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Matrix Transposition 

•  Important in linear algebra computations 
•  Example: finding Fourier transform of 

3D array. Do this by: 
– 1D transform wrt each dimension in turn 
– Transpose wrt 2 of the dimensions after 

each 1D transform 
– Makes efficient use of cache 
– Facilitates parallelization 
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Column-Major Ordering 

•  In CMO for matrix A elements are stored: 
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 

•  In CMO for transpose of A elements are stored: 
 0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14 
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Permutations 
•  Transposition of an nxm matrix can be 

viewed as a permutation, P, of the 
indices 0, 1, …, q, where q = nm-1. 

•  If P(k) is the index of the element 
originally at location k, then k=0 and 
k=q are invariant under P, and for 
0<k<q: 

  P(k) =  (km) mod (q) 
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Permutations and Cycles 
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k P(k) 
0 0 

1 3 

2 6 

3 9 

4 12 

5 1 

6 4 

7 7 

8 10 

9 13 

10 2 

11 5 

12 8 

13 11 

14 14 

•  If P is applied repeatedly 
we end up at the starting 
index, i.e., k=Pc(k). 

•  This defines a cycle of 
length c. 

•  Elements k=0, 7, 14 are 
cycles of length 1. 

•  (3,9,13,11,5,1) is a cycle. 
•  (6,4,12,8,10,2) is a cycle. 
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Cycle-Based In-Place 
Transposition 

•  Consider cycle (3,9,13,11,5,1). 
•  Make a copy, t, of A[1], and then move 

A[5] to A[1], A[11] to A[5], A[13] to 
A[11], A[9] to A[13], A[3] to A[9]. Then 
move t to A[3]. 

•  Repeat the procedure for cycle 
(6,4,12,8,10,2). 

•  This completes the transposition. 
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Cycle-Based Transposition of 
5x3 Matrix 
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•  Requires O(nm) data moves. 
•  Requires O(1) additional memory 

location. 
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Pros and Cons 

•  Cycle-based matrix transposition is 
elegant and simple to implement. 

•  Has irregular memory access patterns 
so does not use cache efficiently. 
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Swap-Based In-Place Matrix 
Transposition 

•  Algorithm based on paper of Tretyakov 
and Tyrtyshnikov (J. of Complexity, vol. 
25, pp. 377-384, 2009) for transpose of 
nxm matrix with n≥m. 

•  Basic idea is to partition matrix into sub-
matrices that are easier to transpose. 

•  Partitioning naturally gives rise to 
parallelism. 
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Main Phases of TT Algorithm 

1.  Partition into sub-matrices based on 
base-m representation of n. 

2.  Transpose each sub-matrix. 
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Partition Phase for Matrix A 

•  Write n as as base-m number: 
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n = nkm
k + nk−1m

k−1 +…+ n1m+ n0
•  Partition A into k+1 contiguous sub-

matrices: 
 Ak, Ak-1, …, A1, A0 

where Ak consist of the first nkmk rows of A; 
Ak-1 the next nk-1mk-1 rows of A; and so on. 

CCDSC 2014	





September 5, 2014	

 12	



Phase 1 Phase 2

26x4 matrix 
•  26=1x42+2x4+2 
•  So there are 3 

sub-matrices: 
 16x4 
   8x4 
   2x4 

•  Each sub-matrix 
is transposed 
independently. 

•  Need way to 
transpose 
pmqxm matrix. 
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Partitioning Algorithm 

•  Can partition A in-place using k 
applications of the unshuffle operation, 
resulting in k+1 sub-matrices. 

•  Unshuffle just uses swaps. 
•  The partitioning process exposes 

parallelism. 
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Unshuffle Operation 
•  The unshuffle operation takes a shuffled 

sequence of items and unshuffles them: 
 

where each ai is a contiguous vector of ℓa 
items, and each bi is a contiguous vector of ℓb 
items. 

•  Each aibi pair represents one column of the 
matrix. 

