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Overview

• We have developed an architecture and 
implementation for offloading collective operations to 
programmable logic in the communication substrate
– Not the first to use FPGAs for collectives

• It is clear that there is a tradeoff between 
performance and generality
– FPGAs are at one end of that spectrum
– Some folks live at the other end

• Programmable logic is burgeoning
– Xilinx Zynq
– Intel Xeon+Altera (HARP)
– Mellanox ConnectX-4 + FPGA
– FPGAs on other NICs and in switches



Programming FPGAs

• The programmable logic provided by FPGAs is a 
powerful option for creating task-specific 
functionality for applications

• Programming with FPGAs is not easy
• Many agree: Accelerate common functionality
• Others want to make it easy to use general-

purpose toolchains to deploy arbitrary kernels
– Jeff and OpenACC
– Franck’s workshop
– New NSF call for ways to make it easy

• It may not ever be easy



Things that go bump in the wire

• We have been exploring a (relatively) generic 
approach for scenarios in which there is 
programmable logic in the communication pipeline
– Addresses the problem of how to get data to and from the device

• A bump in the wire
– Rich Graham clearly got this phrase from us

• In teaching how to use FPGAs, we have found this 
model to be quite useful
– Students who haven’t done Verilog can get to this in a semester
– Important topic in Indiana U.’s new engineering program

• This also maps to a growing use case



Collective Offload
• Offloading collective logic is a common technique 

in various platforms to improve performance
• Mellanox’s CORE-Direct is one such state of the 

art collective operation offload framework.
– Defines primitive tasks: send, receive, wait, binary calculations.
– Collective algorithm defines list of tasks and tasks are performed 

by the NIC without CPU involvement

• Collective offload systems have been done many 
times, but ours is easy to use and is a starting 
point



Goals of FPGA-based Offload

• Reduce collective operation latency and 
variance

• Provide selection of collective algorithms that 
are implemented in hardware 

• Implement collective algorithms independent of 
end-to-end communication protocols 

• Utilize hardware-level, protocol-independent 
multicasting to optimize, and when possible, 
redesign major collective operation algorithms 

• Support collective operation offload for different 
classes of collective operations



NetFPGA

A line-rate, flexible, open networking 
platform for teaching and research 3

(a) NetFPGA SUME Board (b) NetFPGA SUME Block Diagram

Fig. 1. NetFPGA SUME Board and Block Diagram

board is a Xilinx Virtex-7 690T FPGA device. There are five
peripheral subsystems that complement the FPGA. A high-
speed serial interfaces subsystem composed of 30 serial links
running at up to 13.1Gb/s. These connect four 10Gb/s SFP+
Ethernet interfaces, two expansion connectors and a PCIe edge
connector directly to the FPGA. The second subsystem, the
latest generation 3.0 of PCIe is used to interface between the
card and the host device, allowing both register access and
packet transfer between the platform and the motherboard.
The memory subsystem combines both SRAM and DRAM
devices. SRAM memory is devised from three 36-bit QDRII+
devices, running at 500MHz. In contrast, DRAM memory is
composed of two 64-bit DDR3 memory modules running at
933MHz (1866MT/s). Storage subsystems of the design permit
both a MicroSD card and external disks through two SATA
interfaces. Finally, the FPGA configuration subsystem is con-
cerned with use of the FLASH devices. Additional NetFPGA
SUME features support debug, extension and synchronization
of the board, as detailed later. A block diagram of the board is
provided in Figure 1(b). The board is implemented as a dual-
slot, full-size PCIe adapter, that can operate as a standalone
unit outside of a PCIe host.

A. High-Speed Interfaces Subsystem
The High-Speed Interfaces subsystem is the main enabler

of 100Gb/s designs over the NetFPGA SUME board. This
subsystem includes 30 serial links connected to Virtex-7 GTH
transceivers, which can operate at up to 13.1Gb/s. The serial
links are divided into four main groups; while the first group
connects four serial links to four SFP+ Ethernet Interfaces, the
second one, associates ten serial links to an FMC connector.
Additional eight links are connected to a SAMTEC QTH-DP
connector and are intended for passing traffic between multiple
boards. The last eight links connect to the PCIe subsystem
(Section IV-C).

The decision to use an FPGA version that supports only
GTH transceivers rather than the one with GTZ transceivers,
reaching 28.05Gb/s, arises as a trade-off between transceiver

speed and availability of memory interfaces. An FPGA with
GTZ transceivers allows multiple 100Gb/s ports, but lacks the
I/O required by memory interfaces, making a packet buffering
design of 40Gb/s and above infeasible.

