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Abstract. This paper describes the implementation and performance results for a few standard linear algebra 
routines on the Denelcor HEP computer. The algorithms used here are based on high-level modules that 
facilitate portability and perform efficiently in a xvide range of environments:The modules are chosen to be of a 
large enough computational granularity so that reasonably optimum performance may be insured. The design of 
algorithms with such fundamental modules in mind will also facilitate their replacement by others more suited to 
gain the desired performance on a particular computer architecture. 
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We have been using the Denelcor HEP (Heterogenous Element Processor) to implement a 
modest set of parallel routines to handle some common problems that arise when dealing with 
dense matrices in linear algebra: matrix multiplication, Cholesky decomposition of a positive 
definite matrix, LU factorization with partial pivoting, and QR factorization of a general 
matrix. Jordan [3] describes the architecture and programming environment of the Denelcor 
HEP, and Stewart [5] provides a complete description of the algorithms discussed here. Part of 
the experiment was to examine the ease of taking a collection of algorithms, expressed in terms 
of high-level modules, and implementing then on a computer with parallel constructions, such 
as the Denelcor HEP. Our hope was to gain near-optimum performance from these routines by 
implementing only the underlying modules using parallel constructs. We look on our experience 
as an experiment in producing portable algorithms that have a high level of granularity in their 
structure and high performance on a wide variety of computer architectures. 

The basic algorithms used here are the same as those reported in a paper by Dongarra and 
Eisenstat [1] (with the exception of QR factorization). These algorithms are based on standard 
procedures in linear algebra. They have been written to retain much of the original .mathemati- 
cal formulation and are based on matrix-vector operations. Designing the algorithms in terms of 
such operations is the hard part  of an implementation. By understanding the algorithm in terms 
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of the mathematical steps necessary to reduce or solve a problem, we can uncover the structure 
at a high level. When programming from an algorithmic description, we have a tendency to 
focus on small details during an implementation. To unveil the desired structure, we must look 
higher, avoiding the details, and must concentrate on operations that embody the computational 
components of an algorithm. 

To produce a parallel version for the HEP, we replaced only three lower level modules: 
matrix-vector multiplication (y  =y  + Ax),  vector-matrix multiplication ( y T =  y T +  xTA), and a 
rank one update to a matrix (A = A + xyV). These modules represent a high level of granularity 
in the algorithm in the sense that they are based on matrix-vector operations, O(n 2) work, not 
just vector operations, O(n) work. 

The parallelism in matrix-vector multiplication was obtained by performing m independent 
inner products with a matrix of size m × n and a vector of length n. For the vector-matrix 
multiplication, n independent inner products were performed with a vector of length m and a 
matrix of size m x n. The parallelism in the rank one update was obtained by performing n 
operations, a scalar times a vector added to a column of the matrix. 

The technique used in this parallel implementation was based on a concept called 'self-sched- 
uling' of parallel processes [2]. In self-scheduling, a number of parallel processes are created and 
allowed to asynchronously access a unique processing index value that points to a specific 
parallel segment of the computation to be done. The accessing procedure allows only one 
process to gain exclusive read/wri te  privileges of the loop index, while all other similarly 
contending processes are momentarily blocked from such access. Before the controlling process 
relinquises the loop index, however, it updates the index value: positioning it to point to the 
next parallel processing segment. As a process becomes free or completes its curreent task, this 
technique allows it to self-schedule itself for the next parallel segement of computation. Rather 
than preassigning blocks of parallel computations across processes, the self-scheduling tech- 
nique allows each process to acquire more work at the earliest possible moment, thereby, 
reducing the idle time between completed parallel processes. Listed in the appendix are two 
source codes that illustrate the use of the high-level module SSDOT, making up the kernal for 
these algorithms. For clarity the subroutines SMXPY and SSDOT appearing in the appendix 
have been annotated to describe the technique of self-scheduling. 

