

Accelerated Simulation Time. With the use of our simulation
approach to reduce the time to generate the execution traces, a
two-fold speedup is not uncommon. This is in sharp contrast to
some hardware simulations that tend to incur orders of mag-
nitude slow-down. Our aim is not cycle-accurate simulation
as no superscalar scheduler can ever be cicle-accurate due to
direct influence of external stimuli. Nevertheless, we achieve
the appreciative reduction of simulation time while still being
within a few percentage points of the true running time and
preserving the essential phenomena that may be observed in
the execution trace.

Portability Across Diverse Implementations of Superscalar
Scheduling. Our approach is agnostic with respect to the
underlying superscalar scheduler, and we tested three such
schedulers that constitute large code bases that would have
been hard to instrument and analyze outside of our simulation
strategy. Our approach makes it possible to analyze both the
application and the underlying scheduler without the need to
interact with the large code base of either.

Accurate Simulation Traces. Despite introducing parallelism,
accelerated simulation time, and portability into our approach,
the accuracy of the generated data remains very high in two
essential categories. Firstly, the execution time remains very
close (few percentage points) to the time predicted by the
simulation. Secondly, the execution trace from the simulation
retains the essential features of the trace from the actual run
– an absolute must for accurate trace simulation.

IV. BACKGROUND

A. Schedulers
The simulations in this paper are presented with results

from three superscalar schedulers: QUARK, StarPU, and
OmpSs. But the simulation framework is not limited to those
and could also be extended to other task-based schedulers with
minimal changes to the code base.

122122122122122122

��� �����	

�
�����
���� �
�����	���	
��

�	�����	���� �	�����	���	���

�	����

�
����

�	���� �����	�	����

�
����

�	���	���

�	����

�	����

�	�����	���� �	���	

�	����

���

�	���	

�	���� �	���������	

�
����

���

�	���	

�	����

���

��

�����	

���

����

Fig. 1: An example of the DAG generated by a QR factorization of a matrix
that is 4 tiles by 4 tiles. Each vertex represents one task and each edge
represents a dependence. Notice that some vertices have multiple edges from
a parent node indicating that there is more than one data dependence that must
be satisfied.

When developing a parallel algorithm for a superscalar
scheduler, the work must be broken into tasks and each input
and output for the task must be explicitly designated by the
developer. The tasks are then submitted to the scheduler in
a serial fashion. The scheduler analyzes the Read-after-Write
(RaW), Write-after-Read (WaR), and Write-after-Write (WaW)
hazards and schedules each of the tasks, while maintaining
all data dependencies. Each scheduler has its own method for
annotating the dependences of a specific task.

The dependences for task execution form a Directed
Acyclic Graph (DAG). Each vertex in the graph represents
a task and each edge represents a task dependence: it connects
output of one task with an input to another task. Developers
visualize these DAGs in order to gain a greater understanding
of how well their algorithms could perform. An example of
a DAG for a QR factorization is shown in Figure 1. QR is
a common linear algebra operation often used for finding the
least-squares solution of linear systems. For more information
see section IV-B. DAG generation as well as support for
heterogeneous computing and distributed task execution are
provided by some of the schedulers discussed here.

1) OmpSs: The OmpSs system, developed at the Barcelona
Supercomputing Center, dates back to 1994. It was originally
targeting grid environments, and was called GridSs [15]. It
was later adapted to the IBM Cell B. E. processor under the
name CellSs [16], and then to classic multicore processors
(x86 and alike) under the name SMPSs [17], [17], [18]. The
extension to GPUs (GPUSs) was introduced in 2009 [19].
The project is currently named OmpSs to underline the effort
to extend the OpenMP standard with support for superscalar
scheduling [20]. Due to the multiplicity of names, the project
has also been intermittently referred to as StarSs [21]. The best
known variant is the SMPSs multicore implementation, which
is a compiler-based system that uses #pragma directives to
annotate tasks that can be run in parallel and to decorate the

data parameters with read/write usage information.

The main thrust in OmpSs is to become part of the
OpenMP standard. Therefore, for the most part, OmpSs
follows the OpenMP philosophy of offering a set of sim-
ple language extensions for quickly parallelizing algorithms.
However, OmpSs does lack some of the flexibility of other
libraries such as StarPU and QUARK. The project relies on a
source-to-source compiler called Mercurium and the runtime
environment is maintained by a library called Nanos++.

2) StarPU: The StarPU system developed at INRIA Bor-
deaux was first published in 2008 [22], [23], [24]. It is a
runtime environment for task scheduling on shared memory
architectures, with the original motivation of exploring task
scheduling in a hybrid CPU/GPU environment.

