
Evaluation of an
HPC Component Model on
Jacobi and 3D FFT Kernels

Christian Perez

Joint work with J. Bigot (CEA), V. Lanore (Inria), J. Richard (Orléans)

Avalon Research Team, LIP, Lyon, France

Clusters, Clouds, and Data for Scientific Computing (CCDSC’14)
La Maison des Contes, France, September 2nd-5th 2014

Context

Scientific Applications

Cluster
(GPU/MC/…)

Grids
(EGEE)

IaaS
(Cloud)

Super-
computer
(Exascale)

2

Parallel Programming

� (High level) parallel languages
� PGAS, …
� Not (yet) mature

� Platform oriented models
� Multi-core � Threads, OpenMP
� GPU � Cuda, OpenCL, OpenAPP
� Multi-node � MPI
� Many versions of the same code
� Difficult to maintain all versions synchronized
� Difficult to keep specific machine optimizations
� Low code reuse

3

Proposed Approach Overview

� Separation of concerns
� Machine specific code from re-usable code
� Different algorithms!

� Make explicit points of configuration
� Need a configurable representation of an application

� Generate machine specific version
� Need a process

� Component model as an application description
model to adapt to a particular machine

4

A global view of software engineering
evolution

procedural
technology

component
technology

object
technology

Objects,
Classes,
Smalltalk, C++,
...

Procedures,
Pascal,
C,
...

Packages,
Frameworks,
Patterns,
…

1980 1995 2000

procedural
refinement

model
technology

Models,
Metamodels,
UML, OCL, MOF,
XMI, SPEM, CWM

…

object
composition

model
transformation

From Jean Bézivin presentation, ATLAS group (Inria & LINA), Nantes, France 5

OVEREVIEW OF COMPONENT
MODELS

6

Software Component

� Technology that advocates for composition
� Old idea (late 60’s)
� Assembling rather than developing

� Many types of composition operator
� Spatial, temporal, ….

� Assembly of component
� Primitive & composite components

� Many models (but in HPC)
� CCA, Salome, CCM,

Fractal, GCM, OGSi, SCA, …

C2

C3 C4

C5

C1 C5

C6 (Composite) 7

Common Component
Architecture (CCA) Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

From CCA Tutorial, http://www.cca-forum.org/tutorials/ 8

Component in Parallel Computing

� Memory sharing between components
� CCA & CCM Extensions

� Parallel components
� CCA, SCIRun2, GridCCM

� Collective communications
� CCM Extension

� Parallel method calls
� SCIRun2, GridCCM

� Master / worker support
� CCA & CCM Extensions

� Some algorithmic skeletons in assemblies
� STKM

� Two type of features
� Component implementations

� ≈ skeletons

� Component interactions

9

Limitation of Existing HPC
Component Model
� Pre-defined set of interactions

� Usually function/method invocation oriented
� How to incorporate other interactions, eg MPI?

� Provide communication abstractions
� Language interoperability (~IDL)
� Network transparency
� Potential overhead when not needed
� Limited data types systems
� Babel SIDL, OMG IDL, …

� Programming model vs execution model

10

Programming model vs
Execution model
� L2C: Execution model

�Performance oriented
�Close to hardware
�Not so easy to make use

� HLCM: « Programming » model
�Assembly oriented
�Abstract hardware
�Shall be “easy” to make use

11

OVERVIEW OF L2C
LOW LEVEL COMPONENT

12

Low Level Component Model

� A minimalist component model for HPC
� Component creation/deletion, configuration, and

connection
� An (optional) launcher

� No L2C code between components @ runtime
� Support native interactions

� C++, MPI, CORBA, FORTRAN (2008)

� Extensible
� LGPL, available at hlcm.gforge.inria.fr

13

L2C: Connector Overview

� C++/FORTRAN Interactions
�Use/Provide relationships
�No language interoperability
� Outside L2C goals

� MPI Interactions
�Connector ~ communicator

14

L2C AND JACOBI

15

Jacobi Sequential Computation

Iter = N
� For iter = 0 to Niter

� For y = 0 to ymax
� For x = 0 to xmax

� tab[iter][x][y] = ...

iter

XY

Main

compute(array)

run(size, niter)

16

Thread Jacobi Parallelization

� 1 shared array
� Barrier after each iteration

� For iter = 0 to Niter

� For y = 0 to ymax

� For x = 0 to xmax

� tab[iter][x][y] = …

� Barrier

Thread
iter

XY

Main

XYXYXY

17

MPI Jacobi Parallelization

� 1 local array
per thread

� Send/receive
at each iter

� For iter = 0 to Niter

� For y = 0 to ymax

� For x = 0 to xmax

� tab[iter][x][y] = …

� SendReceive

MPI iter

XY

Main

XYXY

MPI iter MPI iter

18

Hierarchic Parallelization

� Multi nodes
�MPI

� Multi core
�Threads

� For iter = 0 to Niter
� For y = 0 to ymax

� For x = 0 to xmax
� tab[iter][x][y] = …

� Local Barrier
� SendReceive

MPI iter

XY

Main

Thread
iter

? ? ?