The routines were run first with straight sequential FORTRAN 77 versions of the modules, 
using no parallel constructions, and then with the sequential modules replaced by their parallel 
counterparts. The parallel algorithms, written in an extended version of FORTRAN 77, require 
the same number of floating-point operations and have identical properties with respect to 
roundoff errors as their sequential counterparts. There was, however, an increase in memory 
utilization by the parallel programs. This increase was required in order to support the 
necessary parallel processing environment. For each parallel process the processing environment 
must provide in part for the guaranteed and exclusive access of all local variables associated 
within a particular routine. As a means to implement this local assessing structure, all local 
variables for each parallel subroutine were duplicated by the operating system (for as many 
parallel processes to be spawned) and placed into replicated, pre-assigned memory locations 
during the creation of that specific parallel routine. In our problems the additional memory 
requirements was typically less than one percent over their sequential counterparts. This slight 
increase reflects the memory space required for the execution of 32 parallel processes. Althought 
this increase is small, the potential for a significant increase is quite evident if the user requires a 
large number of parallel subroutines each having a large number of local variables. The 
optimum results are shown in Table 1 for problems with matrices of order 200. 

Significant improvements in the parallel version can be seen over the sequential implementa- 
tion, as much as a factor of 8.53. An important point here is that only small changes were made 
to the programs to gain these speedups. By replacing the fundamental modules, which would be 
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Table 1 
Experimental results for matrices of order 200 

135 

Algorithm Ratio execution time 
Sequential/parallel 

Matrix multiply 8.53 
Cholesky decomposition 7.07 
LU factorization 6.84 
QR factorization 7.82 

transparent to a user, we have implemented a modest yet important collection of programs on 
the HEP with minimal effort and with no change to the basic algorithm. These programs may 
not reach the maximum performance possible, but the software effort has been quite small in 
relation to the gains in performance. We realize it may be possible to achieve even better 
performance by investing more time and effort in the parallel implementation. As the algo- 
rithms become more complicated, however, the improvement becomes limited by the amount of 
work associated with the nonparallel parts - partial pivoting, scaling, and norm calculations. In 
a parallel implementation on the HEP with one Process Execution Module (PEM), we can 
expect at most a factor 10 speedup over the sequential counterpart. Figures l (a)-(d) ,  on the 
other hand, show our results for matrices whose order varied over the range from 50 to 300 with 
24 processes executing in parallel. We see from these results that the large computational 
granularity (the matrix order) contributes directly to the overall gains in performance for these 
parallel algorithms. Figures 2(a)-(d) on the other hand show our results for a matrix of order 
200 executing from 1 to 32 processes in parallel. By fixing the computational granularity, we 
clearly see how well the HEP single PEM system supports the parallelism as the number of 
parallel processes increases. We may further deduce from Fig. 2 the intrinsic parallelism of these 
algorithms by noting the near linear speedups (indicating minimal hardware overhead) resulting 
from the execution of from one to five parallel processes. 

One of our goals is to avoid locldng the algorithms into one computer 's  architecture, however 
fast that one may be; another goal is to design the algorithms at a level that the fundamental 
modules need only be replaced to gain the desired performance. The module concept allows us 
to divide a large problem into small, easily understood pieces that can be programmed 
separately and verified at each step of the development process. These pieces are then chosen, 
perhaps repeated, to solve various aspects of the larger problem. The success of this approach in 
efficiently solving problems across a wide spectrum of computers depends on how well the 
modules can be chosen so that the modules are at a high enough level to allow a significant 
number of arithmetic operations to be performed. 

We have for the past few years been using a set of routines called the Basic Linear Algebra 
Subprograms (BLAS) [4]. These routines focus on the vector level; that is, they operate on 
one-dimensional arrays. Typical of these operations are functions such as inner product, a 
multiplication of a vector added to another vector, and vector scaling. The BLAS are well suited 
for operations that occur on some of the vector processors, but they are not the best choice for 
certain other vector processors, multiprocessors, or parallel processing computers. The next 
higher level up from simple vector operations is the matrix-vector operations. Operations such 
as a matrix times a vector and rank one changes to a matrix not only embody the operations 
described by the BLAS, but also have the advantage of providing enough computational 
granularity for efficient parallel processing. With vectorizing techniques, the basic idea is to 
produce vector functions out of the inner loops of algorithms such as the BLAS. By contrast, 
when an algorithm is parallelized, one focuses on the outer loops. By constructing algorithms 
from modules that have a high level of granularity, it will be possible to allow for either 
implementation in a straightforward and simple manner. 
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With such a wide variety of computer systems and architectures in use or proposed, there is a 
very real challenge for people designing algorithms, namely, how to write software that is both 
efficient and portable. The solution lies in the granularity of the task. Programs expressed in 
terms of modules with a high level of granularity reflect less of the detail and retain more of the 
basic mathematical formulation. This allows for a wider range of efficient implementations 
because the computational intense parts are isolated in high-level modules. These modules can 
be dealt with separately, perhaps retargeting them for quite different architectures, making the 
overall algorithms efficient on the targeted architecture. 

