
Parallel Computing I (1984) 133-142 133
North-Holland

A collection of parallel linear equations
routines for the Denelcor HEP *

Jack J. D O N G A R R A

Mathematics and Computer Science Dioision, Argonne National Laboratory, Argonne, 1L 60439, U.S.A.

Robert E. H I R O M O T O

Computing "Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Received June 1984

Abstract. This paper describes the implementation and performance results for a few standard linear algebra
routines on the Denelcor HEP computer. The algorithms used here are based on high-level modules that
facilitate portability and perform efficiently in a xvide range of environments:The modules are chosen to be of a
large enough computational granularity so that reasonably optimum performance may be insured. The design of
algorithms with such fundamental modules in mind will also facilitate their replacement by others more suited to
gain the desired performance on a particular computer architecture.

Keywords. HEP computer, linear algebra routines, assembly language programming, performance analysis
parallel algorithms, parallel computer.

We have been using the Denelcor HEP (Heterogenous Element Processor) to implement a
modest set of parallel routines to handle some common problems that arise when dealing with
dense matrices in linear algebra: matrix multiplication, Cholesky decomposition of a positive
definite matrix, LU factorization with partial pivoting, and QR factorization of a general
matrix. Jordan [3] describes the architecture and programming environment of the Denelcor
HEP, and Stewart [5] provides a complete description of the algorithms discussed here. Part of
the experiment was to examine the ease of taking a collection of algorithms, expressed in terms
of high-level modules, and implementing then on a computer with parallel constructions, such
as the Denelcor HEP. Our hope was to gain near-optimum performance from these routines by
implementing only the underlying modules using parallel constructs. We look on our experience
as an experiment in producing portable algorithms that have a high level of granularity in their
structure and high performance on a wide variety of computer architectures.

The basic algorithms used here are the same as those reported in a paper by Dongarra and
Eisenstat [1] (with the exception of QR factorization). These algorithms are based on standard
procedures in linear algebra. They have been written to retain much of the original .mathemati-
cal formulation and are based on matrix-vector operations. Designing the algorithms in terms of
such operations is the hard part of an implementation. By understanding the algorithm in terms

* This work was supported in part by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office
of Energy Research of the U.S. Department of Energy under contracts W-31-109-Eng-38 and W-7405-ENG-36.

0167-8191/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

134 J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP

of the mathematical steps necessary to reduce or solve a problem, we can uncover the structure
at a high level. When programming from an algorithmic description, we have a tendency to
focus on small details during an implementation. To unveil the desired structure, we must look
higher, avoiding the details, and must concentrate on operations that embody the computational
components of an algorithm.

To produce a parallel version for the HEP, we replaced only three lower level modules:
matrix-vector multiplication (y =y + Ax), vector-matrix multiplication (y T = y T + xTA), and a
rank one update to a matrix (A = A + xyV). These modules represent a high level of granularity
in the algorithm in the sense that they are based on matrix-vector operations, O(n 2) work, not
just vector operations, O(n) work.

The parallelism in matrix-vector multiplication was obtained by performing m independent
inner products with a matrix of size m × n and a vector of length n. For the vector-matrix
multiplication, n independent inner products were performed with a vector of length m and a
matrix of size m x n. The parallelism in the rank one update was obtained by performing n
operations, a scalar times a vector added to a column of the matrix.

The technique used in this parallel implementation was based on a concept called 'self-sched-
uling' of parallel processes [2]. In self-scheduling, a number of parallel processes are created and
allowed to asynchronously access a unique processing index value that points to a specific
parallel segment of the computation to be done. The accessing procedure allows only one
process to gain exclusive read/wri te privileges of the loop index, while all other similarly
contending processes are momentarily blocked from such access. Before the controlling process
relinquises the loop index, however, it updates the index value: positioning it to point to the
next parallel processing segment. As a process becomes free or completes its curreent task, this
technique allows it to self-schedule itself for the next parallel segement of computation. Rather
than preassigning blocks of parallel computations across processes, the self-scheduling tech-
nique allows each process to acquire more work at the earliest possible moment, thereby,
reducing the idle time between completed parallel processes. Listed in the appendix are two
source codes that illustrate the use of the high-level module SSDOT, making up the kernal for
these algorithms. For clarity the subroutines SMXPY and SSDOT appearing in the appendix
have been annotated to describe the technique of self-scheduling.

