

The Score-P Tool Ecosystem

Bernd Mohr
Jülich Supercomputing Centre

Integration

- Need integrated tool (environment)
 for all levels of parallelization
 - Inter-node (MPI, PGAS, SHMEM)
 - Intra-node (OpenMP, multi-threading, multi-tasking)
 - Accelerators (CUDA, OpenCL)
- Integration with performance modeling and prediction
- No tool fits all requirements
 - Interoperability of tools
 - Integration via open interfaces

Score-P Functionality

- Provide typical functionality for HPC performance tools
- Instrumentation (various methods)
 - Multi-process paradigms (MPI, SHMEM)
 - Thread-parallel paradigms (OpenMP, POSIX threads)
 - Accelerator-based paradigms (CUDA)
 - And their combination
- Flexible measurement without re-compilation:
 - Basic and advanced profile generation
 - Event trace recording
 - Online access to profiling data
- Highly scalable I/O functionality
- Support all fundamental concepts of partner's tools

Non-functional Requirements

- Portability: support all major HPC platforms
 - IBM Blue Gene, Cray X*, Fujitsu K/FX10
 - x86, x86_64, PPC, Sparc, ARM clusters (Linux, AIX, Solaris)
- Scalability
 - Petascale, supporting platforms with more than 100K cores
- Low measurement overhead
 - Typically less than 5%
- Robustness and QA
 - Nightly Builds, Continuous Integration Testing Framework
- Easy and uniform installation through EasyBuild
- Open Source: New BSD License

Score-P Architecture

Score-P Partners

- Forschungszentrum Jülich, Germany
- German Research School for Simulation Sciences, Aachen, Germany
- Gesellschaft für numerische Simulation mbH Braunschweig, Germany
- RWTH Aachen, Germany
- Technische Universität Dresden, Germany
- Technische Universität München, Germany
- University of Oregon, Eugene, USA

Past Funded Integration Projects

- SILC (01/2009 to 12/2011)
 - Unified measurement system (Score-P) for Vampir, Scalasca, Periscope
- PRIMA (08/2009 to 10/2013)
 - Integration of TAU and Scalasca
- LMAC (08/2011 to 07/2013)
 - Evolution of Score-P
 - Analysis of performance dynamics
- H4H (10/2010 to 09/2013)
 - Hybrid programming for heterogeneous platforms
- HOPSA (02/2011 to 01/2013)
 - Integration of system and application SEVENTH FRAMEWORL PROGRAMME

GEFÖRDERT VOM

MINISTRY OF EDUCATION AND SCIENCE OF THE RUSSIAN FEDERATION

Current Funded Integration Projects

- Score-E (10/2013 to 09/2016)
 - Analysis and Optimization of Energy Consumption

GEFÖRDERT VOM

- PRIMA-X (11/2014 to 10/2017)
 - Extreme scale monitoring and analysis

- RAPID (04/2014 to 03/2015)
 - Enhanced support for node-level programming models
 - POSIX, ACE, Qt threads
 - MTAPI, TBB

The Score-P Tool Ecosystem

Connect to Vampir trace browser

Show most severe pattern instances

Investigate most severe instance in Vampir 💋 JÜLICH

Integration of Measurement and Modelling

Example: DFG SPPEXA Catwalk Project

Input

- •Set of performance measurements (profiles) on different processor counts {p₁, ..., p_{max}} w/ weak scaling
- Individual measurement broken down by program region (call path)

Output

- •List of program regions (kernels) ranked by their predicted execution time at target scale p_t > p_{max}
- •Or ranked by growth function $(p_t \rightarrow \infty)$

Showcase Trace Visualization with Vampir

Showcase Trace Visualization with Vampir

Showcase Wait-State Analysis with Scalasca

Courtesy John M. Dennis, NCAR

Showcase Wait-State Analysis with Scalasca

Courtesy John M. Dennis, NCAR

Showcase Wait-State Analysis with Scalasca

Courtesy John M. Dennis, NCAR

Showcase: TerrSysMP

Scale-consistent
 highly modular
 integrated
 multi-physics
 sub-surface/surface
 hydrology-vegetation
 atmosphere
 modelling system

- Fully-coupled MPMD simulation consisting of
 - COSMO (Weather prediction)
 - CLM (Community Land Model)
 - ParFlow (Parallel Watershed Flow)
 - OASIS coupler

Success Story: TerrSysMP

- Identified several sub-components bottlenecks:
 - Inefficient communication patterns
 - Unnecessary/inefficient code blocks
 - Inefficient data structures
- Performance of subcomponents improved by factor of 2!
- Scaling improved from 512 to 32768 cores!

Score-P Development

- New features of the current Score-P 1.3 relase
 - Instrumentation and monitoring of Pthreads and SHMEM parallel applications
 - Platform support for the K Computer and Fujitsu FX10 systems added
- Features under development
 - Sampling as less intrusive alternative to instrumentation
 - Support for the OpenMP tools interface
 - Handling of new MPI 3 functions
 - Support for the Intel MIC (native and offload model)
 - Recording MPI, user, and hardware topologies

Questions?

- Check out http://www.score-p.org
- Or contact us at support@score-p.org