There are also four motives that support our decision to
use SFP+ Ethernet ports over CFP. Firstly, as the board is
intended to be a commodity board, it is very unlikely that
the main users like researchers and academia will be able
to afford multiple CFP ports. Secondly, 10Gb/s equipment is
far more common than 100Gb/s equipment; this provides a
simpler debug environment and allows inter-operability with
other commodity equipment (e.g. deployed routers, traffic gen-
eration NICs). In addition, SFP+ modules also support 1Gb/s
operation. The third, CFP modules protrude the board at over
twice the depth of SFP+; CFP use would have required either
removing other subsystems from the board or not complying
with PCIe adapter cards form factor. Lastly, being an open
source platform, NetFPGA is using only open source FPGA
cores or the cores available through the Xilinx XUP program.
As a CAUI-10 core is currently unavailable, it can not be made
the default network interface of the board.

A typical 100Gb/s application can achieve the required
bandwidth by assembling an FMC daughter board. For exam-
ple, the four SFP+ on board together with Faster Technology’s3

octal SFP+ board create a 120G system. Alternatively, native
100Gb/s port can be used by assembling a CFP FMC daughter
board.

B. Memory Subsystem

DRAM memory subsystem contains two SoDIMM mod-
ules, supporting up to 16GB4 of memory running at 1866MT/s.
Two 4GB DDR3-SDRAM modules are supplied with the card
and are officially supported by Xilinx MIG cores. Users can
choose to supplement or replace these with any other SoDIMM

3http://www.fastertechnology.com/
48GB is the maximum density per module defined by JEDEC standard no.

21C-4.20.18-R23B



Xilinx Zynq

All Programmable SoC family—the Zynq Z-7100—with 
enhanced DSP resources in the FPGA fabric. All five Zynq 
devices are optimized for specific combinations of system 
power, cost, and size.

Xilinx is leading the industry to usher in the trend to smarter 
systems with application-focused solutions for smarter 
networks, data centers, and vision-based systems. These 
solutions build on the Zynq-7000 All Programmable SoC with 
an ever expanding portfolio of building blocks for smarter 
systems called SmartCORE™ IP, a new generation of design 
tools called Vivado™ that includes the ability to design at 
higher abstraction levels, a variety of application design kits, 
and system-level expertise to help the rapid design and 
implementation of smarter systems.

Zynq: A Generation Ahead
Xilinx Zynq-7000 All Programmable SoCs are a generation 
ahead of alternatives and the smartest solution to a wide range 
of system-design problems in all markets, across the entire 
application spectrum. Here are 9 reasons why this is true:

Reason 1: Most efficient ARM+FPGA for analytics  
and control

A 1GHz, dual-core, hardened implementation of the ARM 
Cortex-A9 MPCore microprocessor sits at the heart of each Zynq All Programmable SoC. The two ARM processors communicate 
with on-chip memory, SDRAM and Flash memory controllers, and peripheral blocks through the ARM AMBA AXI-based 
interconnect. Together, these hardened blocks constitute the Zynq-7000 All Programmable SoC’s Processor System (PS).

The on-chip PS is attached to the Zynq device’s on-chip 
Programmable Logic (PL) through multiple ARM AMBA AXI 
ports, creating extremely efficient coupling between these two 
key components of the Zynq architecture. There are two 32-bit 
AXI master interfaces; two 32-bit AXI slave interfaces; four 
64-bit configurable and buffered, high-performance AXI slave 
interfaces; and one 64-bit AXI ACP (Accelerator Coherency 
Port) interface. That’s nine AXI interfaces in total linking the 
Zynq PS to the PL.

The number and size of these ARM AXI PS-PL connections is 
a critical architectural choice—a choice based on a careful 
consideration of the bandwidth requirements of the Zynq PS. 
The four 64/32-bit configurable, high-performance AXI ports 
provide the PL with direct, high-speed access to the Zynq-
7000 All Programmable SoC’s on-chip memory and SDRAM 
controller through four independent 1Kbyte FIFO buffers. In 
this way, several separate hardware accelerators implemented 
in the Zynq PL can have independent, high-speed access to a 
Zynq-based system’s main memories. If that access needs to 
be coherent with the on-chip caches, then the accelerators 
implemented in the PL can employ the 64-bit ACP connection, 
which is directly attached to the ARM Cortex-A9 MPCore 
processor’s snoop control unit.

ZYNQ-7000 ALL PROGRAMMABLE SOCXILINX BACKGROUNDER
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Collective Offload Design

• Ease implementation with the “bump in 
the wire” model

• Host offloads collective to the 
Programmable Logic (PL) by sending a 
specially crafted UDP packet
– Simplest solution

• Host blocks until the PL generates a 
release message, which is also a UDP 
packet



Collective Offload Packet!

