SCIENCE

UNIVERSITY OF MARYLAND

NEMO: Autotuning power and
performance




A Word About Power

* What can you do with 14MW?
— Make Snow for Snow Summit (13.6 MW)
— There are > 400 ski resorts in the US

 What can you do with 75 MW?
— Make steel (60-90MW is typical)
— 8 such mills in Malaysia

e Does that mean exascale is more useful than
a ski resort and less than a steel mill?




One more Thought on Power

* US has spent S100M on exascale to date
— Perhaps for little/no return

* Could have purchased 20MW for 5 years
— So a 40 MW machine could have worked

* |n the future power may really matter, but

— Let mobile market solve that for us

— Let the Search/booksellers experts work on power

* We could then work on the science & impact exascale can
have to society




Generalized Auto-Tuning

‘ Evaluated Performance I

=
©
Q
X
|
3 Search Client
Strategy Application
-
I
-
T

l Candidate Points ’




1HOdAY

Search
Strategy

(HD_L 1

Allows for paired
functionality, but
either hook is optional.

Fetch hooks executed
in ascending order.

Report hooks executed
in descending order.

Point values cannot be
modified (directly).




Search Strategies

* Allow for new algorithms to be tried
* All other plugins still work

* Current Search Strategies
— Exhaustive
— Parallel Rank Order
— Nelder-Mead




» Support for non-rectangular parameter spaces.

— Implemented as plug-in #2 using REJECT workflow.
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Auto-Tuning Objectives

* Single Objective

— “More apples is better.”

— The best solution is easy to select
 Multi-Objective

— “Is more apples, or more oranges better?”

— Multiple different, but equally good solutions

— The best solution becomes a subjective choice




 Minimize both energy and runtime
* Pareto set formed by non-dominated solutions
— Solutions cannot be strictly improved upon

Result
Pareto Front ———
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Existing Approaches

* Use experiments to find entire Pareto
set

— Algorithms judged by accuracy and efficiency
— Evolutionary algorithms are widely used

* Provide set to users for final selection

— This step is unacceptable for auto-tuning




Introducing NEMO

* Non-Evolutionary Multi-Objective Search Algorithm

* Goal:
— Return a single solution, not a set of solutions
* |nputs:

— Objective preference ranking

* “When in conflict, | prefer runtime to be optimized over
power.”

— Objective leeway percentage

* “The search may stray up to 20% from the best known
runtime.”




NEMO Algorithm

* Consider the first objective in isolation
— Search using single objective search algorithm
— Nelder Mead used in our experiments

* Record a threshold for first objective using leeway
— Penalize any future searches that exceed threshold

* Repeat for objectives 2 through N
— Search “landscape” changes with each iteration

— Final landscape affected by all prior thresholds
* Single objective search led to proper multi-objective solution
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NEMO Search Phase 1
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NEMO Search Phase 2
(Penalized for threshold violations
of Objective 1)

NEMO Search Phase 3
(Penalized for threshold violations
of Objective 1 & 2)
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Preliminary Results

Multi-Objective Algorithms on OKA1 (1000 Trials Each)

CDF (%)
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Conclusions

* Need to efficiently support multi-objective search
— At least 2 objectives, likely more

— NEMO is a promising option for this