The routines were run first with straight sequential FORTRAN 77 versions of the modules,
using no parallel constructions, and then with the sequential modules replaced by their parallel
counterparts. The parallel algorithms, written in an extended version of FORTRAN 77, require
the same number of floating-point operations and have identical properties with respect to
roundoff errors as their sequential counterparts. There was, however, an increase in memory
utilization by the parallel programs. This increase was required in order to support the
necessary parallel processing environment. For each parallel process the processing environment
must provide in part for the guaranteed and exclusive access of all local variables associated
within a particular routine. As a means to implement this local assessing structure, all local
variables for each parallel subroutine were duplicated by the operating system (for as many
parallel processes to be spawned) and placed into replicated, pre-assigned memory locations
during the creation of that specific parallel routine. In our problems the additional memory
requirements was typically less than one percent over their sequential counterparts. This slight
increase reflects the memory space required for the execution of 32 parallel processes. Althought
this increase is small, the potential for a significant increase is quite evident if the user requires a
large number of parallel subroutines each having a large number of local variables. The
optimum results are shown in Table 1 for problems with matrices of order 200.

Significant improvements in the parallel version can be seen over the sequential implementa-
tion, as much as a factor of 8.53. An important point here is that only small changes were made
to the programs to gain these speedups. By replacing the fundamental modules, which would be

J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP

Table 1
Experimental results for matrices of order 200

135

Algorithm Ratio execution time
Sequential/parallel

Matrix multiply 8.53
Cholesky decomposition 7.07
LU factorization 6.84
QR factorization 7.82

transparent to a user, we have implemented a modest yet important collection of programs on
the HEP with minimal effort and with no change to the basic algorithm. These programs may
not reach the maximum performance possible, but the software effort has been quite small in
relation to the gains in performance. We realize it may be possible to achieve even better
performance by investing more time and effort in the parallel implementation. As the algo-
rithms become more complicated, however, the improvement becomes limited by the amount of
work associated with the nonparallel parts - partial pivoting, scaling, and norm calculations. In
a parallel implementation on the HEP with one Process Execution Module (PEM), we can
expect at most a factor 10 speedup over the sequential counterpart. Figures l (a)-(d) , on the
other hand, show our results for matrices whose order varied over the range from 50 to 300 with
24 processes executing in parallel. We see from these results that the large computational
granularity (the matrix order) contributes directly to the overall gains in performance for these
parallel algorithms. Figures 2(a)-(d) on the other hand show our results for a matrix of order
200 executing from 1 to 32 processes in parallel. By fixing the computational granularity, we
clearly see how well the HEP single PEM system supports the parallelism as the number of
parallel processes increases. We may further deduce from Fig. 2 the intrinsic parallelism of these
algorithms by noting the near linear speedups (indicating minimal hardware overhead) resulting
from the execution of from one to five parallel processes.

One of our goals is to avoid locldng the algorithms into one computer 's architecture, however
fast that one may be; another goal is to design the algorithms at a level that the fundamental
modules need only be replaced to gain the desired performance. The module concept allows us
to divide a large problem into small, easily understood pieces that can be programmed
separately and verified at each step of the development process. These pieces are then chosen,
perhaps repeated, to solve various aspects of the larger problem. The success of this approach in
efficiently solving problems across a wide spectrum of computers depends on how well the
modules can be chosen so that the modules are at a high enough level to allow a significant
number of arithmetic operations to be performed.

We have for the past few years been using a set of routines called the Basic Linear Algebra
Subprograms (BLAS) [4]. These routines focus on the vector level; that is, they operate on
one-dimensional arrays. Typical of these operations are functions such as inner product, a
multiplication of a vector added to another vector, and vector scaling. The BLAS are well suited
for operations that occur on some of the vector processors, but they are not the best choice for
certain other vector processors, multiprocessors, or parallel processing computers. The next
higher level up from simple vector operations is the matrix-vector operations. Operations such
as a matrix times a vector and rank one changes to a matrix not only embody the operations
described by the BLAS, but also have the advantage of providing enough computational
granularity for efficient parallel processing. With vectorizing techniques, the basic idea is to
produce vector functions out of the inner loops of algorithms such as the BLAS. By contrast,
when an algorithm is parallelized, one focuses on the outer loops. By constructing algorithms
from modules that have a high level of granularity, it will be possible to allow for either
implementation in a straightforward and simple manner.

136 J.J. Dongarra, R.E. Hiromoto / Parallel #near equations routines for HEP

I I

a U J ! l

0

0
-0
¢Xl

k_
(D

_o- o

0

0
- 0

0 u'3

v

I I I I 0 I I

la llOJOcl/lO!luenbes o H. OEl ew!l

"13

I I I I

le llOJOd/IO!t uanbes 0 !I O~l

0
LC;
Cxl

0
- 0

L
G)

L

o

0
-0

0
I 0

0

I

euJ!l

0
- o

0
- u 3

0
- 0

(Xl

k.