19

The 4 connector way

� 1 connector instance
�1 domain

� 1 DataExchange/side
� Implementation agnostic interface

� For iter = 0 to Niter

� Wait for frontier

� For y = 0 to ymax

� For x = 0 to xmax

� tab[iter][x][y] = …

� Data update T/B/L/R

Iter +
XY

class DataUpdate
{
public:

virtual void exchange (
ArraySlice in,
ArraySlice out

) = 0;
};

20

The 4 Connector Way: Threads

Iter +
XY

Iter +
XY

Iter +
XY

Iter +
XY

Thread
Conn

Thread
Conn

Thread
Conn

Thread
Conn

void exchange (ArraySlice in, ArraySlice out)
{

barrier(2);
}

21

The 4 Connector Way: MPI

Iter +
XY

Iter +
XY

Iter +
XY

Iter +
XY

MPI
Conn

MPI
Conn

MPI
Conn

MPI
Conn

MPI
Conn

MPI
Conn

MPI
Conn

MPI
Conn

void exchange (ArraySlice in, ArraySlice out)
{

MPI_SendReceive(in, out);
}

22

The 4 Connector Way: Hierarchy

Iter +
XY

Iter +
XY

MPI
Conn

MPI
Conn

Iter +
XY

Iter +
XY

MPI
Conn

MPI
Conn

Thread
Conn

Thread
Conn

23

Experimental Platform: Grid’5000

� Griffon cluster
� Intel Xeon L5420 2.5 GHz
� 4 cores per CPU
� 2 CPU per node

� 92 nodes
� 16 GB RAM

� Infiniband-20G network

24

Iteration Time

Overhead coming from using too much threads on this machine!
� Limited memory bandwidth

25

Software Complexity

� Number of Lines

� Code Reuse

Jacobi Version Native Driver Connector

Sequential 161 239 388

Multithreaded 338 386 643

MPI 261 285 446

Code Reuse vs Seq (%) Driver Connector

Thread 26% 31%

MPI 32% 87%

MPI+Thread - 100%
26

Software Complexity

� Cyclomatic complexity
� It directly measures the number of linearly

independent paths through a program's source code.
Wikipedia

Jacobi Version Native Driver Connector

Sequential 28 32 8

Multithreaded 76 41 26

MPI 55 22 13

27

L2C AND 3D FFT

28

1D MPI 3D FFT Assembly
(2 nodes)

29

1D MPI 3D FFT Assembly

30

Homogeneous Experiments

10243 3D FFT – 1D Decomposition – Curie (Thin node) 31

Heterogeneous Experiments

2563 3D FFT – 1D Decomposition : Edel+Genepi Cluster (Grid’5000) 32

2D MPI 3D FFT Assembly
(2 nodes)

33

Homogeneous Experiments

10243 3D FFT – 2D Decomposition – Curie (Thin node) 34

Number of Lines & Reusability

Version C++ Lines of Code % Reused Code

L2C 1D 2t xz 927 -

L2C 1D 1t xz 929 77%

L2C 1D 2t yz 929 100%

L2C 1D 2t yz blk 1035 69%

L2C 1DH 1t yz 983 80%

L2C 1DH 2t yz blk 1097 72%

L2C 2D 3t 1067 87%

L2C 2DH 3t 1146 69%

35

Conclusion & Perspectives

� Component model as a way to handle versions
� Application adaptation => assembly modification

� L2C
� A simple, efficient, and extensible model

� Towards component + task graph (L2C+StarPU)
� Efficient reconfiguration of component (on going)
� L2C assembly complex to write

� Shall be generated by a higher model
� HLCM: A high level component model

�Transformation algorithms from “HLCM” to “L2C”
36

Component and Task Graph

� Component
�Good for describing application structure

� Task graph
�Efficient to handle task dependencies

� Towards a Component+Task graph model
�Runtime/Avalon/CEA PhD starting Nov 1.
�Superseding L2C+StarPU
�Gysela5D as a target application

37

