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Programming Systems Targeting Exascale

Thanks to exascale reports and workshops

* Multiresolution programming systems for different users
— Joe/Stephanie/Doug [Pingali, UT]
— Elvis/Mort/Einstein [Intel]
* Specialization simplifies and improves efficiency
— Target specific user needs with domain-specific languages/libraries
— Customize libraries for application needs and execution context

* Interface to programmers and runtime/hardware

— Seamless integration of compiler with programmer guidance and dynamic
feedback from runtime

* Toolkits rather than monolithic systems

— Layers support different user capability
— Collaborative ecosystem

* Virtualization (over-decomposition)

— Hierarchical, or flat but construct hierarchy when applicable? U
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Applications

Characterized
by

Prevalent data
abstractions

Programming
Models

Failure Model

System Cost

Big Data vs. HPC:
Fundamentally Different?

Data analytics:
Social networks, industry

Typically, independent file
operations, database queries

Graphs (sparse), databases, text
files

Map-Reduce/HIVE/Giraph etc.

Assume failures common, need
to be tolerated

Use the technology with the best
price-performance ratio
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Large-scale scientific simulation:
government, industry

Typically map to 3-D grid to
represent physical space

Arrays (dense and sparse),
objects

MPI/OpenMP/CUDA widely
used

Assume failures infrequent
(spend $)

Use the fastest possible
processors/network
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Rethinking Abstractions for Big Data

« availability e, | T mu-‘: Need for appropriate models for

+ capacity How? algorithm development.

* economic an_d Big Data Algorithms Algorithmically managing inaccuracies.
social benefit
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What? Reducing dimensionality, not drawing
false conclusions.
Big Data Analytics CCMPosing data models.

Visualizing for user involvement
(overview+detail).

Big Data Systems

Similar looming systems
and programming issues in
HPC and Big Data
(productivity, resilience,
energy efficiency).
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Example 1: Graph Algorithms

* Performance issues in algorithms on sparse graphs
— Overhead of partitioning
— Load imbalance
— Small computation relative to memory access and
communication (high memory-to-compute ratio)

 Recent study: Compares 5 different graph frameworks to
hand-coded graph algorithms
— Parallel computing: GraphlLab, Galois
— Distributed memory: CombBLAS
— Big data: Giraph, Socialite
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Graph Algorithms, Performance

Single socket performance, Intel Xeon E5-2697 (24 cores)

B Native Combblas B Graphlab 1 Native Combblas B Graphlab El Native Combblas [ Graphlab B Native Combblas @ Graphlab
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Conclusions: Thread-level parallelism is essential, data representations impact -ounting
performance, Hadoop-based framework has lowest performance
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Conclusions: MPI performs better than Linux sockets, low memory footprint

improves performance, graph partitioning important, triangle counting dominated
by network traffic, Hadoop-based framework has lowest performance
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Programming, from an HPC
Perspective

* Disadvantages of Map-Reduce
— Map/Reduce not always the right abstraction

— Lots of new frameworks resulted: HIVE, BigTable, Dremel,
Giraph, ..., Cloud Dataflow

* Fundamental changes needed
— |/O-based programming models are inefficient
— Efficiency comes from customization and specialization
(low level?)

— On today’s architectures, fully exploiting locality and
parallelism is essential (low level?)
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Example 2: SPARK (Berkeley)

Goal: Support for computations that cannot be
expressed as “asynchronous data flows”

— Iterative computations

— Interactive analytics

Key abstraction: resilient distributed data set (RDD)

— A read-only collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost (in-
memory plus fault tolerance)

— Users can explicitly cache an RDD in memory across
machines and reuse it in multiple parallel operations

* Integrated into Cloudera, the largest distribution of Hadoop
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Some concepts

RDDs.

PageRank example)

Materialization points (boxes colored red)
generate the RDDs (o/w they are lazy)

Shuffles are global synchronization points,
require significant data movement
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Users designate RDDs as cached (one in

Dependences govern generation of stages and
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Word Count in SPARK

—_ [ HadoopRDD A
0
val file = SC.teXtFile("README.md") G = “ narrow dependJency
MappedRDD
f ( ( 1 )) MappedRDD
val count = file.map(word => (word, > - -

reduceByKey(_+ )

wide dependenCye mm mm = — - -

count.toArray
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PageRank in SPARK

1 -
Calculation: PR (i) =r+(1-r)* )
Jl(32)EE

degree(7)
val lines = ctx.textFile(args(0), 2)
val links = lines.map{ s =>
val parts = s.split("\\s+")
(parts(0), parts(1))
}1.distinct().groupByKey().cache()
var ranks = links.mapValues(v => 1.0)

for (i <- 1 to iters) {
val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>
val size = urls.size
urls.map(url => (url, rank / size))

}
ranks = contribs.reduceByKey(_+ ).mapValues(0.15 + 0.85 * )

}

val output = ranks.collect()

output.foreach(tup => printin(tup._1 + " has rank: " + tup._2 +"."))
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PageRank in SPARK

Initiali HadoopRDD
nitialize * Iter 1 Iter 2 Iter n
MappedRDD CoGroupedRDD CoGroupedRDD o CoGroupedRDD
MappedRDD MappedValuesRD MappedValuesRD MappedValuesRD
3 D D : D
MappedRDD FlatMappedValues FlatMappedValues FlatMappedValues
1 RRD RRD ; R?D
Stage3 | MapPartitionsRDD MappedRDD MappedRDD MappedRDD
ShuffledRDD FlatMappedRDD FlatMappedRDD : FlatMappedRDD
MapPartitionsRDD MapPartitionsRDD MapPartitionsRDD : MapPartitionsRDD
St 1
f =1 >4 = =>4
Stage 2 MWQD ShuffledRDD ShuffledRDD : ShuffledRDD
ShuffledRDD MapPartitionsRDD MapPartitionsRDD MapPartitionsRDD
MapPartitionsRDD MappedValuesRD ' MappedValuesRD o MappedValuesRD
D D Stage 0 D
l = l_.__-.l\t_l..__l‘h‘

Conclusions: Many dependences represent dataflows or pipelines (simplification?),
global synchronization at each iteration (optimize?), opportunities for exploiting
fine-grained parallelism
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Summary:
Opportunities and Challenges

Managing data movement critical to performance in
both communities

* Exploit data reuse, optimize communication, avoid
unnecessary file I/0

Exploiting architecture features will dramatically

improve performance

— Parallelism at all levels (ILP, SIMD, threads, processes)

— Data affinity

Multiresolution programming systems will be useful to

both communities

Similar issues are looming: energy and resilience U
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