0..3 4..7 8..11 12..15 16..19 20..23 24..27 28..31 32..35 36..39 40..43 44..47 48..51 52..55 56..59 60..63 

dst_MAC src_MAC_1 

src_MAC_2 type ver IHL Diff_Serv 

Total_Length Identification flags fragment_offset TTL Protocol 

Hdr_Cksum src_IP dst_IP_1 

dst_IP_2 UDP_Source_Port UDP_Dest_POrt Length 

UDP_checksum coll_id comm_size coll_type 

algo_type node_type msg_type rank 

local_rank_count operation data_type count 



AXI-Based Platforms

• Advanced eXtensible Interface (AXI) standards 
define intermodule communication in 
programmable logic

• Widely utilized in recent Xilinx FPGA designs
– Recent designs depend on AXI-based protocols

• AXIS (AXI-Stream) is for streaming data 
between modules. 
– We employ the AXIS protocol in our design

• Support for multiple ranks per host 
– Provides insight how our design scales



Implementation

• Modules inherited from the NetFPGA package
– Input Arbiter, Output Queues

• Modules from Xilinx IP catalog
– AXI Ethernet, AXI DMA, AXI Width Converter, FPU, AXIS Data 

FIFO

• New Modules
– Stream Separator 
– Stream Aggregator
– Collective Forwarding Engine (CFE)
– Collective Instruction Processing Engine (CIPE)

• Implements MPI_Allreduce, MPI_Reduce, 
MPI_Barrier, MPI_Scan, MPI_Alltoall…
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Collective Forwarding Engine (CFE) 
– Heart of the design
– Responsible for:

• Assessing the offload request header fields.
• Detecting collective operation and algorithm to 

run
• Perform state transitions and save the state 

for algorithms
• Based on the state, make forwarding 

decisions
• Determine the instructions which the CIPE will 

apply



Collective Instruction Processing Engine 
(CIPE) 

• CFE attaches 64-bit instruction header
• CIPE processes the instruction
• Example Instructions

– Forward packet, do nothing
– Buffer packet in specified buffer
– Perform reduction operations on incoming packet and specified 

buffers
• Buffer or not buffer the result

– Perform reduction operations on specified buffers and ignore 
incoming packet

• Buffer or not buffer the result
– Ignore incoming packet and forward data on specified buffer



Collective Instruction Processing Engine 
(CIPE) 

• Interfaces with FPU and FIFO cores
– FPU cores for streaming and applying floating point arithmetic
– FIFO cores for streaming intermediate results of single cycle 

arithmetic operations

• MIN, MAX, BOR, LOR, BAND, LAND, BXOR, 
LXOR, Integer SUM

• Internal BRAM buffers
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• Fully pipelined design
– FPU cores can be configured to produce results in 1 cycle

• Due to observed instabilities, we increased the first result 
cycle to 11 (the maximum) 

– Each extra FPU core introduces extra cycle
– Each FIFO core employed introduces an extra cycle

Collective Instruction Processing Engine 
(CIPE) 



Evaluation

• Experimental Setup
– 8 Zynq Zedboards with EthernetFMC adapters

• Directly connected

• Come see it at SC



ARM Ave ARM Min PL Ave PL Min Speedup Ave Speedup Min ARM Diff PL Diff ARM % Diff PL % Diff
8 474.418 344.875 264.001 254.875 1.797031072 1.353114272 129.543 9.126 27.30566715 3.456805088

16 651.901 481.688 288.386 277.125 2.26051542 1.738161479 170.213 11.261 26.11025294 3.90483588
32 1413.432 1110.344 396.775 353.312 3.562301052 3.142672765 303.088 43.463 21.44340867 10.95406717
64 3247.172 2668.188 529.798 472.109 6.12907561 5.651635533 578.984 57.689 17.83040751 10.88886708

128 8274.137 7020.398 782.918 742.266 10.56833155 9.458062204 1253.739 40.652 15.15250473 5.192370082
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Zynq Cluster – MPI_Allreduce 
ARM Ave ARM Min PL Ave PL Min Speedup Ave Speedup Min ARM Diff PL Diff ARM % Diff PL % Diff
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Zynq Cluster – MILC 

Communicator Size% speedup (min results) % speedup (average results)
8 6.122437884 6.293399464

16 8.784307057 9.093066621
32 12.65767238 12.12946882
64 18.98636656 18.83355062
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Conclusions and Future Work

• Empirical validation of the efficacy of collective 
offload

• Promising performance
• Increasing availability of programmable logic 

stands to increase impact
• The use of UDP allowed straightforward 

implementation, but is limiting
• Clearly, this the right way to use FPGAs
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