StarPU provides multiple interfaces for task execution
which gives the developer great flexibility in expressing an
algorithm. One of the key abstractions of the StarPU library
is the codelet. The codelet is a small structure that allows the
developer to describe various versions of a particular kernel
using a single interface. For example, the developer might want
to define a matrix multiplication task for use in their algorithm.
The user can define a codelet that provides a CPU interface as
well as a GPU interface allowing StarPU to execute the code
on either of the target resources. StarPU uses implicit data
dependences to create a task DAG. It also profiles each task
execution and uses historical runtime data to schedule tasks on
the appropriate resources in heterogeneous systems, assigning
tasks to CPU cores as well as GPU resources. StarPU provides
a large set of interfaces and extensive functionality including
execution trace, DAG generation, and several scheduling poli-
cies.

3) QUARK: QUARK (QUeuing And Runtime for Kernels)
was developed at the Innovative Computing Laboratory at the
University of Tennessee Knoxville. It was originally developed
as the main scheduler for the Parallel Linear Algebra for
Scalable Multicore Architectures (PLASMA) library [25]. It
has since been released as a standalone project [26] and has
been used outside its original design to schedule for a wider
variety of scientific codes. In general, QUARK provides a
relatively small API but it still allows the user greater flexibility
in code development. The library includes a number of features
critical to the operation of a numerical software suite, such as
error handling extensions and task cancellation capabilities. It
also provides the user with the ability to save the execution
DAG to visualize the dependences present in a particular
algorithm.

QUARK was originally aimed at scheduling for homoge-
neous multicore systems with shared memory. It has since been
used to develop software for systems that contain GPUs as
well as traditional CPUs [27]. It should be noted that QUARK
does not provide any specific interface for accelerator support.
It is the responsibility of the developer to ensure that data is
transferred properly during the execution of the algorithm. It
has also been extended to applications in distributed memory
environments [28].

B. Tile Linear Algebra Algorithms
As a case study, this paper will use the Cholesky and

QR matrix factorizations to demonstrate the accuracy of the
simulation environments. One of the ways of expressing these
numerical algorithms is in a tile-based fashion. The tile-based
approach to linear algebra algorithms has been extensively

123123123123123123

Algorithm 1 Tile Cholesky factorization algorithm

1: for k = 1, 2 to NT do
2: {Cholesky factorization of the tile Ak,k}
3: DPOTF2(Ak,k)
4: for i = k + 1 to NT do
5: {Solve Ak,kX = Ai,k}
6: DTRSM(Ak,k, Ai,k)
7: {Update Ai,i ← Ai,i −Ai,kA

T
i,k}

8: DSYRK(Ai,i, Ai,k)
9: end for

10: for i = k + 2 to NT do
11: for j = k + 1 to i do
12: {Update Ai,j ← Ai,j −Ai,kAj,k}
13: DGEMM(Ai,j , Ai,k, Aj,k)
14: end for
15: end for
16: end for
presented and discussed before [29], [30], [31], [32], [33]. The
tile approach consists of breaking the matrix panel factoriza-
tion and trailing submatrix update steps into smaller tasks that
operate on relatively small nb × nb tiles (or submatrices) of
consecutive data which are organized into blocks-of-columns.
The algorithms can then be restructured as tasks (which are
basic linear algebra operations) that act on tiles of the matrix.
The data dependences between these tasks result in a DAG
where nodes of the graph represent tasks and edges represent
dependences among the tasks.

The execution of the tiled algorithm is performed by
asynchronously scheduling the tasks in a way that dependences
are not violated. Optimally, we would like this asynchronous
scheduling to result in an out-of-order superscalar execution
where slower tasks are overlapped in time with fast ones,
which use cache more effectively. This would be managed by
having the slower tasks start early, as soon as their dependences
are satisfied, while some of the parallel tasks (submatrix up-
dates) from the previous iterations still remain to be performed
and can be executed in parallel when a core becomes available.

Matrix factorization algorithms form core operations for
scientific computations, since they are used as the first step for
finding the solution vector x for a linear system Ax = b. The
tile versions of the Cholesky and QR factorization algorithms
are outlined below.

1) Tile Cholesky Factorization: The Cholesky factorization
is used during the solution of a linear system Ax = b, where
A is symmetric and positive definite. Such systems arise often
in physics applications, where A is positive definite due to the
nature of the modeled physical phenomenon. The Cholesky
factorization of an n × n real symmetric positive definite
matrix A has the form A = LLT , where L is an n × n
real lower triangular matrix with positive diagonal elements.
The tile Cholesky algorithm processes the matrix by tiles,

where the matrix consists of NT ×NT tiles. In Algorithm 1,
some standard BLAS (Basic Linear Algebra Subprogram)
routines are used during the factorization: DSYRK (symmetric
rank-k update), DPOTF2 (unblocked Cholesky factorization),
DGEMM (general matrix-matrix multiplication), and DTRSM
(triangular solve). The dominant operation of the Cholesky
factorization comes from the innermost loop of the trailing
matrix update and is the very efficient Level-3 BLAS matrix-
matrix multiplication (DGEMM).

