CCDSC 2014

Early attempts of implementing the

lattice Boltzmann method on Intel’s MIC architecture

Christian Obrecht?, Virginie Favrat®, Frédéric Kuznik®, Bernard Tourancheau?

1 Université de Lyon, CNRS, INSA-Lyon, CETHIL UMR5008, France
2 Université de Grenoble, UJF-Grenoble, LIG UMR5217, France

September 4, 2014

INSR

Lyown

CETHIL L1 G

UMR 5008

\

Introduction: some Coloured Fluid Dynamics

| — Lattice Boltzmann method

Lattice Boltzmann governing equation

The lattice Boltzmann method is based on a discretised version in time, space,
and particle velocity space of the Boltzmann equation.

|fa(x + 6t&., t+ 6t)) — |fa(x, 1)) (yf X, t)))

15

=
I
T
I
|
e
|
T
I
I

X. He and L.S. Luo.

Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann
equation.

Physical Review E, 56(6):6811-6817, 1997.

Lattice Boltzmann algorithm

The LBM updating rule naturally splits in two steps: collision (1) and
propagation (2).

[(x, £+ 60) = [falx,) + Q(Jfalx, 1)) (1)

|fo(x + 0t€,, t + 6t)) = | (x, t + 6t)) (2)
S S I DNV 2 B
NN LN LN NN NN N
N\ DN NI
< o> |0 |< o> < o> |0 > < o> <o >|< 0 >|< o>
SN SN NV VN
DS DS S S S I DS P DS D
NN N LN NN LoV N

Algorithmic aspects

From an algorithmic perspective, the LBM usually:

@ operates on homogeneous Cartesian meshes;
@ resorts to explicit numerical schemes;

@ requires only nearest neighbours synchronisation.

The LBM is therefore well-suited for parallel implementations, especially on
massively parallel processors because of the regular data access pattern.

An LBM solver is a memory intensive application whose performance is
generally memory-bound.

Il — OpenCL implementation

@ LBM solvers based on the CUDA technology are usually able to make full
profit of the computational power of Nvidia GPUs.

@ CUDA is however a proprietary technology primarily designed for a specific
hardware, which may become problematic over time.

@ OpenCL is an interesting alternative to CUDA, since it gives access to new
types of accelerators such as Intel's Xeon Phi.

@ OpenCL and CUDA use similar concepts. An OpenCL version of a CUDA
program may therefore follow the same design.

@ When targeting GPU based accelerators, the resulting program may
benefit from previously devised optimisations.

J. Télke and M. Krafczyk.
TeraFLOP computing on a desktop PC with GPUs for 3D CFD.
International Journal of Computational Fluid Dynamics, 22(7):443-456, 2008.

OpenCL implementation principles

@ Fuse collision and propagation into a single kernel to avoid unnecessary
data transfer.

@ Map the OpenCL global domain to the lattice to take advantage of
massively parallel architectures.

© Use an appropriate data layout in order to maximise coalescent concurrent
global memory accesses.

@ Launch the collision-and-propagation kernel at each time step and use two
instances of the lattice to avoid synchronisation issues.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
A new approach to the lattice Boltzmann method for graphics processing units.
Computers and Mathematics with Applications, 61(12):3628—-3638, 2011.

OpenCL implementation principles (continued)

@ Use in-place propagation instead of out-of-place propagation to optimise
cache usage.

SIS SIS SRR
SN ANV LN N
SRR e e
e e e e b T D T
LI SN SN
SR SR SR
LI LN NN LI I N

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
A new approach to the lattice Boltzmann method for graphics processing units.
Computers and Mathematics with Applications, 61(12):3628-3638, 2011.

10

Methodology

@ To evaluate our OpenCL LBM code, we performed simulations of the
lid-driven cubic cavity test case.

@ The program was tested on three platforms: Nvidia GeForce GTX Titan,
Intel Xeon Phi 7120P, Intel Xeon E5-2670 (deca-core, double socket).

@ Performance is reported in MLUPS (million lattice-node updates per
second).

@ The simulations were performed for increasing cavity size with various
runtime configurations.

11

Results

1600
+
+
1400 + * s
+ +
n +
+ n +
1200 +
& +
o 1000
2
=
; + Kepler (N)
O 800 + Kepler(32) —
s X Xeon Phi (N)
£ O Xeon (N)
5 o Xeon (SoA)
=
o 600
o
400
[m]
200 o Q Q o)
X X fal Ja) ol X ® =
o
X
0 T y 7 T T T T T T T
0 32 64 96 128 160 192 224 256 288 320

Cavity size (N)

12

Discussion

@ For all three platforms, maximal performance is achieved with
one-dimensional work-groups.

@ For Xeon and Xeon Phi, the size of the work-group has little impact
whereas for the Kepler, best performance is reached for the largest
possible size.

@ Structures of arrays (SoA) are considerably more efficient than arrays of
structures (AoS) for the Kepler and the Xeon Phi. The opposite
conclusion holds for the Xeon.

@ For the Kepler, the data throughput is on average around 212 GB/s, i.e.

89 % of the maximum, whereas the Xeon Phi reaches 25 GB/s, i.e. 10%
of the maximum.

13

Il — MPI implementation

14

Motivation and design

@ The aim of the MPI implementation is to test a more flexible framework
than OpenCL, making possible more complex data transfer between
sub-domains which occur for instance in case of grid refinement.

o Each process is associated to a cuboid sub-domain. The connectivity
between sub-domains is described by a JSON configuration file.

@ At each time step, the out-going particular densities are copied to buffers
for faces and edges then sent to the neighbouring sub-domains
(non-blocking).

@ Upon reception, the in-coming particular densities for faces and edges are
merged into auxiliary arrays, performing partial propagation.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
Scalable Lattice Boltzmann Solvers for CUDA GPU Clusters. 39 (6-7), 259-270
Parallel Computing, 39(6-7):259-270, 2013.

15

Scalability on Plafrim’s Fourmi cluster

100 100000

10000

Runtime (s)
"
3
Runtime (s)

1 100 1000 1 100 1000
Number of cores Number of cores

Weak scaling Strong scaling

With 128 CPU cores, performance is about 4 MLUPS per core.

16

Performance on Xeon Phi

35

30

25 *

20

MLUPS
*

15

10

0 T T T T T T T T T T T T T 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Million of lattice nodes

Tested on a Xeon Phi 3120A in native mode. Performance is at most
0.56 MLUPS per core.

17

Conclusions

@ In this contribution, we present two portable implementations of the
lattice Boltzmann method, based on OpenCL and MPI.

@ The OpenCL version performs well on Nvidia GPU and Intel CPU.

@ On the Xeon Phi, performance of the OpenCL version is below
expectation, which requires further investigations.

@ Performance of the MPI version of the MPI version is disappointing.
Improvements will probably require the use of vectorisation intrinsics at
the cost of portability.

18

Thank you for listening!

Acknowledgements: Intel, PlaFrim.

19

	Lattice Boltzmann method
	OpenCL implementation
	MPI implementation