_o-~

o

0
- 0

I I
ot 0 0

e w ! l

0 I I I I

l e l l O J O d / I D ! t u a n b e s o ! l o ~

o

I I I I
r,. 11~ u') ,¢

l e l lDJDc l / IO ! luanbes 0 !lO~l

0

0
- 0

N

k.

OJ
_o- o

0

0
- 0

_o

0

J.J. Dongarra, R.E. Hiromoto / Parallel finear equations routines/or HEP 137

L~ 8

- e l ¢'~

- °

- - I M

I I I I I I I I I 0

d n p e e d S

-,~
_ o

f f l

ID

- i , o

- f ~ 4

. , , , . , . , , o

d n p e e d S

--('q

I I I I I I I I i o

d n p e e d S

-@

0 ._~

0

, -1

I "
~ "~,

e ,

- ~

- 0 - ' i

z -~

0

,...,

i . ,
e~

-,~ ~

- ~ , ~

_ ~ "~

~ E
- cO ,r~

,-s

-,~ ~
- ~ ~ '-~,

, , , , , , , , o ~ ' ~

~ c ~ dnpeeds

138 J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP

With such a wide variety of computer systems and architectures in use or proposed, there is a
very real challenge for people designing algorithms, namely, how to write software that is both
efficient and portable. The solution lies in the granularity of the task. Programs expressed in
terms of modules with a high level of granularity reflect less of the detail and retain more of the
basic mathematical formulation. This allows for a wider range of efficient implementations
because the computational intense parts are isolated in high-level modules. These modules can
be dealt with separately, perhaps retargeting them for quite different architectures, making the
overall algorithms efficient on the targeted architecture.

Appendix

We list the source of routines that were implemented on the Denelcor HEP. Each routine
contains documentation describing its purpose as well as its parameter definitions. The source
listings for routines SMXPY and SSDOT have also been annotated in order to clarify the
technique of self-scheduling as employed in this particular study.

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

S U B R O U T I N E MM (A, LDA, N1, N3, B, LDB, N2, C, LDC)

I N T E G E R LDA, N1, N3, LDB, N2, LDC
REALA(LDA,*), B(LDB, *), C(LDC, *)

PURPOSE:
Multiply matrix B times matrix C and store the result in matrix A.

PARAMETERS:

A REAL (LDA, N3),
LDA INTEGER,
N1 INTEGER,
N3 INTEGER,
B REAL (LDB, N2),
LDB INTEGER,
N2 INTEGER,

C REAL (LDC, N3),
LDC INTEGER,

matrix of N1 rows and N3 columns
leading dimension of array A
number of rows in matrices A and B
number of columns in matrices A and C
matrix of N1 rows and N2 columns
leading dimension of array B
number of columns in matrix the B, and number
of rows in the matrix C
matrix of N2 rows and N3 columns
leading dimension of array C

10

20

DO 20 J = 1, N3
DO 1 0 I = 1 , N1

A(I,J)=O.O
C O N T I N U E
CALL SMXPY (N2, A(1, J), N1, LDB, C(1, J) , B)

C O N T I N U E

R E T U R N
END
S U B R O U T I N E LLT (A, LDA, N, ROW1, 1NFO)

j.j. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP 139

C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

INTEGER LDA, N, INFO
R E A L A(LDA, *), R O W I (*), T

PURPOSE:
Form the Cholesky factorization A = L * L T of a symmetric positive
definite matrix A with factor L overwriting A.

PARAMETERS:
A REAL(LDA, N),

LDA INTEGER,
N INTEGER,
R O W I REAL(N),
INFO INTEGER,

matrix to be decomposed; only the lower triangle need
be supplied; the upper triangle is not referenced
leading dimension of array A
number of rows and columns in the matrix A
work array
= 0 for normal return
= I if I th leading minor is not positive definite

I N F O = O
DO 30 I = 1, N

10

Subtract multiples of preceding columns from I t h column of A

DO 1 0 J = 1 , I - 1
R O W I (J) = - A(I, J)

C O N T I N U E
CALL SMXPY (N - I + 1, A(I , I), I - 1, LDA, ROWI , A(I , 1))

Test for non-positive definite leading minor

IF (A(I , 1) .LE. 0.0) THEN
INFO = I
GO TO 40

ENDIF

Form I th column of L

T = 1 . 0 / S Q R T (A (I , I))
A (I , I) = T
D O 2 O J = I + I , N

A(J , I) = T* A(J , I)
20 C O N T I N U E
30 C O N T I N U E
40 RETURN

END

Annotated listings of subroutines S M X P Y and S S D O T

To be noted are the dollar ($) signed variables, formally termed asynchronous variables, in
these routines. A key feature of the HEP architecture is the addition of an extra bit in register
and data memory locations. This bit when accessed by the $ declaration of a variable, allows

140 J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP

any process to read that variable's allows any process to read that variable's content only if the
bit is in the full (1) state, and concurrently blocks other processes from gaining read access by
setting the bit to the empty (0) state. Similarly, any process may write into the content of the
asynchronous variable only if the bit is in the empty state, and as before blocks other processes
from gaining write access by setting the bit to the full state. By such a unique mechanism,
synchronization (and in this case self-scheduling) may be achieved with little or no program-
ming effort.

