
September 5, 2014	

 1	



Algorithms for In-Place Matrix 
Transposition 

David W. Walker 
School of Computer Science & Informatics 

Cardiff University, UK 

Fred G. Gustavson 
IBM T. J. Watson Research Centre, emeritus 

Umea University 

CCDSC 2014	





Matrix Transposition 

•  Important in linear algebra computations 
•  Example: finding Fourier transform of 

3D array. Do this by: 
– 1D transform wrt each dimension in turn 
– Transpose wrt 2 of the dimensions after 

each 1D transform 
– Makes efficient use of cache 
– Facilitates parallelization 

September 5, 2014	

 2	

CCDSC 2014	





Column-Major Ordering 

•  In CMO for matrix A elements are stored: 
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 

•  In CMO for transpose of A elements are stored: 
 0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14 

 September 5, 2014	

 3	



0	



1	



2	



3	



4	



5	



6	



7	



8	



9	



10	



11	



12	



13	



14	



0	



5	



10	



1	



6	



11	



2	



7	



12	



3	



8	



13	



4	



9	



14	



A	

 AT	



CCDSC 2014	





Permutations 
•  Transposition of an nxm matrix can be 

viewed as a permutation, P, of the 
indices 0, 1, …, q, where q = nm-1. 

•  If P(k) is the index of the element 
originally at location k, then k=0 and 
k=q are invariant under P, and for 
0<k<q: 

  P(k) =  (km) mod (q) 
  September 5, 2014	

 4	

CCDSC 2014	





Permutations and Cycles 

September 5, 2014	

 5	



k P(k) 
0 0 

1 3 

2 6 

3 9 

4 12 

5 1 

6 4 

7 7 

8 10 

9 13 

10 2 

11 5 

12 8 

13 11 

14 14 

•  If P is applied repeatedly 
we end up at the starting 
index, i.e., k=Pc(k). 

•  This defines a cycle of 
length c. 

•  Elements k=0, 7, 14 are 
cycles of length 1. 

•  (3,9,13,11,5,1) is a cycle. 
•  (6,4,12,8,10,2) is a cycle. 

  
CCDSC 2014	





Cycle-Based In-Place 
Transposition 

•  Consider cycle (3,9,13,11,5,1). 
•  Make a copy, t, of A[1], and then move 

A[5] to A[1], A[11] to A[5], A[13] to 
A[11], A[9] to A[13], A[3] to A[9]. Then 
move t to A[3]. 

•  Repeat the procedure for cycle 
(6,4,12,8,10,2). 

•  This completes the transposition. 
September 5, 2014	

 6	

CCDSC 2014	





Cycle-Based Transposition of 
5x3 Matrix 

September 5, 2014	

 7	



0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

 12	

 13	

 14	



•  Requires O(nm) data moves. 
•  Requires O(1) additional memory 

location. 
CCDSC 2014	





Pros and Cons 

•  Cycle-based matrix transposition is 
elegant and simple to implement. 

•  Has irregular memory access patterns 
so does not use cache efficiently. 

September 5, 2014	

 8	

CCDSC 2014	





Swap-Based In-Place Matrix 
Transposition 

•  Algorithm based on paper of Tretyakov 
and Tyrtyshnikov (J. of Complexity, vol. 
25, pp. 377-384, 2009) for transpose of 
nxm matrix with n≥m. 

•  Basic idea is to partition matrix into sub-
matrices that are easier to transpose. 

•  Partitioning naturally gives rise to 
parallelism. 

September 5, 2014	

 9	

CCDSC 2014	





Main Phases of TT Algorithm 

1.  Partition into sub-matrices based on 
base-m representation of n. 

2.  Transpose each sub-matrix. 

September 5, 2014	

 10	

CCDSC 2014	





Partition Phase for Matrix A 

•  Write n as as base-m number: 
 

September 5, 2014	

 11	



n = nkm
k + nk−1m

k−1 +…+ n1m+ n0
•  Partition A into k+1 contiguous sub-

matrices: 
 Ak, Ak-1, …, A1, A0 

where Ak consist of the first nkmk rows of A; 
Ak-1 the next nk-1mk-1 rows of A; and so on. 

CCDSC 2014	





September 5, 2014	

 12	



Phase 1 Phase 2

26x4 matrix 
•  26=1x42+2x4+2 
•  So there are 3 

sub-matrices: 
 16x4 
   8x4 
   2x4 

•  Each sub-matrix 
is transposed 
independently. 

•  Need way to 
transpose 
pmqxm matrix. 

 
CCDSC 2014	





Partitioning Algorithm 

•  Can partition A in-place using k 
applications of the unshuffle operation, 
resulting in k+1 sub-matrices. 

•  Unshuffle just uses swaps. 
•  The partitioning process exposes 

parallelism. 
 

September 5, 2014	

 13	

CCDSC 2014	





Unshuffle Operation 
•  The unshuffle operation takes a shuffled 

sequence of items and unshuffles them: 
 

where each ai is a contiguous vector of ℓa 
items, and each bi is a contiguous vector of ℓb 
items. 

•  Each aibi pair represents one column of the 
matrix. 

•  The unshuffle operation partitions the matrix 
over rows. 

 

September 5, 2014	

 14	



a1b1a2b2…ambm → a1a2…amb1b2…bm

CCDSC 2014	





Partitioning a 26 by 4 Matrix 

Unshuffle 1 Unshuffle 2

September 5, 2014	

 15	



•  Unshuffle 1:  
 ℓa= 16, ℓb= 10 

26x4 partitioned 
as16x4 and 10x4. 

•  Unshuffle 2:  
 ℓa= 8, ℓb= 2 

10x4 partitioned as 
8x4 and 2x4. 