Appendix 

We list the source of routines that were implemented on the Denelcor HEP. Each routine 
contains documentation describing its purpose as well as its parameter  definitions. The source 
listings for routines SMXPY and SSDOT have also been annotated in order to clarify the 
technique of self-scheduling as employed in this particular study. 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

S U B R O U T I N E  MM (A, LDA, N1, N3, B, LDB, N2, C, LDC) 

I N T E G E R  LDA, N1, N3, LDB, N2, LDC 
REALA(LDA,*), B(LDB, *), C(LDC, *) 

PURPOSE: 
Multiply matrix B times matrix C and store the result in matrix A. 

PARAMETERS:  

A REAL (LDA, N3), 
LDA INTEGER,  
N1 INTEGER,  
N3 INTEGER,  
B REAL (LDB, N2), 
LDB INTEGER,  
N2 INTEGER,  

C REAL (LDC, N3), 
LDC INTEGER,  

matrix of N1 rows and N3 columns 
leading dimension of array A 
number of rows in matrices A and B 
number of columns in matrices A and C 
matrix of N1 rows and N2 columns 
leading dimension of array B 
number of columns in matrix the B, and number 
of rows in the matrix C 
matrix of N2 rows and N3 columns 
leading dimension of array C 

10 

20 

DO 20 J = 1, N3 
DO 1 0 I = 1 ,  N1 

A(I,J)=O.O 
C O N T I N U E  
CALL SMXPY (N2, A(1, J), N1, LDB, C(1, J ) ,  B) 

C O N T I N U E  

R E T U R N  
END 
S U B R O U T I N E  LLT (A, LDA, N, ROW1, 1NFO) 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

INTEGER LDA, N, INFO 
R E A L  A( LDA, *), R O W I  (*), T 

PURPOSE: 
Form the Cholesky factorization A = L * L T of a symmetric positive 
definite matrix A with factor L overwriting A. 

PARAMETERS: 
A REAL(LDA, N),  

LDA INTEGER, 
N INTEGER, 
R O W I  REAL(N),  
INFO INTEGER, 

matrix to be decomposed; only the lower triangle need 
be supplied; the upper triangle is not referenced 
leading dimension of array A 
number of rows and columns in the matrix A 
work array 
= 0 for normal return 
= I if I th  leading minor is not positive definite 

I N F O = O  
DO 30 I = 1, N 

10 

Subtract multiples of preceding columns from I t h  column of A 

DO 1 0 J = 1 ,  I -  1 
R O W I (  J )  = - A( I, J )  

C O N T I N U E  
CALL SMXPY (N - I + 1, A(I ,  I),  I - 1, LDA, ROWI ,  A( I ,  1)) 

Test for non-positive definite leading minor 

IF (A( I ,  1 ) .LE.  0.0) THEN 
INFO = I 
GO TO 40 

ENDIF  

Form I th  column of L 

T =  1 . 0 / S Q R T ( A ( I ,  I ) )  
A ( I , I ) =  T 
D O 2 O J = I + I , N  

A(J ,  I )  = T* A(J ,  I )  
20 C O N T I N U E  
30 C O N T I N U E  
40 RETURN 

END 

Annotated listings of subroutines S M X P  Y and S S D O T  

To be noted are the dollar ($) signed variables, formally termed asynchronous variables, in 
these routines. A key feature of the HEP architecture is the addition of an extra bit in register 
and data memory locations. This bit when accessed by the $ declaration of a variable, allows 
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any process to read that variable's allows any process to read that variable's content only if the 
bit is in the full (1) state, and concurrently blocks other processes from gaining read access by 
setting the bit to the empty (0) state. Similarly, any process may write into the content of the 
asynchronous variable only if the bit is in the empty state, and as before blocks other processes 
from gaining write access by setting the bit to the full state. By such a unique mechanism, 
synchronization (and in this case self-scheduling) may be achieved with little or no program- 
ming effort. 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE SMXPY (N1, Y, N2, LDM, X, M)  

I N T E G E R  LDM, N1, N2 
REAL Y(*), X(*),  M(LDM, *) 

PURPOSE: 

Form y = y + M * x, where x and x are vectors and 
M is a matrix. 