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE SMXPY (N1, Y, N2, LDM, X, M)

I N T E G E R LDM, N1, N2
REAL Y(*), X(*), M(LDM, *)

PURPOSE:

Form y = y + M * x, where x and x are vectors and
M is a matrix.

PARAMETERS:

N1
Y
N2
LDM
X
M

INTEGER, number of rows in Y and the matr ix M.
REAL(N1), vector to accumulate the product M * x.
INTEGER, number of rows in X and columns in the matrix M.
INTEGER, leading dimension of the array M.
REAL (N2), vector used to form y = y + M * x.
REAL (N1, N2), matrix used to f o r m y = y + M * x.

C
C This is a parallel version for the HEP
C
Asynchronous variables to be communicated to routine SSDOT

C O M M O N / S Y N C 1 / $ N P R O C , SDONE, SNROW
C

IF(N1 .LE. 0 .OR. N2 .LE. 0) R E T U R N
C
C
C
C

Set up for asynchronous operations

NPROC = number of processors for a task
PURGE sets asynchronous variables to empty state

PURGE $NPROC, $DONE, SNROW
bfftialize variable to have the value 1 and set "ful"

$NROW= 1
C
Prepare to setup the number of processors

NCREA T = MINO(N1, NPROC)
Set the number of processes "full"

SNPROC = NCREA T
C
C Doall loop

J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routines for HEP 141

C
Spawn multiple copies of this routine to run in parallel

DO 30 1PROC = 1, NCREA T
CREATE S S D O T (N1, N2, X, 1, M, LDM, Y)

30 CONTINUE
C
C Endall
C Join and continue serial
C
Wait here until $DONE has been given a value (operation performed in routhm S S D O T)

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

D O N T S T = SDONE
RETURN
END
SUBROUTINE SSDOT(N1, N2, X, INCX, M, LDM, Y)

INTEGER N1, N2, INCX, L D M
REAL X(*), M(LDM, *), IT(*)

PURPOSE:

Form one component of y, such that y = y + M * x,
where y and x are vectors and M is a matrix.

PARAMETERS:

N1 INTEGER,
N2 INTEGER,
X REAL(N2),
I N C X INTEGER,
M REAL(N1, N2),
L D M INTEGER,
Y REAL(N1),

number of rows in Y and the matrix M
number of rows in X and columns in the matrix M
vector used to formy = y + M * x
stride used in addressing X
matrix used to form y = y + M * x
leading dimensions of the array M
vector to accumulate the product M * x

C
C This is a parallel version for the HEP
C
Asynchronous variables communicated from S M X P Y

C O M M O N / S Y N C 1 / $ N P R O C , $DONE, $ N R O W
C

10 CONTINUE
C
C Pick up next row
C
Gain unique row that has to be processed

I = SNROW
Increment to next row to be processed

S N R O W = I + 1
Check if reached the end

IF(/. GT. N1) GO TO 30

142 J.J. Dongarra, R.E. Hiromoto / Parallel linear equations routflzes for HEP

C
Pel form inner product with row i o f matrix

DO 2 0 J = l , N2
Y (I) = (Y (1)) + X (J) * M (I , J)

20 CONTINUE
C
Get a new row to perform inner product

GO TO 10
30 CONTINUE

C
C Terminate process and check if f in ished
C
Uniquely decrement the number o f processes active

NA C T P R = SNPROC - 1
S N P R O C = NA C T P R

Check to see i f finished, i f so set S D O N E "ful l"
IF(N A C T P R .EQ. 0) $ D O N E = 1.0

C
RETURN
END

References

[1] J.J. Dongarra and S.C. Eisenstat, Squeezing the most out of an algorithm in CRAY FORTRAN, ACM Trans. Math.
Software 3 (1984).

[2] HEP Fortran 77 User's Guide, Denelcor Inc., Aurora, CO, 1982.
[3] H.F. Jordan, Experience with pipelined multiple instruction streams, Proc. of the IEEE 72 (1) (1984).
[4] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subprograms for FORTRAN usage, ACM

Trans. Math. Software 5 (1979) 308-371.
[5] G.W. Stewart, Introduction to Matrix Computation (Academic Press, New York, 1973).

