A Compiler Engineer’s View of
High Performance Technical Computing

Instruction Set Architectures in Top 500
e Architectures

20
15
10

Ly

1versi

Architectural D

Instruction Set Architectures in Top 500

e \rchitectures (>1)

e Architectures

20

15

10

Ly

1versi

Architectural D

Instruction Set Architectures in Top 500

e=mm Architectures (>1)

e Architectures

20

15

10

Architectural Trends

= Vectors getting longer
= Multiprocessors getting larger

= Memory hierarchies getting deeper and more interesting

= Heterogeneity becoming common

PGI’Compilers & Tools

Language Trends

Fortran evolving; array operations, do concurrent, PGAS
parallelism

C and C++ each looking to add loop and task parallelism
OpenACC parallelism across accelerators and multicore

OpenMP task parallelism, simd parallelism, device constructs

PGI’ Compilers & Tools

metalanguages

do 10 i = 1, len
10 y(i) = y(i) + a*x (i)

PGI ' Compilers & Tools

10

metalanguages

subroutine daxpy(y, a, x, n)
real y(*), x(*), a
integer len, i
do 10 1 =1, n
y(i) = y(1) + a*x(i)
end

call daxpy(vy, a, x, len)

megalanguages

void daxpy(float* y, double a, float* x, int n) {
for(int 1=0; i<n; ++1i)
y[i] += a*x[1i] ;

daxpy(vy, a, x, len); saxpy(); caxpy();...

PGI"Compilers & Tools

metalanguages

forall(0, len, [&] (int 1) {
y[i] += a*x[i] ;
} o)

Compiler Challenges

Effective parallelism management and exploitation
Predictable performance (no surprises)

Data management (cache, scratchpad, HBM)
Heterogeneity (ISA, performance)

More parallelism in language (Fortran, more to come)
C++ keeps getting more interesting

PEACE continues in force

PGI'Compilers & Tools