2) Tile QR factorization: The QR factorization, as imple-
mented in LAPACK, is the decomposition of an m × n real

Algorithm 2 Tile QR factorization algorithm

1: for k = 1, 2 to NT do
2: DGEQRT(Ak,k, Tk,k)
3: for n = k + 1 to NT do
4: DORMQR(Ak,k, Tk,k, Ak,n)
5: end for
6: for m = k + 1 to NT do
7: DTSQRT(Ak,k, Am,k, Tm,k)
8: for n = k + 1 to NT do
9: DTSMQR(Ak,n, Am,nAm,k, Tm,k)

10: end for
11: end for
12: end for
matrix A as A = QR, where Q is an m×m real orthogonal
matrix and R is an m × n real upper triangular matrix. The
QR factorization uses a series of elementary Householder
matrices of the general form H = I − τvvT , where v is
a column reflector and τ is a scaling factor. The tile QR
algorithm produces essentially the same factorization as the
LAPACK algorithm, but it differs in the Householder reflectors
that are produced and the construction of the Q matrix. The
algorithm is outlined in Algorithm 2 and details are provided
elsewhere [34], [35].

In the tile QR algorithm, the dominant operation from
the innermost loop is different from the standard LAPACK
implementation. In LAPACK, the dominant operation is the
highly optimized DGEMM, and in the tile algorithm it is a new
kernel operation called DTSMQR. The DTSMQR operation,
even though it is a matrix-matrix operation, has not been
tuned and optimized to the extent that DGEMM has been
optimized by vendors, so it reaches a lower percentage of peak
performance on a machine.

C. Going from QR Factorization to a DAG
The tile based QR algorithm described in Algorithm 2 is

outlined with pseudocode in Fig. 2.

The loops in the pseudocode generate a sequence of tasks
as shown at the bottom of Fig. 2. Each of these tasks has
a set of data parameters to which it needs access. The tasks
are executed using superscalar execution, with the data access
constraints preserved, and the tasks executing as soon as
possible, provided there are no data hazards and there is a
core available to handle the execution. Additionally, multiple
tasks may have read access to a specific data parameter at the
same time.

V. SIMULATION METHODOLOGY

Our ultimate goal is to simulate a trace of the algorithm’s
execution with high fidelity. From the trace, we can gain
information about scheduling decisions, execution time, and
ultimately performance.

As a foundational principle, in our simulation environment
we aim to have the scheduler performing the dependence
tracking work, while at the same time, the work inside the
tasks is not done. In other words, the scheduler keeps track
of all data dependences and makes all scheduling decisions as
usual, but the tasks no longer contribute useful work towards
the completion of the algorithm.

Arguably the most challenging aspect of creating correct
simulated traces is the necessity to maintain the correct order
of task completion. If each simulated task simply records its

124124124124124124

f o r k = 0 . . . TILES−1
g e q r t (Arw

kk , Tw
kk)

f o r n = k+ 1 . .TILES−1
unmqr (Ar

kk−low , T r
kk , Arw

kn)

f o r m = k+ 1 . .TILES−1
t s q r t (Arw

kk−up , Arw
mk , T rw

mk)

f o r n = k+ 1 . .TILES−1
tsmqr (Ar

mk , T r
mk , Arw

kn , Arw
mn)

�����

����� �����

	
���

F0 g e q r t (Arw
00 , Tw

00)
F1 unmqr (Ar

00 , T r
00 , Arw

01)
F2 unmqr (Ar

00 , T r
00 , Arw

02)
F3 t s q r t (Arw

00 , Arw
10 , Tw

10)
F4 tsmqr (Arw

01 , Arw
11 , Ar

10 , T r
10)

F5 tsmqr (Arw
02 , Arw

12 , Ar
10 , T r

10)
F6 t s q r t (Arw

00 , Arw
20 , Tw

20)
F7 tsmqr (Arw

01 , Arw
21 , Ar

20 , T r
20)

F8 tsmqr (Arw
02 , Arw

22 , Ar
20 , T r

20)
F9 g e q r t (Arw

11 , Tw
11)

F10 unmqr (Ar
11 , Tw

11 , Arw
12)

F11 t s q r t (Arw
11 , Arw

21 , Tw
21)

F12 tsmqr (Arw
12 , Arw

22 , Ar
21 , T r

21)
F13 g e q r t (Arw

22 , Tw
22)

Fig. 2: Pseudocode for the tile QR factorization, showing all the tasks as they
are sequentially generated. The data references tasks are decorated with their
read and/or write status, implying data-hazards while executing the tasks.

information in the trace and exits, it is very likely that the
task dependences will be satisfied in a different order than the
original, which can ultimately cause drastic alterations to the
simulated trace. The main reason for this is that the original
tasks perform useful computations and take time to do so while
also interacting with other resources such as shared caches, the
memory system, and the OS. A task that records a small piece
of trace information and exits will have very little interaction
with the said hardware resources.

