Leveraging HPC Expertise and Technology in
Data Analytics

Mary Hall
September, 2014

CCDSC9/4/14

References for this talk

Rethinking Abstractions for Big Data: Why, Where, How and What,
M. Hall, R.M. Kirby, F.Li, M. Meyer, V. Pascucci, J. Phillips, R. Ricci, J.
van der Merwe, S. Venkatasubramanian, arXiv, June 2013.

Navigating the Maze of Graph Analytics Frameworks using Massive
Graph Datasets, N. Satish, N. Sundaram, M.A. Patwary, J. Seo, J. Park,
M.A. Hassaan, S. Sengupta, Z. Yin, P. Dubey, SIGMOD 2014.

Spark: Cluster Computing with Working Sets, M. Zaharia, M.
Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, HotCloud 2010.

THEU

CCDSC9/4/14 UNIVERSITY
OF UTAH

Future of the Field: Programming Technology
RISy 2nd Compilers

“"ACM ExaScale Software Study:
Software Challenges in
Extreme Scale Systems

Saman Amarasinghe

Dan Campbell { [
William Carlson I m
Andrew Chien

William Dally INFORMATION PROCESSING TECHMIQUES OFFICE

Elmootazbellah Elnohazy
Mary Hall

Robert Harrison

William Harrod

Kerry Hill

Jon Hiller

Sherman Karp

Charles Koelbel

David Koester

Peter Kogge

John Levesque

Daniel Reed

Vivek Sarkar, Editor & Study Lead
Robert Schreiber

Mark Richards
Al Scarpelli

~ | Exascale Programming
o 1 Challenges

Thomas Sterling

Report of the 20
Exascale Programming Challeng
Marina del Rey, July 27-29, 2011

September 14, 2009

Autotuning!

-

THEU

CCDSC9/4/14 UNIVERSITY
OF UTAH

Programming Systems Targeting Exascale

Thanks to exascale reports and workshops

* Multiresolution programming systems for different users
— Joe/Stephanie/Doug [Pingali, UT]
— Elvis/Mort/Einstein [Intel]
* Specialization simplifies and improves efficiency
— Target specific user needs with domain-specific languages/libraries
— Customize libraries for application needs and execution context

* Interface to programmers and runtime/hardware

— Seamless integration of compiler with programmer guidance and dynamic
feedback from runtime

* Toolkits rather than monolithic systems

— Layers support different user capability
— Collaborative ecosystem

* Virtualization (over-decomposition)

— Hierarchical, or flat but construct hierarchy when applicable? U

CCDSC9/4/14 UNIVERSITY
OF UTAH

Applications

Characterized
by

Prevalent data
abstractions

Programming
Models

Failure Model

System Cost

Big Data vs. HPC:
Fundamentally Different?

Data analytics:
Social networks, industry

Typically, independent file
operations, database queries

Graphs (sparse), databases, text
files

Map-Reduce/HIVE/Giraph etc.

Assume failures common, need
to be tolerated

Use the technology with the best
price-performance ratio

CCDSC9/4/14

Large-scale scientific simulation:
government, industry

Typically map to 3-D grid to
represent physical space

Arrays (dense and sparse),
objects

MPI/OpenMP/CUDA widely
used

Assume failures infrequent
(spend $)

Use the fastest possible
processors/network

THEU

UNIVERSITY
OFUTAH

Rethinking Abstractions for Big Data

« availability e, | T mu-‘: Need for appropriate models for

+ capacity How? algorithm development.

* economic an_d Big Data Algorithms Algorithmically managing inaccuracies.
social benefit

‘-

f} 010010100
i ; ‘L—/——b
A;,.

What? Reducing dimensionality, not drawing
false conclusions.
Big Data Analytics CCMPosing data models.

Visualizing for user involvement
(overview+detail).

Big Data Systems

Similar looming systems
and programming issues in
HPC and Big Data
(productivity, resilience,
energy efficiency).

CCDSC 9/4/14 i u

UNIVERSITY
OFUTAH

Example 1: Graph Algorithms

* Performance issues in algorithms on sparse graphs
— Overhead of partitioning
— Load imbalance
— Small computation relative to memory access and
communication (high memory-to-compute ratio)

 Recent study: Compares 5 different graph frameworks to
hand-coded graph algorithms
— Parallel computing: GraphlLab, Galois
— Distributed memory: CombBLAS
— Big data: Giraph, Socialite

THEU

CCDSC9/4/14 UNIVERSITY
OF UTAH

Graph Algorithms, Performance

Single socket performance, Intel Xeon E5-2697 (24 cores)

B Native Combblas B Graphlab 1 Native Combblas B Graphlab El Native Combblas [Graphlab B Native Combblas @ Graphlab
M Socialite @ Giraph H Galois [0 Socialite B Giraph # Galois B Socialite O Giraph ™ Galois @ Socialite B Giraph B Galois
:g B 100 3 1000 1:2
5§ 3 g 3
% %ﬂﬁ %mﬂ$ﬂ§m :
2 3 2 s
¢ o001 - [x i . s o"_ —1 —m -U i 1[— |_ E 0.1 ﬁ_ Hx nm [_U
gt 3 § £ ° E % o3 % ¢ g 3 ¢ E 3 § :
Conclusions: Thread-level parallelism is essential, data representations impact -ounting
performance, Hadoop-based framework has lowest performance
B Native Combblas @Graphlab MSocialite @ Giraph
1000 96746.8
Multiple sockets, larger graphs)
e
(Infiniband interconnect) g 1 3
% 10 :
= L — = N
1 7 R

