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DOE SEAB HPC committee charge

The justification for an exascale computing capability initiative.
* DOE missions

» Fundamental research opportunities Report of the Task Force on High

« Broader societal benefits from an open, non-classified exascale program and Performance Computing
potential market barriers inhibiting private development of exascale computing of the

Related basic research necessary to enable next generation high Secretary of Energy Advisory Board

performance computing (e.g. mathematics, computer science, etc,

including quantum and superconducting computing) ugust 10, 2014

The current state of technology and plans for an exascale program in the
Department of Energy and other federal agencies

Role of the Department of Energy in leading the development of exascale
computing - including its involvement and collaboration with industry,
universities and other government agencies on high performance
computing

Implications of data centric computing for exascale computing

energy.gov/seab/secretary-energy-advisory-board-seab-task-force-next-generation-high-performance-computing
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Note: emphasis mine

Investable needs exist for an exaX class machine

Significant, but projectable technology development can enable one last “current” generation
machine (1-10 exascale level)

Classical high end simulation machines are already significantly impacted by many of the data
volume and architecture issue

Data centric at the exascale is already important for DOE missions

Rapidly scaling to and beyond levels of performance that are comparable to hose needed for classic high
performance floating point computation

Common challenges and under-girding technologies span compute needs
Factors driving DOE’s historical role in leadership computing still exist and will continue to do so
A broad and healthy ecosystem is critical to the development of exascale and beyond systems

It is timely to invest in science, technology and human investments for “Beyond Next”
Superconducting, quantum, biological/cognitive (neurosynaptic)
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Culture and economics: getting what you need

Industry
« Capital is really, really cheap (look at interest rates)

 Labor is increasingly expensive
« ROI drives behavior

Academia and government
« Capital is very expensive
 Labor is still cheap

« Other metrics drive success

To change the game, change the metrics ...
» Infrastructure, personnel, social and political

Put another way, match what you want with what you need a
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Cloud computing lessons Generic server design

* OpenCompute

N»e_»g)‘,w » Workload-specific optimization

* Functional accelerators
i3 9,5 Epn « ODM, not OEM partnerships
R Energy optimization
 Substations and generation
» Switchgear control
Programming efficiency
* Rich toolkits and expression
Systemic resilience
* Failure management, not avoidance

o Network optimization
Microsoft Dublin Google, CounC|I Bluffs e Flatter networks

ogql
GOOS < amazon Ecebook Supply chain optimization L
=l Microsoft webservices® » The advantage of scale fm
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Nettlix Simian Army

Chaos Monkey NETFLIX
* Random service termination to ensure other services continue operation
Latency Monkey |

« Simulates service degradation and ensures services react

Janitor Monkey
» Searches for and turns off unused resources

Conformity Monkey
 Ensures virtual machines meet specified standards

Doctor Monkey

 monitors the “health” of various virtual machines

Security Monkey

« Monitors and analyzes system security
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Integration

Application Level

S challenging

Mahout, R and Applications

iN both directions

Applications and Community Codes

_____

Middleware &
Management

1

Hive || Pig || Sqoop

Flume

Map-Reduce

Storm

Hbase BigTable
(key-value store)

OdAV

(UOIleUIPI00D) Jadaay 007

HDFS (Hadoop File System)

FORTRAN, C, C++ and IDEs

Domain-specific Libraries Perf &
Debug

(e.g.

MPI-OpenMP .

PAPI

CUDA/OpenCL N klse )

PFS Batch System
(e.g, Lustre) Scheduler Monitoring

System Software

- ((Smy "bd) seoinues pnopy

________________________________________________________

Linux OS variant

Linux OS variant

Cluster Hardware

Ethernet Local Node

Switches Storage

Commodity
X86 Racks

Data Analytics Software Stack

IB+ Enet

Switches

SAN+Local
Storage

x86 +GPUs or
Accelerators

Computational Science Software Stack
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Diverging cultures and loss

Scientific application complexity is rising Cognitive complexity must decline ...