The simulation generally relies on three crucial elements.
The first element is the simulation clock which keeps track of
the simulation time. The clock is stored as a double precision
floating point number which is of sufficient resolution for the
tasks we deal with that operate at the micro-second resolution.
The simulation library must also keep track of the simulated
trace (the second element and the output of relevance to the
developer) as well as a queue of tasks that are currently
executing (the third element).

The novelty of our simulation approach is the complete
reliance on the scheduler to provide the facilities to maintain
the task dependences and make all scheduling decisions. In
order to create a simulation, the programmer simply replaces
each task function with a call to the simulation library. Only a
few lines of initialization and cleanup code before and after the
execution of the algorithm simulation are needed to perform
a simulation. This makes our approach portable since we
neither make any assumptions about the underlying algorithm
being scheduled or about data-dependence tracking, nor do we
require any invasive changes to the existing implementation of
tasks.

A. Tracing
In order to simulate a given trace, it is necessary to

have complete control over the generation of the execution
trace. Most general purpose tracing utilities and frameworks
are designed to create traces based on true (or wall-clock)
execution time, but the simulation requires a trace based on

the simulated (or virtual) execution time.

This lead us to the following decision. Rather than attempt-
ing to modify an existing trace generation tool, we created
a rudimentary trace generation environment that allows the
user to log tasks during execution with the simulation (user-
specified) time. After the completion of the algorithm, the trace
can be converted to an SVG (Scalable Vector Graphics) file that
visualizes the trace and may be rasterized at the appropriate
resolution for the right amount of detail. The trace data can
also be stored in a plain text file for further processing.

B. Model of Kernel Executed inside a Task

One of the key factors for performing accurate simulations
is the ability to accurately measure and describe the execution
time of a kernel. Each of the kernels provides the building
block of the simulated trace. If the model of a single kernel
is inaccurate, the effects will be compounded as the trace is
simulated and the kernel invocation repeats. This can be a
source of a sizable error in the simulation.

In order to more realistically simulate the execution of an
algorithm, each task’s running time is not fixed, but rather is
determined by a probabilistic distribution. For example, it is
unlikely that each DGEMM kernel requires exactly the same
time to execute in any given trace. The distribution of these
kernel times will vary from application to application, or even
between the runs of the same application. The generation of
running time of the simulated kernels based on a prescribed
distribution adds an element of randomness to the trace, which
is essential for the accuracy.

1) Timing Methodology: One of the challenges a developer
faces in modeling a kernel is timing each kernel. It initially
seems obvious that one could very quickly call each kernel in
isolation in order to obtain an estimate of the time required
for the completion of that kernel. This will likely give the
developer an idea of the execution time of the kernel, but this
is unlikely to give results with high accuracy. The developer
must be careful to consider where the sub-matrix will be in the
cache hierarchy. In the context of a true execution, the kernel
may or may not have its data available at the top of the cache
hierarchy.

It is possible for the developer to time the kernels in a
cold cache or warm cache scenario [36]. The kernel can be
accurately timed in each of these scenarios, but it is likely that
the cache residency may be somewhere between warm and
cold cache. Worse yet, some of the invocations of a particular
kernel may occur with warm cache and others with cold
cache. We circumvent this inherent limitation of a single kernel
measurement by using the actual execution of the algorithm
to provide the actual empirical data for future estimation. The
run is done for a relatively small problem or even a portion of
the problem using the desired dynamic scheduler. In practice,
this solution was the most accurate in representing what the
kernel performance is, not only conceptually but also in our
experiments.

The results of runs shown in this paper were performed by
linking with the Intel MKL library in order to obtain the best
performance. As is common for large libraries, which require
resource allocation, the MKL library initializes its internal
state upon the first execution of a kernel and for each thread
of execution. This may be easily observed as the first kernel
on each thread will take significantly longer to execute than

125125125125125125

DTSMQR Kernel Timings (x100)

D
en

si
ty

0.48 0.52 0.56 0.60

0
10

30
50 Normal

Gamma
Lognorm
emp.

Fig. 3: A plot of the kernel execution times of the DTSMQR (part of the
QR factorization) kernel along with the fitted distribution curves. The kernel
execution times are multiplied by 100 for readability. The normal, gamma,
and lognormal distributions appear to fit equally well.

the following kernels. These extreme outliers can drastically
affect the model fitting. For this reason, each of the threads
is initialized with another call to the MKL library in order to
ensure that this initialization is performed before the trace is
collected.