Pagerank BFS (Twitter, 4 Collaborative Filt. Triangle Count.
(Twitter, 4 nodes) nodes) (Yahoo Music, 4 (Twitter, 16

Conclusions: MPI performs better than Linux sockets, low memory footprint

improves performance, graph partitioning important, triangle counting dominated
by network traffic, Hadoop-based framework has lowest performance

THEU

INIVERSITY
OFUTAH

Programming, from an HPC
Perspective

* Disadvantages of Map-Reduce
— Map/Reduce not always the right abstraction

— Lots of new frameworks resulted: HIVE, BigTable, Dremel,
Giraph, ..., Cloud Dataflow

* Fundamental changes needed
— |/O-based programming models are inefficient
— Efficiency comes from customization and specialization
(low level?)

— On today’s architectures, fully exploiting locality and
parallelism is essential (low level?)

THEU

CCDSC9/4/14 UNIVERSITY
OF UTAH

Example 2: SPARK (Berkeley)

Goal: Support for computations that cannot be
expressed as “asynchronous data flows”

— Iterative computations

— Interactive analytics

Key abstraction: resilient distributed data set (RDD)

— A read-only collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost (in-
memory plus fault tolerance)

— Users can explicitly cache an RDD in memory across
machines and reuse it in multiple parallel operations

* Integrated into Cloudera, the largest distribution of Hadoop

THEU

CCDSC9/4/14 UNIVERSITY
OF UTAH

Some concepts

RDDs.

PageRank example)

Materialization points (boxes colored red)
generate the RDDs (o/w they are lazy)

Shuffles are global synchronization points,
require significant data movement

CCDSC9/4/14

Users designate RDDs as cached (one in

Dependences govern generation of stages and

THE
UNIVERSITY
OFUTAH

Word Count in SPARK

—_ [HadoopRDD A
0
val file = SC.teXtFile("README.md") G = “ narrow dependJency
MappedRDD
f ((1)) MappedRDD
val count = file.map(word => (word, > - -

reduceByKey(_+)

wide dependenCye mm mm = — - -

count.toArray

THE u

CCDSC9/4/14 UNIVERSITY
OF UTAH

PageRank in SPARK

1 -
Calculation: PR (i) =r+(1-r)*)
Jl(32)EE

degree(7)
val lines = ctx.textFile(args(0), 2)
val links = lines.map{ s =>
val parts = s.split("\\s+")
(parts(0), parts(1))
}1.distinct().groupByKey().cache()
var ranks = links.mapValues(v => 1.0)

for (i <- 1 to iters) {
val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>
val size = urls.size
urls.map(url => (url, rank / size))

}
ranks = contribs.reduceByKey(_+).mapValues(0.15 + 0.85 *)

}

val output = ranks.collect()

output.foreach(tup => printin(tup._1 + " has rank: " + tup._2 +"."))
CCDSC9/4/14

PR'(j)

THEU

UNIVERSITY
OFUTAH

PageRank in SPARK

Initiali HadoopRDD
nitialize * Iter 1 Iter 2 Iter n
MappedRDD CoGroupedRDD CoGroupedRDD o CoGroupedRDD
MappedRDD MappedValuesRD MappedValuesRD MappedValuesRD
3 D D : D
MappedRDD FlatMappedValues FlatMappedValues FlatMappedValues
1 RRD RRD ; R?D
Stage3 | MapPartitionsRDD MappedRDD MappedRDD MappedRDD
ShuffledRDD FlatMappedRDD FlatMappedRDD : FlatMappedRDD
MapPartitionsRDD MapPartitionsRDD MapPartitionsRDD : MapPartitionsRDD
St 1
f =1 >4 = =>4
Stage 2 MWQD ShuffledRDD ShuffledRDD : ShuffledRDD
ShuffledRDD MapPartitionsRDD MapPartitionsRDD MapPartitionsRDD
MapPartitionsRDD MappedValuesRD ' MappedValuesRD o MappedValuesRD
D D Stage 0 D
l = l_.__-.l\t_l..__l‘h‘

Conclusions: Many dependences represent dataflows or pipelines (simplification?),
global synchronization at each iteration (optimize?), opportunities for exploiting
fine-grained parallelism

THEU

UNIVERSITY
OFUTAH

CCDSC9/4/14

Summary:
Opportunities and Challenges

Managing data movement critical to performance in
both communities

* Exploit data reuse, optimize communication, avoid
unnecessary file I/0

Exploiting architecture features will dramatically

improve performance

— Parallelism at all levels (ILP, SIMD, threads, processes)

— Data affinity

Multiresolution programming systems will be useful to

both communities

Similar issues are looming: energy and resilience U

CCDSC9/4/14 UNIVERSITY
OF UTAH