PARAMETERS: 

N1 
Y 
N2 
LDM 
X 
M 

INTEGER,  number of rows in Y and the matr ix  M. 
REAL(N1),  vector to accumulate the product M * x. 
INTEGER,  number of rows in X and columns in the matrix M. 
INTEGER,  leading dimension of the array M. 
REAL (N2), vector used to form y = y + M * x. 
REAL (N1, N2), matrix used to f o r m y  = y  + M *  x. 

C 
C This is a parallel version for the HEP 
C 
Asynchronous variables to be communicated to routine SSDOT 

C O M M O N / S Y N C 1 / $ N P R O C ,  SDONE, SNROW 
C 

IF(N1 .LE. 0 .OR. N2 .LE. 0) R E T U R N  
C 
C 
C 
C 

Set up for asynchronous operations 

NPROC = number of processors for a task 
PURGE sets asynchronous variables to empty state 

PURGE $NPROC, $DONE, SNROW 
bfftialize variable to have the value 1 and set "ful" 

$NROW= 1 
C 
Prepare to setup the number of processors 

NCREA T = MINO( N1, NPROC) 
Set the number of processes "full" 

SNPROC = NCREA T 
C 
C Doall loop 
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C 
Spawn multiple copies of this routine to run in parallel 

DO 30 1PROC = 1, NCREA T 
CREATE S S D O T  (N1, N2, X, 1, M, LDM, Y )  

30 CONTINUE 
C 
C Endall 
C Join and continue serial 
C 
Wait here until $DONE has been given a value (operation performed in routhm S S D O T )  

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

D O N T S T  = SDONE 
RETURN 
END 
SUBROUTINE SSDOT(N1, N2, X, INCX, M, LDM, Y)  

INTEGER N1, N2, INCX, L D M  
REAL X(*), M( LDM, *), IT(*) 

PURPOSE: 

Form one component of y, such that y = y + M * x, 
where y and x are vectors and M is a matrix. 

PARAMETERS: 

N1 INTEGER, 
N2 INTEGER, 
X REAL(N2), 
I N C X  INTEGER, 
M REAL(N1, N2), 
L D M  INTEGER, 
Y REAL(N1), 

number of rows in Y and the matrix M 
number of rows in X and columns in the matrix M 
vector used to formy = y  + M *  x 
stride used in addressing X 
matrix used to form y = y + M * x 
leading dimensions of the array M 
vector to accumulate the product M * x 

C 
C This is a parallel version for the HEP 
C 
Asynchronous variables communicated from S M X P  Y 

C O M M O N / S Y N C 1 / $ N P R O C ,  $DONE, $ N R O W  
C 

10 CONTINUE 
C 
C Pick up next row 
C 
Gain unique row that has to be processed 

I = SNROW 
Increment to next row to be processed 

S N R O W =  I + 1 
Check if reached the end 

IF(/. GT. N1) GO TO 30 
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C 
Pel form inner product with row i o f  matrix  

DO 2 0 J = l ,  N2 
Y ( I )  = ( Y ( 1 ) )  + X ( J )  * M ( I ,  J )  

20 CONTINUE 
C 
Get a new row to perform inner product 

GO TO 10 
30 CONTINUE 

C 
C Terminate  process  and check if f in ished 
C 
Uniquely decrement the number o f  processes active 

NA C T P R  = SNPROC - 1 
S N P R O C  = NA C T P R  

Check to see i f  finished, i f  so set S D O N E  "ful l"  
IF( N A C T P R  .EQ. 0) $ D O N E  = 1.0 

C 
RETURN 
END 
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