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Overview

 We have developed an architecture and
iImplementation for offloading collective operations to
programmable logic in the communication substrate
— Not the first to use FPGAs for collectives

* |tis clear that there is a tradeoff between

performance and generality

— FPGAs are at one end of that spectrum
— Some folks live at the other end

* Programmable logic is burgeoning
— Xilinx Zynq
— Intel Xeon+Altera (HARP)
— Mellanox ConnectX-4 + FPGA
— FPGAs on other NICs and in switches
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Programming FPGAs

* The programmable logic provided by FPGAs is a
powerful option for creating task-specific
functionality for applications

* Programming with FPGAs is not easy
 Many agree: Accelerate common functionality

« Others want to make it easy to use general-

purpose toolchains to deploy arbitrary kernels
— Jeff and OpenACC
— Franck’s workshop

— New NSF call for ways to make it easy
|t may not ever be easy
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Things that go bump in the wire

* We have been exploring a (relatively) generic
approach for scenarios in which there is

programmable logic in the communication pipeline
— Addresses the problem of how to get data to and from the device

 Abump in the wire

— Rich Graham clearly got this phrase from us

 In teaching how to use FPGAs, we have found this
model to be quite useful

— Students who haven’t done Verilog can get to this in a semester
— Important topic in Indiana U.’'s new engineering program

* This also maps to a growing use case
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Collective Offload

+ Offloading collective logic is a common technique
In various platforms to improve performance

 Mellanox’s CORE-Direct is one such state of the

art collective operation offload framework.

— Defines primitive tasks: send, receive, wait, binary calculations.

— Collective algorithm defines list of tasks and tasks are performed
by the NIC without CPU involvement

» Collective offload systems have been done many
times, but ours is easy to use and is a starting
point

/v/'//'ﬂ INDIANA UNIVERSITY

CREST Center for Research in Extreme Scale Technologies




Goals of FPGA-based Offload

* Reduce collective operation latency and
variance

* Provide selection of collective algorithms that
are implemented in hardware

* Implement collective algorithms independent of
end-to-end communication protocols

« Utilize hardware-level, protocol-independent
multicasting to optimize, and when possible,
redesign major collective operation algorithms

» Support collective operation offload for different
classes of collective operations

zall
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NetFPGA

A line-rate, flexible, open networking
platform for teaching and research

Expansion Interfaces
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Xilinx Zynq
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Zedboard & Ethernet FMC
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Collective Offload Design

« Ease implementation with the “bump in
the wire” model

» Host offloads collective to the
Programmable Logic (PL) by sending a
specially crafted UDP packet

— Simplest solution

» Host blocks until the PL generates a
release message, which is also a UDP

packet




Collective Offload Packet

0.3]14.7] 8.11| 12.15]| 16.19| 20..23 | 24.27 | 28..31 | 32..35 | 36..39| 40..43 | 44.47 | 48..51 | 52..55| 56..59 | 60..63
dst MAC src MAC_1
src MAC 2 type ver | IHL | Diff_Serv
Total_Length |dentification flags | fragment_offset TTL Protocol
Hdr_Cksum src_IP dst IP_1
dst IP 2 UDP_Source Port UDP_Dest POrt Length
UDP_checksum coll_id comm_size coll_type
algo_type node type msg_type rank
local_rank count operation data_type count
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AXI|-Based Platforms

* Advanced eXtensible Interface (AXI) standards
define intermodule communication in
programmable logic

« Widely utilized in recent Xilinx FPGA designs

— Recent designs depend on AXI-based protocols

« AXIS (AXI-Stream) is for streaming data

between modules.
— We employ the AXIS protocol in our design

« Support for multiple ranks per host
— Provides insight how our design scales
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Implementation

* Modules inherited from the NetFPGA package
— Input Arbiter, Output Queues

* Modules from Xilinx |P catalog
— AXI Ethernet, AXI DMA, AXI Width Converter, FPU, AXIS Data
FIFO
* New Modules

— Stream Separator

— Stream Aggregator

— Collective Forwarding Engine (CFE)

— Collective Instruction Processing Engine (CIPE)

* Implements MPI _Allreduce, MPI| Reduce,
MPI_Barrier, MP| _Scan, MPI_Alltoall...
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Collective Forwarding Engine (CFE)

— Heart of the design
— Responsible for:
» Assessing the offload request header fields.

» Detecting collective operation and algorithm to
run

 Perform state transitions and save the state
for algorithms

« Based on the state, make forwarding
decisions

 Determine the instructions which the CIPE will
apply
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Collective Instruction Processing Engine
(CIPE)

« CFE attaches 64-bit instruction header
» CIPE processes the instruction

« Example Instructions

— Forward packet, do nothing
— Buffer packet in specified buffer

— Perform reduction operations on incoming packet and specified
buffers

« Buffer or not buffer the result

— Perform reduction operations on specified buffers and ignore
Incoming packet

 Buffer or not buffer the result
— Ignore incoming packet and forward data on specified buffer
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Collective Instruction Processing Engine
(CIPE)

* |nterfaces with FPU and FIFO cores

— FPU cores for streaming and applying floating point arithmetic

— FIFO cores for streaming intermediate results of single cycle
arithmetic operations

 MIN, MAX, BOR, LOR, BAND, LAND, BXOR,
LXOR, Integer SUM

* |Internal BRAM buffers
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Collective Instruction Processing Engine
CIPE
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Collective Instruction Processing Engine
CIPE

* Fully pipelined design
— FPU cores can be configured to produce results in 1 cycle

 Due to observed instabilities, we increased the first result
cycle to 11 (the maximum)

— Each extra FPU core introduces extra cycle
— Each FIFO core employed introduces an extra cycle
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Evaluation

* Experimental Setup

— 8 Zynq Zedboards with EthernetFMC adapters
 Directly connected

e Come seeitat SC
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Zynq Cluster — MPI_Allreduce

ARM Host vs PL Offloaded (Msg Size = 8 byte) ARM Host vs PL Offloaded (Msg Size = 128 byte)
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Zynq Cluster — MPI_Allreduce

Ave, Min Difference: ARM vs PL Msg (Size = 8B) Ave, Min Difference: ARM vs PL Msg (Size = 128B)
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Zynq Cluster — MILC

MILC - Clover Dynamical
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Conclusions and Future Work

« Empirical validation of the efficacy of collective
offload

* Promising performance

* Increasing availability of programmable logic
stands to increase impact

* The use of UDP allowed straightforward
iImplementation, but is limiting

* Clearly, this the right way to use FPGAs

25

42‘EST Center for Research in Extreme Scale Technologies



INDIANA UNIVERSITY
Center for Research in Extreme Scale Technologies