 
 CCDSC 2014	





Transposing a pmq by m Matrix 
•  New algorithm by TT, although q=1 case 

is known and uses half the swaps. 
•  Can be done in-place using swaps. 
•  TT algorithm requires additional m 

memory locations to store a permutation 
vector, P. 

•  P is used in the shuffle and unshuffle 
operations, and in a vector permute 
operation. 

September 5, 2014	

 16	

CCDSC 2014	





Case: m = 8, p = 3, q = 1 

September 5, 2014	

 17	



(1)

Block
transpose

(2)

Tranpose
matrices in
each block
of ni rows

(3)

Permute

(4)

Shuffle

•  The shuffle operation in stage 4 un-
partitions, or joins, sub-matrices over 
columns. 

CCDSC 2014	





Avoiding Permutations 
•  The permutation algorithm of TT is 

actually a swap-based form of cycle 
following. 

•  Can avoid O(m) memory cost by: 
– Perform the permutation in step 3 with 

multiple shuffle or unshuffle operations. 
– Perform shuffle and unshuffle operations 

using divide-and-conquer algorithm.  

September 5, 2014	

 18	

CCDSC 2014	





Divide-And-Conquer Unshuffle 

•  Suppose m=8 
1.  Group as: (a1b1a2b2)(a3b3a4b4)(a5b5a6b6)(a7b7a8b8) 
2.  Swap first b vector with second a vector in each group: 

(a1a2b1b2)(a3a4b3b4)(a5a6b5b6)(a7a8b7b8) 
3.  Re-group as: (a1a2b1b2a3a4b3b4)(a5a6b5b6a7a8b7b8) 
4.  Swap first pair of b’s with second pair of a’s in each group: 

(a1a2a3a4b1b2b3b4)(a5a6a7a8b5b6b7b8) 
5.  Re-group as: (a1a2a3a4b1b2b3b4a5a6a7a8b5b6b7b8) 
6.  Swap first set of 4 b’s with second set of 4 a’s:

(a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8) 

September 5, 2014	

 19	

CCDSC 2014	





Unshuffle Trade-Offs: TT vs DAC 
ℓa=1152, ℓb=640, number of swaps 

m TT DAC serial DAC parallel 
32 93,122 133,120 51,584 
64 191,106 319,488 104,832 

128 398,604 745,472 211,328 
256 817,686 1,703,936 424,320 
512 1,708,336 3,833,856 850,304 

1024 3,682,140 8,519,680 1,702,272 
2048 8,427,462 18,743,296 3,406,208 
4096 21,057,168 40,894,464 6,814,080 
8192 58,902,826 88,604,672 13,629,824 

16384 184,926,814 190,840,832 27,261,312 
32768 638,302,408 408,944,640 54,524,288 

September 5, 2014	

 20	

CCDSC 2014	





Unshuffle: ℓa=1152, ℓb=640  

•  Results on multicore system with 12 Intel Xeon 
E5649 CPUs. DAC parallelized with OpenMP 

September 5, 2014	

 21	



0.001 

0.01 

0.1 

1 

10 

100 

9 10 11 12 13 14 15 16 17 18 

Se
co

nd
s 

log2(m) 

Wall clock time, gfortran optimized with –O3 

TT 

Serial DAC 

Parallel DAC 

CCDSC 2014	





Replace vector permute with 
multiple unshuffle operations 

•  Perform the permutation in step 3 with 
multiple shuffle or unshuffle operations. 

September 5, 2014	

 22	



w1
1…wk

1w1
2…wk

2…w1
g…wk

g →w1
1w1

2…w1
g…wk

1wk
2…wk

g

•  This results in an increased number of 
operations. 

CCDSC 2014	





100 120 140 160 180 200
0

50000000

100000000

150000000

200000000

250000000 k = 100
Unshuffle (TT)
Shuffle (serial)
Shuffle (dac)
Vector permute
RowTranspose (dashed)

g

N
um

be
r o

f s
w

ap
s

September 5, 2014	

 23	

CCDSC 2014	





September 5, 2014	

 24	



100 120 140 160 180 200
0

5000000

10000000

15000000

20000000

25000000 k = 100
Shuffle (dac)
Vector permute
RowTranspose (dashed)

g

N
um

be
r o

f s
w

ap
s

CCDSC 2014	





Overall Swaps 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

1800000000

2000000000

GIPT

TT

GCD(dac)

GCD(split)

n = 16384

m

N
um

be
r o

f s
w

ap
s

September 5, 2014	

 25	

CCDSC 2014	





n = qm+r, 0 ≤ r < m 

September 5, 2014	

 CCDSC 2014	

 26	



mxm	



GIPT: q matrices 
of size mxm plus 
one of size r/m	



mxm	



mxm	



rxm	



qxm	



qxm	



qxm	



qxm	



qxm	



qxm	



rxm	



GCDT: m matrices 
of size qxm plus 
one of size r/m	





Overall Times 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

10

20

30

40

50

60

IPT

GCD(split)
GIP(split)

GCD(dac)

TT

n = 16384

m

Ti
m

e 
in

 se
co

nd
s

September 5, 2014	

 27	

CCDSC 2014	





Concluding Remarks 
•  Can improve performance of TT algorithm 

by use of a divide-and-conquer algorithm 
that is readily parallelizable . 

•  Can avoid need for extra O(m) storage in 
TT algorithm, but at cost of extra swaps 
which degrades performance. 

September 5, 2014	

 28	

CCDSC 2014	





September 5, 2014	

 29	



Thank you for your 
attention. 

Any Questions? 

CCDSC 2014	