2) Dense Linear Algebra Kernel Modeling: The sample
problems examined here are Dense Linear Algebra applica-
tions. Their implementations are based on the PLASMA li-
brary where each high-level linear algebra routine is composed
of several smaller tasks that can be scheduled based on their
dependences. Each of these tasks is a kernel belonging to any
one of various classes of kernels, depending on the operation
being performed. As mentioned above, each kernel of a given
type does not have identical performance due, primarily, to the
fact that each execution of the kernel will have different cache
residencies. For example, one execution may have most of the
data in cache while another execution has very little of the
data in cache, which relates to, for example, task placement
policies and to what extent the scheduler tracks data affinity.

In dense linear algebra, the kernels are most commonly
described using the normal distribution of execution times, but
similar distributions may also be used to model execution time.
This assumes that the kernels are approximated with simple
distributions, which is indeed the case in our experience. For
this example, the authors model the kernel execution times
using normal, gamma, and log-normal distributions. To test
how appropriate these distributions are, we fitted the empirical
distributions of completion times and found that they were, for
all practical purposes, nearly identical for each model and the
log-normal distribution has slightly outperformed the others
in some cases. Figures 3 and 4 show the distributions for the
DTSMQR and DGEMM kernels during an execution of the QR
and Cholesky factorizations, respectively. These are the most
computationally intensive kernels in each of their respective
factorizations.

C. Task Execution Queue
In general, the dynamic scheduler maintains a dependence

graph which is used to determine whether the dependences for
a specific task have been satisfied. Whenever a task finishes
its execution, the tasks waiting for the output of that task have
a “waiting” dependence removed. Once all dependences have
been removed for a task, the scheduler marks it to be available
for execution.

In the case of simulated execution, the order in which

DGEMM Kernel Timings (x100)

D
en

si
ty

0.16 0.20 0.24 0.28

0
20

40
60

80 Normal
Gamma
Lognorm
emp.

Fig. 4: A plot of the kernel execution times of the DGEMM (part of the
Cholesky factorization) kernel along with the fitted distribution curves. The
kernel execution times are multiplied by 100 for readability. The simple
distributions do not fit quite as well as the DTSMQR kernels, but they seem to
model the kernel execution times better than a constant or uniform distribution.

these dependences are satisfied must be maintained in order
for the simulations to be accurate. The key element of the
simulation environment is the Task Execution Queue. This is
the data structure that ensures that the tasks that are currently
in the execution state (Note: a task in the execution state is
not actually computing the function it simulates) within the
simulation maintain the proper completion order. The queue
is implemented as a priority queue which is prioritized by the
simulated completion time of a task. In other words, a task
may know the time of its own completion if it combines the
information from the execution time distribution and the Task
Execution Queue.

D. Simulation Task Function
In order to use the simulation library, the developer simply

replaces the calls to each computational kernel with a call
to the simulated kernel. This simulated kernel requires an
identifier and an approximate execution time such as the
distribution-based estimator as well as any handles or pointers
that will create a dependence in the real simulation. Although
the memory is never accessed, the actual memory location
in the process’s address space is required in order to ensure
that all of the dependences will be maintained. Furthermore,
some schedulers perform copies of the data to deal with anti-
dependences and real memory locations are required for such
copies to succeed. The simulated tasks are inserted into the
task graph using the scheduler’s API in an identical fashion to
a real kernel.

The scheduler continuously maintains dependences and
schedules each task accordingly. When a simulated kernel is
executed, the simulation begins by checking the simulation
clock to determine when the kernel is starting. Based on the
kernel starting time and the estimated time of kernel execution
(based on the kernel’s model of completion time), the ending
time can be obtained. The simulated kernel then acquires the
lock on the Task Execution Queue and is added to the queue.
The kernel information can now be added to the simulated
trace and is ready to exit. However, the task must wait until it is
at the front of the queue in order to allow the function to return.
From the scheduler’s perspective, the task is still executing
until the function, that represents the task, returns. Before
finishing however, the simulated kernel must also update the
global simulation clock to the completion time from the model
distribution before the function returns.

126126126126126126

Fig. 5: A simple trace that demonstrates the race condition that can occur in
the simulation.

E. Scheduling Race Condition
One of the challenging aspects of ensuring the correctness

of the simulation stems from a race condition that can occur in
some situations. The race condition can occur when a task is
at the front of the Task Execution Queue while the scheduler
is inserting new tasks. It is possible that the new tasks being
inserted will not be in the front of the queue. While the newly
inserted task might be the next to complete, the task previously
in the queue may have already returned, which results in an
inconsistency of the trace.

