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Introduction: some Coloured Fluid Dynamics




| — Lattice Boltzmann method




Lattice Boltzmann governing equation

The lattice Boltzmann method is based on a discretised version in time, space,
and particle velocity space of the Boltzmann equation.
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X. He and L.S. Luo.

Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann
equation.

Physical Review E, 56(6):6811-6817, 1997.



Lattice Boltzmann algorithm

The LBM updating rule naturally splits in two steps: collision (1) and
propagation (2).
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Algorithmic aspects

From an algorithmic perspective, the LBM usually:

@ operates on homogeneous Cartesian meshes;
@ resorts to explicit numerical schemes;

@ requires only nearest neighbours synchronisation.

The LBM is therefore well-suited for parallel implementations, especially on
massively parallel processors because of the regular data access pattern.

An LBM solver is a memory intensive application whose performance is
generally memory-bound.



Il — OpenCL implementation




@ LBM solvers based on the CUDA technology are usually able to make full
profit of the computational power of Nvidia GPUs.

@ CUDA is however a proprietary technology primarily designed for a specific
hardware, which may become problematic over time.

@ OpenCL is an interesting alternative to CUDA, since it gives access to new
types of accelerators such as Intel's Xeon Phi.

@ OpenCL and CUDA use similar concepts. An OpenCL version of a CUDA
program may therefore follow the same design.

@ When targeting GPU based accelerators, the resulting program may
benefit from previously devised optimisations.

J. Télke and M. Krafczyk.
TeraFLOP computing on a desktop PC with GPUs for 3D CFD.
International Journal of Computational Fluid Dynamics, 22(7):443-456, 2008.



OpenCL implementation principles

@ Fuse collision and propagation into a single kernel to avoid unnecessary
data transfer.

@ Map the OpenCL global domain to the lattice to take advantage of
massively parallel architectures.

© Use an appropriate data layout in order to maximise coalescent concurrent
global memory accesses.

@ Launch the collision-and-propagation kernel at each time step and use two
instances of the lattice to avoid synchronisation issues.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
A new approach to the lattice Boltzmann method for graphics processing units.
Computers and Mathematics with Applications, 61(12):3628—-3638, 2011.



OpenCL implementation principles (continued)

@ Use in-place propagation instead of out-of-place propagation to optimise
cache usage.
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C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
A new approach to the lattice Boltzmann method for graphics processing units.
Computers and Mathematics with Applications, 61(12):3628-3638, 2011.
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Methodology

@ To evaluate our OpenCL LBM code, we performed simulations of the
lid-driven cubic cavity test case.

@ The program was tested on three platforms: Nvidia GeForce GTX Titan,
Intel Xeon Phi 7120P, Intel Xeon E5-2670 (deca-core, double socket).

@ Performance is reported in MLUPS (million lattice-node updates per
second).

@ The simulations were performed for increasing cavity size with various
runtime configurations.
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Results
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Discussion

@ For all three platforms, maximal performance is achieved with
one-dimensional work-groups.

@ For Xeon and Xeon Phi, the size of the work-group has little impact
whereas for the Kepler, best performance is reached for the largest
possible size.

@ Structures of arrays (SoA) are considerably more efficient than arrays of
structures (AoS) for the Kepler and the Xeon Phi. The opposite
conclusion holds for the Xeon.

@ For the Kepler, the data throughput is on average around 212 GB/s, i.e.

89 % of the maximum, whereas the Xeon Phi reaches 25 GB/s, i.e. 10%
of the maximum.
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Il — MPI implementation
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Motivation and design

@ The aim of the MPI implementation is to test a more flexible framework
than OpenCL, making possible more complex data transfer between
sub-domains which occur for instance in case of grid refinement.

o Each process is associated to a cuboid sub-domain. The connectivity
between sub-domains is described by a JSON configuration file.

@ At each time step, the out-going particular densities are copied to buffers
for faces and edges then sent to the neighbouring sub-domains
(non-blocking).

@ Upon reception, the in-coming particular densities for faces and edges are
merged into auxiliary arrays, performing partial propagation.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
Scalable Lattice Boltzmann Solvers for CUDA GPU Clusters. 39 (6-7), 259-270
Parallel Computing, 39(6-7):259-270, 2013.
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Scalability on Plafrim’s Fourmi cluster
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With 128 CPU cores, performance is about 4 MLUPS per core.
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Performance on Xeon Phi
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Tested on a Xeon Phi 3120A in native mode. Performance is at most
0.56 MLUPS per core.
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Conclusions

@ In this contribution, we present two portable implementations of the
lattice Boltzmann method, based on OpenCL and MPI.

@ The OpenCL version performs well on Nvidia GPU and Intel CPU.

@ On the Xeon Phi, performance of the OpenCL version is below
expectation, which requires further investigations.

@ Performance of the MPI version of the MPI version is disappointing.
Improvements will probably require the use of vectorisation intrinsics at
the cost of portability.
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Thank you for listening!
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