« Multidisciplinary fusion * ... else the number of parallel software developers

Temporal and spatial adaptation will asymptotically approach zero
é

Data assimilation and processing

... along with multiple optimization axes
Massive parallelism with heterogeneous cores
Resilience/reliability at large scale

Energy optimization for utility

C, Fortran, C++, «

R Python, Ruby, PIG, | .
CUDA/OpenCL FLUME, R Technical and mainstream software
Cloud/Web Services development have diverged L
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Shifting ratios: shifting optimizations

Rising costs
* Personnel (no Moore's law here)
» Energy costs (capital and operating)

Personnel

Declining costs

« Hardware for given performance level o
« $/FLOP continues to decline rapidly Reliability
Hardware reliability

* Partially determined by market

« Mass market rewards low cost, not high reliability
* Think mobile devices

Hardware

Follow the money ... ¢
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Exascale resilience, provenance and scale

System sizes are rising rapidly
* The law of large numbers applies

Failures are frequent

« Component MTBF is not that high
 Disks, power supplies, fans, DRAM

System resilience dominates
« Components are less important

Charnp-da Ln
Department of Computer Science
University of [Ninois
Urbsana, Mims G1300
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Over-provisioned hardware performability-—7 =

Balance node RAS against system RAS
* NRE versus acquisition/repair

A simple, optimistic provisioning model
* N servers and S spares

* Servers fail independently at rate
» Spares may (A >0) or may not repaired (A = 0)

Degraded e o

Np  (N-1p (n+1)u

)

PA PA pA PA

N+S
p(t) =( y ](e“t)k(l—e”‘)N+Sk (41=0) ¢
THE UNIVERSITY
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Modeling approaches

Analytic models
« Simple, aggregate node models

* Only analytically tractable distributions

« State space explosion challenges

« Easy to explore large parameter spaces

Failure Data

Discrete event simulation
* Detailed, hierarchical models

e Generalized failure distributions

« More difficult to explore large parameter spaces

Calibration

<

Composable Performability Model

Analytic
Model

!

Simulation
Model

Analytic
Model

!

Simulation
Model

Performability
Prediitions
FRM Module
Cost Model “es >
Cost Data fm
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Scaling and near complete decomposability

Weakly interacting partitions (racks or FPMs)

* Failures (usually) have local hardware impact
 Rack failures rarely affect other racks

Implications

« State transition matrix P is strongly diagonal

* Partition models can be solved separately

Solution to state space explosion
* Numerically tractable even at large scale

O
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Rethinking computing energy

Multiple energy sources
* Electrical grid, solar, wind, fuel cell, ...

Multiple cost functions Controller
» Energy pricing, carbon taxes, varying availability

« Hardware, data transfer bandwidth/latency ... Servers

Multivariate optimization and prediction

* Workload demand (diurnal and seasonal)

» Workload location subject to service level agreements (SLAS)
* Weather and seasonal models

 Auction-based energy pricing

» Infrastructure (UPS, optical fiber and computing)

Charge
Controller

o
-

Scheduling subject to energy and reliability <— L
» Cost, availability, resilience ... fm
THE UNIVERSITY
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Example of variation in hourly electric cia

power demand and price over a single day

Energy constrained scheduling

dollars per MWh

80 60
0 ”
Two options, generalizable to auction-based pricing 50 40
« Peak/off-peak pricing but no limit on energy availability j.g 90
* Fixed pricing but peak/off-peak energy availability 20 2
10 10
. 0 0
Given 1200 600 1200 600  12:00
. Al AM P FM AM
« System size N nodes :
www.eia.gov
 Total system energy budget B
° Sequence OfJObS J — jlij, ')]M -sauo _ s T Generafion Dispatch Target ~ —RATLMP  —RTLoad | 100,000
$260 60000
220 50000
Choose an optimal subset S of J such that . o s
3 S0 20000
> Size(ji) <N Y Energy(ji) < B = e
jies jies i s
December 2013 MISO Iﬁ;‘u
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HPC resource allocation and policies

User allocations are now of substantial value
» Depreciated capital cost over system lifetime

* Energy consumption for parallel job

Limited incentives for user responsibility
 Capital or operating cost efficiency

Exacerbated by

» Sub-linear parallel speedups
 Accelerators and node heterogeneity
* Multiple energy envelopes

New reward models must be explored ...
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