This situation may seriously affect the accuracy of the
simulated trace and we would like to take the time to explain
this in detail. The problem may be illustrated with a simple
example shown in Figure 5. In this situation, we are assuming
that there are only two cores and three tasks: A, B, and C. At
time t1, task A is at the front of the priority queue, followed by
task B. Once the simulated task A has completed all required
bookkeeping, it will remove itself from the queue, update
the clock, and return. After the function representing task A
returns, the scheduler will recognize that task C is ready to be
executed and schedule it on the open core. The race condition
occurs when task B attempts to complete and task C attempts
to start at time t2. If task C acquires the Task Execution
Queue lock first, the task will be inserted in the queue correctly
and the simulation will accurately describe what is occurring
during a real execution. On the other hand, if task B acquires
the lock first and returns before task C, the simulation will be
inaccurate. When task B updates the simulation clock it will
be updated to the completion time of task B. Task C will then
estimate its completion time based on this updated simulation
clock and be placed in the simulated trace much later than it
would have been in reality.

We currently use two solutions to eliminate this race
condition. The first is a function that was recently added to
QUARK. The function allows the developer to determine if the
scheduler has completed all bookkeeping related to scheduling.
This means that the task can also query the scheduler to
make sure that this race condition will not occur. The obvious
downside of this technique is that it is not portable across
schedulers.

The other solution to this problem that is portable for all
schedulers is a judicious use of the sleep() function. This
is used so that the simulated kernel will sleep for a fraction
of a second and thus allow the scheduler to complete any
bookkeeping. A further enhancement of this is a call to the
kernel sched_yield() that will allow the scheduler thread
to make the appropriate bookkeeping progress. This technique
is portable even to non-POSIX systems because similar calls

are uniformly present in a variety of modern OS’s.

VI. EXPERIMENTAL RESULTS

The simulation library has been tested with implementa-
tions of the Cholesky and QR factorizations – linear algebra
algorithms described earlier. The algorithms were expressed
in a tile-based fashion and were implemented using OmpSs,
StarPU, and QUARK.

A. Traces
One way of determining the accuracy of a simulated trace

is by direct comparison to a real trace. Figures 6 and 7 do
just that. They represent a real trace and a simulated trace,
respectively. The algorithm compared in the figures is the QR
factorization performed using the QUARK scheduler. The code
used a tile size of 180 and used all 48 cores of a quad-socket
machine with four 12-core AMD Magny-Cours CPUs. The two
traces are presented with identical time scales along the x-axis
in order to show the nearly perfect correspondence of the two
execution times. These two traces demonstrate how closely the
simulation can model the execution of a real computation.

The traces are almost identical with two differences worth
mentioning. The first difference is the length of time that the
initial kernel operates on each core. In the real execution, the
first kernel on each core is significantly longer than most of
the remaining kernels of the same variety. The other difference
is the number of tasks scheduled to run on the core 0. This is
the core used to insert tasks and to maintain the dependence
graph. It should also be noted that the scheduling decisions are
non-deterministic which means the traces will not look exactly
the same upon each execution.

B. Predicted Performance
One of our ultimate goals of creating a simulation library

is for use in an autotuning framework. If it is possible to
predict performance of an algorithm running on a particular
scheduler configuration in a reduced time period, it will be
possible to try a larger number of possible scheduling and
algorithmic parameters that will allow for a more thorough
tuning in a reduced amount of time with a potential for
discovering parameter sets much closer to optimal, that would
have otherwise been missed due to the much less thorough
search through actual (and longer) runs on the hardware. With
this use case in mind, a performance comparison to “real”
algorithm executions is the desired benchmark to us, but is
also a common requirement of most simulation frameworks.

Figures 8, 9, and 10 clearly show that the performance
levels predicted by the simulations are accurate to within a
few percentage points. Each scheduler was used to implement
the QR (shown in blue) and Cholesky (shown in red) matrix
factorization algorithms as described above. The solid lines
represent the performance of the algorithm while performing
the real algorithm. The dashed lines represent the performance
predicted by the simulation of each algorithm and the dotted
lines represent the percentage error of the simulation. The
worst case error for any simulation with any simulator is
approximately 16%, but the vast majority of test cases show
less than 5% error. This serves as a clear testimony to the
simulator’s accuracy.

VII. FUTURE WORK

The current simulations only support the single threaded
tasks and are thus missing the nested parallelism feature that

127127127127127127

Fig. 6: A real trace of a QR factorization of a matrix. Matrix Size: 3960 Tile Size: 180 System: AMD Opteron 6180SE (4×12 Cores)

Fig. 7: A simulated trace of a QR factorization of a matrix. Matrix Size: 3960 Tile Size: 180 System: AMD Opteron 6180SE (4×12 Cores)

These two traces demonstrate how closely the simulation can model the execution of a real computation. The two
traces are shown with the same timescale in order to show the total execution time of the algorithm is nearly identical.