•  The unshuffle operation partitions the matrix 
over rows. 
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a1b1a2b2…ambm → a1a2…amb1b2…bm
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Partitioning a 26 by 4 Matrix 

Unshuffle 1 Unshuffle 2
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•  Unshuffle 1:  
 ℓa= 16, ℓb= 10 

26x4 partitioned 
as16x4 and 10x4. 

•  Unshuffle 2:  
 ℓa= 8, ℓb= 2 

10x4 partitioned as 
8x4 and 2x4. 
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Transposing a pmq by m Matrix 
•  New algorithm by TT, although q=1 case 

is known and uses half the swaps. 
•  Can be done in-place using swaps. 
•  TT algorithm requires additional m 

memory locations to store a permutation 
vector, P. 

•  P is used in the shuffle and unshuffle 
operations, and in a vector permute 
operation. 
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Case: m = 8, p = 3, q = 1 
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(1)

Block
transpose

(2)

Tranpose
matrices in
each block
of ni rows

(3)

Permute

(4)

Shuffle

•  The shuffle operation in stage 4 un-
partitions, or joins, sub-matrices over 
columns. 
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Avoiding Permutations 
•  The permutation algorithm of TT is 

actually a swap-based form of cycle 
following. 

•  Can avoid O(m) memory cost by: 
– Perform the permutation in step 3 with 

multiple shuffle or unshuffle operations. 
– Perform shuffle and unshuffle operations 

using divide-and-conquer algorithm.  
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Divide-And-Conquer Unshuffle 

•  Suppose m=8 
1.  Group as: (a1b1a2b2)(a3b3a4b4)(a5b5a6b6)(a7b7a8b8) 
2.  Swap first b vector with second a vector in each group: 

(a1a2b1b2)(a3a4b3b4)(a5a6b5b6)(a7a8b7b8) 
3.  Re-group as: (a1a2b1b2a3a4b3b4)(a5a6b5b6a7a8b7b8) 
4.  Swap first pair of b’s with second pair of a’s in each group: 

(a1a2a3a4b1b2b3b4)(a5a6a7a8b5b6b7b8) 
5.  Re-group as: (a1a2a3a4b1b2b3b4a5a6a7a8b5b6b7b8) 
6.  Swap first set of 4 b’s with second set of 4 a’s:

(a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8) 
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Unshuffle Trade-Offs: TT vs DAC 
ℓa=1152, ℓb=640, number of swaps 

m TT DAC serial DAC parallel 
32 93,122 133,120 51,584 
64 191,106 319,488 104,832 

128 398,604 745,472 211,328 
256 817,686 1,703,936 424,320 
512 1,708,336 3,833,856 850,304 

1024 3,682,140 8,519,680 1,702,272 
2048 8,427,462 18,743,296 3,406,208 
4096 21,057,168 40,894,464 6,814,080 
8192 58,902,826 88,604,672 13,629,824 

16384 184,926,814 190,840,832 27,261,312 
32768 638,302,408 408,944,640 54,524,288 
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Unshuffle: ℓa=1152, ℓb=640  

•  Results on multicore system with 12 Intel Xeon 
E5649 CPUs. DAC parallelized with OpenMP 
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Replace vector permute with 
multiple unshuffle operations 

•  Perform the permutation in step 3 with 
multiple shuffle or unshuffle operations. 
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•  This results in an increased number of 
operations. 
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Overall Swaps 
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n = qm+r, 0 ≤ r < m 
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GIPT: q matrices 
of size mxm plus 
one of size r/m	
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GCDT: m matrices 
of size qxm plus 
one of size r/m	
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Concluding Remarks 
•  Can improve performance of TT algorithm 

by use of a divide-and-conquer algorithm 
that is readily parallelizable . 

•  Can avoid need for extra O(m) storage in 
TT algorithm, but at cost of extra swaps 
which degrades performance. 
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Thank you for your 
attention. 

Any Questions? 
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