

NEMO: Autotuning power and performance

Jeffrey K. Hollingsworth

A Word About Power

- What can you do with 14MW?
 - Make Snow for Snow Summit (13.6 MW)
 - There are > 400 ski resorts in the US
- What can you do with 75 MW?
 - Make steel (60-90MW is typical)
 - 8 such mills in Malaysia
- Does that mean exascale is more useful than a ski resort and less than a steel mill?

One more Thought on Power

- US has spent \$100M on exascale to date
 - Perhaps for little/no return
- Could have purchased 20MW for 5 years
 - So a 40 MW machine could have worked
- In the future power may really matter, but
 - Let mobile market solve that for us
 - Let the Search/booksellers experts work on power
 - We could then work on the science & impact exascale can have to society

Generalized Auto-Tuning

Onion Model Workflow

- Allows for paired functionality, but either hook is optional.
- Fetch hooks executed in ascending order.
- Report hooks executed in descending order.
- Point values cannot be modified (directly).

Search Strategies

- Allow for new algorithms to be tried
- All other plugins still work
- Current Search Strategies
 - Exhaustive
 - Parallel Rank Order
 - Nelder-Mead

Plug-in Example: Constraints

- Support for non-rectangular parameter spaces.
 - Implemented as plug-in #2 using REJECT workflow.

$$-y \le x$$

 χ

Auto-Tuning Objectives

- Single Objective
 - "More apples is better."
 - The best solution is easy to select
- Multi-Objective
 - "Is more apples, or more oranges better?"
 - Multiple different, but equally good solutions
 - The best solution becomes a subjective choice

Multi-Objective Example

- Minimize both energy and runtime
- Pareto set formed by non-dominated solutions
 - Solutions cannot be strictly improved upon

Impact of Compiler Options

The effect of GCC's inline-max parameter on 447.dealII

Parameter Value

Existing Approaches

- Use experiments to find entire Pareto set
 - Algorithms judged by accuracy and efficiency
 - Evolutionary algorithms are widely used
- Provide set to users for final selection
 - This step is unacceptable for auto-tuning

Introducing NEMO

- Non-Evolutionary Multi-Objective Search Algorithm
- Goal:
 - Return a single solution, not a set of solutions
- Inputs:
 - Objective preference ranking
 - "When in conflict, I prefer runtime to be optimized over power."
 - Objective leeway percentage
 - "The search may stray up to 20% from the best known runtime."

NEMO Algorithm

- Consider the first objective in isolation
 - Search using single objective search algorithm
 - Nelder Mead used in our experiments
- Record a threshold for first objective using leeway
 - Penalize any future searches that exceed threshold
- Repeat for objectives 2 through N
 - Search "landscape" changes with each iteration
 - Final landscape affected by all prior thresholds
 - Single objective search led to proper multi-objective solution

Tuning Lulesh

Preliminary Results

Multi-Objective Algorithms on OKA1 (1000 Trials Each)

Conclusions

- Need to efficiently support multi-objective search
 - At least 2 objectives, likely more
 - NEMO is a promising option for this