128128128128128128

Fig. 8: A performance plot for QR (blue) and Cholesky (red). Each algorithm
is implemented using OmpSs and compares the simulated (dashed) and true
(solid) performance. The dotted lines represent the percentage error of the
simulation for each factorization. Tile Size: 200

Fig. 9: A performance plot for QR (blue) and Cholesky (red) using StarPU.
Each algorithm is implemented using StarPU and compares the simulated
(dashed) and true (solid) performance. The dotted lines represent the percent-
age error of the simulation for each factorization. Tile Size: 200

is available through multi-threaded tasks in QUARK. Both
QUARK and StarPU support GPU tasks and the simulations
do not support those in the current implementation. Both of
these extensions are worth pursuing. Each of the scheduling
libraries provides a different way of specifying GPU tasks,
which makes this a challenge to portability, and needs to be
solved in a simulation environment which aims to operate with
OmpSs, StarPU, and QUARK.

One of the keys to accurately simulating a workload is
the ability to describe and model the time for a single kernel
execution. The current simulation assumes that each kernel
type can be described using simple distributions. This is a
simplification of what actually occurs in most workloads. It
may be possible to improve the accuracy of the simulations
by improving that kernel model.

The data points that show the greatest error in Figures 8,
9, and 10 all occur for relatively small problem sizes. This is
likely because any start-up performance penalties are a much

Fig. 10: A performance plot for QR (blue) and Cholesky (red) using QUARK.
Each algorithm is implemented using QUARK and compares the simulated
(dashed) and true (solid) performance. The dotted lines represent the percent-
age error of the simulation for each factorization. Tile Size: 200

larger portion of the total execution time. The simulator may
be improved in the future in order to accurately model this
start-up penalty and improve the simulation accuracy for small
problem sizes.

VIII. CONCLUSION

We have presented a dynamic scheduling simulation library
that can accurately simulate algorithms that use dynamic, su-
perscalar schedulers. Accurate simulation results using OmpSs,
StarPU, and QUARK have shown that the library operates with
multiple schedulers and requires very little or no modification
to the existing code base. The experimental results indicate that
the library can provide useful insights into the performance and
operation of the superscalar schedulers.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation through Award #1339822.

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” Computational Science Engineering,
IEEE, vol. 5, no. 1, pp. 46 –55, 1998.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” SIGPLAN Not., vol. 30, pp. 207–216, August 1995. [Online].
Available: http://doi.acm.org/10.1145/209937.209958

[3] L. G. Valiant, “A bridging model for parallel computation,” Communica-
tions of the ACM, vol. 33, no. 8, Aug. 1990, dOI 10.1145/79173.79181.

[4] ——, “Bulk-synchronous parallel computers,” in Parallel Processing
and Artificial Intelligence, M. Reeve, Ed. John Wiley & Sons, 1989,
pp. 15–22.

[5] R. G. Michael and D. S. Johnson, “Computers and Intractability : A
guide to the theory of NP-completeness,” WH Freeman & Co., San
Francisco, 1979.

[6] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM Comput.
Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[7] E. Agullo, J. Dongarra, R. Nath, and S. Tomov, “A Fully Empirical
Autotuned Dense QR Factorization for Multicore Architectures,”
in Proceedings of the 17th International Conference on Parallel
Processing - Volume Part II, ser. Euro-Par’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 194–205. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2033408.2033430

129129129129129129

[8] R. Vuduc, J. W. Demmel, and J. A. Bilmes, “Statistical Models for
Empirical Search-Based Performance Tuning,” Int. J. High Perform.
Comput. Appl., vol. 18, no. 1, pp. 65–94, Feb. 2004. [Online].
Available: http://dx.doi.org/10.1177/1094342004041293

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[10] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
January 2005, http://sesc.sourceforge.net.

[11] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: a generic
framework for large-scale distributed experiments,” in Proceedings
of the Tenth International Conference on Computer Modeling
and Simulation, ser. UKSIM ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 126–131. [Online]. Available: http:
//dx.doi.org/10.1109/UKSIM.2008.28

[12] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for
grid computing,” CONCURRENCY AND COMPUTATION: PRACTICE
AND EXPERIENCE (CCPE, vol. 14, no. 13, pp. 1175–1220, 2002.

[13] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in High Perfor-
mance Distributed Computing, 2002. HPDC-11 2002. Proceedings.
11th IEEE International Symposium on, 2002, pp. 352–358.

[14] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “Optorsim: A grid simulator for studying dynamic data
replication strategies,” International Journal of High Performance
Computing Applications, vol. 17, no. 4, pp. 403–416, 2003. [Online].
Available: http://hpc.sagepub.com/content/17/4/403.abstract

[15] R. M. Badia, J. Labarta, R. Sirvent, J. M. Perez, J. M. Cela, and
R. Grima, “Programming grid applications with GRID Superscalar,”
J. Grid Comput., vol. 1, no. 2, pp. 151–170, 2003, .

[16] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta, “CellSs: Making
it easier to program the Cell Broadband Engine processor,” IBM J. Res.
& Dev., vol. 51, no. 5, pp. 593–604, 2007, .

[17] J. M. Pérez, R. M. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core architectures,” in
Proceedings of the 2008 IEEE International Conference on Cluster
Computing, 29 September - 1 October 2008, Tsukuba, Japan. IEEE,
2008, pp. 142–151.

[18] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Perez, E. S. Quintana-Orti,
and G. Quintana-Orti, “Parallelizing dense and banded linear algebra
libraries using SMPSs,” Concurrency Computat. Pract. Exper., vol. 21,
no. 18, pp. 2438–2456, 2009, .

[19] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Ortı́, “An Extension of the StarSs Programming Model for
Platforms with Multiple GPUs,” in Proceedings of the 15th Interna-
tional Euro-Par Conference on Parallel Processing. Springer-Verlag,
2009, pp. 851–862.

[20] A. Duran, E. Ayguade, R. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “OmpSs: A proposal for programming heterogeneous
multi-core architectures,” Parallel Process. Lett., vol. 21, no. 2, pp.
173–193, 2011, .

[21] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical task-
based programming with StarSs,” Int. J. High Perf. Comput. Applic.,
vol. 23, no. 3, pp. 284–299, 2009, .

[22] C. Augonnet and R. Namyst, “A unified runtime system for het-

erogeneous multicore architectures,” in Proceedings of the Euro-Par
2008 Workshops - Parallel Processing, ser. Lecture Notes in Computer
Science. Las Palmas de Gran Canaria, Spain: Springer, August 2008,
pp. 174–183, .

[23] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, ser. Euro-Par ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 863–874. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03869-3 80

[24] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency Computat. Pract. Exper., vol. 23, no. 2,
pp. 187–198, 2011, .

[25] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou,
H. Ltaief, P. Luszczek, and A. YarKhan, “PLASMA Users Guide,”
University of Tennessee, Innovative Computing Laboratory, Tech. Rep.,
2010.

[26] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide:
QUeueing And Runtime for Kernels,” Innovative Computing Labora-
tory, University of Tennessee, Tech. Rep., 2011.

[27] J. Kurzak, P. Luszczek, M. Faverge, and J. Dongarra, “LU factorization
with partial pivoting for a multicore system with accelerators,” IEEE
Trans. Parallel Distrib. Syst., 2012, .

[28] A. YarKhan, “Dynamic task execution on shared and distributed
memory architectures,” Ph.D. dissertation, University of Tennessee,
December 2012.

[29] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov, “The Impact of Multicore on Math Software,”
in Applied Parallel Computing. State of the Art in Scientific
Computing, ser. Lecture Notes in Computer Science, B. Kågström,
E. Elmroth, J. Dongarra, and J. Wasniewski, Eds. Springer Berlin
/ Heidelberg, 2007, vol. 4699, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75755-9 1

[30] E. S. Quintana-Ortı́ and R. A. Van De Geijn, “Updating an LU
Factorization with Pivoting,” ACM Trans. Math. Softw., vol. 35, no. 2,
pp. 11:1–11:16, Jul. 2008. [Online]. Available: http://doi.acm.org/10.
1145/1377612.1377615

[31] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel tiled QR
factorization for multicore architectures,” Concurrency and Computata-
tion: Practice and Experience, vol. 20, no. 13, pp. 1573–1590, 2008.

[32] J. Kurzak, A. Buttari, and J. Dongarra, “Solving Systems of Linear
Equations on the CELL Processor Using Cholesky Factorization,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, pp. 1175–1186,
September 2008. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1444382.1444414

[33] J. Kurzak and J. Dongarra, “QR factorization for the Cell Broadband
Engine,” Scientific Programming, vol. 17, no. 1, pp. 31–42, 2009.

[34] B. C. Gunter and R. A. van de Geijn, “Parallel out-of-core computation
and updating the QR factorization,” ACM Transactions on Mathematical
Software, vol. 31, no. 1, pp. 60–78, 2005.

[35] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parallel
Comput., vol. 35, no. 1, pp. 38–53, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2008.10.002

[36] R. C. Whaley and A. M. Castaldo, “Achieving accurate and
context-sensitive timing for code optimization,” Softw. Pract. Exper.,
vol. 38, no. 15, pp. 1621–1642, Dec. 2008. [Online]. Available:
http://dx.doi.org/10.1002/spe.v38:15

130130130130130130

