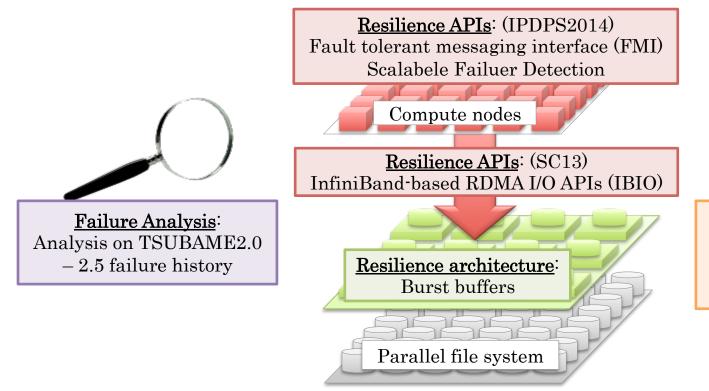


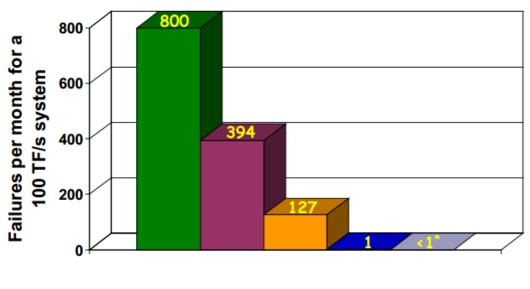
Tokyo Tech. Billion-Way Resiliency Project (2011-2015)

- Collaboration with ANL (Franck Cappello, FTI), LLNL (Bronis de Spinksi, SCR), Hideyuki Jitsumoto (U-Tokyo)...
- More precise system fault model and associated cost model of recovery and optimization
- Aggressive architectural, systems, and algorithmic improvements
 - Use of localized flash/NVM for ultra fast checkpoints and recovery
 - Advanced coding and clustering algorithms for reliability against multiple failures
 - Combining coordinated & uncoordinated checkpoints
 - Overlapping transfers in the checkpoint storage hierarchy for quick recovery
 - Power optimized checkpoints
- Better monitoring and micro-recovery



Holistic Approach to Billion-way Resiliency

 <u>Failure Analysis</u>, <u>APIs</u>, <u>Modeling</u> and <u>Architectures</u> driving multi-level checkpoint/restart through extensive collaborations between LLNL and Tokyo Tech


Resilience modeling:
(CCGrid2014 Best Paper)
Multi-level Checkpoint/
Restart model

A cluster-based SC like TSUBAME is not supposed to work...

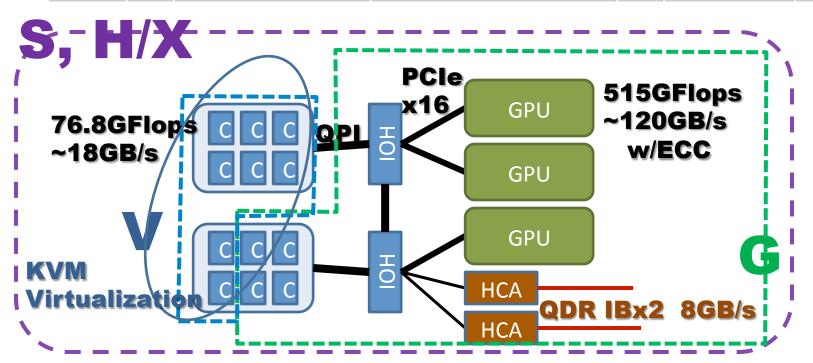
Blue Gene Solution – PetaScale Today, ExaScale Tomorrow

IEE

Blue Gene is orders of magnitude more reliable than other platforms

■ Itanium2 ■ x86 ■ Power5 ■ BG/L ■ BG/P

Results of survey conducted by Argonne National Lab on 10 clusters ranging from 1.2 to 365 TFlops (peak); excluding storage subsystem, management nodes, SAN network equipment, software outages.


0 Why Blue Gene?

© 2008 IBM Corporation

^{*} Estimated based on reliability improvements implemented in BG/P compared to BG/L

Service List

service	assigne nodes	ed				running jobs	ı	users
<u>s</u>	100%	352 /	352	nodes		38%	175 / 452 jobs	46
<u>S96</u>	100%	41	/ 41	nodes		53%	41 / 76 jobs	4
<u>G</u>	99%	475 /	477	nodes		100%	62 / 62 jobs	12
V	83%	364 /	437	nodes		80%	1531 / 1904 jobs	34
L128	100%	10	/ 10	nodes	00 00 11	66%	10 / 15 jobs	1
L128F	100%				00 SC Users	71%		1
L256	37%	3	/ 8	93 °	<mark>⁄₀ Syst</mark> em Utilizat	ion	3 / 3 jobs	1
L512	100%	2	/~	50 %	GPU Utilization	100%	2 / 2 jobs	1
H/X	93%	301 (+ 95) /	420	nodes		100%	87 / 87 jobs	8
ALL	93%	1558 (+ 95) /	1757	nodes		73%	1921 / 2615 jobs	93

Why Does TSUBAME Work?

- For the many-core era, component complexity / Flops do not differ tremendously across machines
- Thus, hard-stop component failures will occur fairly equally
 - But may not lead to application faults if detected early
- Many application errors also attributed to system software's inability to scale with reliable operations, especially with domino effects
 - Race conditions leading to anomalous pauses which will screw up your deamons which in turn de-mounts your file system which in turn...

Every fault is recorded and made immediately public

mon.g.gsic.titech.ac.jp/trouble-list/index.htm

|算サ… 🔗 メインカードの変更 🧀 SC 🕒 法人入会 D YouTube トップ 🕒 💾 🚺 おすすめサイト 🎇 Tag Heuer Monac… 🔟 2009-11-22 - なべ… 🔍 microsecond

TSUBAME2.0 障害履歴[Failure History of TSUBAME2.0]

last update : 2013.06.18

	キュー	発生日付	復旧日付	降害状況	原因	対処	影響範囲	カテゴリ
2a001052	S	2013/06/17 11:22	2013/06/17 17:00	Uncorrectable PCI Express Error	GPU障害	GPU2抜き差し	該当ノード	GPU
2a000059	S	2013/06/17 00:22	2013/06/17 17:00	Uncorrectable PCI Express Error	GPU障害	GPU0抜き差し	該当ノード	GPU
2a004111	HX	2013/06/16 13:33	2013/06/18 17:10	Uncorrectable PCI Express Error Uncorrectable Machine Check Exception	CPU障害	CPU1交換	該当ノード	CPU
2a001058	S	2013/06/15 23:22	2013/06/17 17:00	Uncorrectable PCI Express Error	GPU障害	GPU0抜き差し	該当ノード	GPU
2a010065	PoolS	2013/06/15 16:00 17:00	D ⁻ 2013/06/17 09:30	負荷高騰	-	再起動	該当ノード	OtherS
2a000057	s	2013/06/15 10:38 11:35	5-2013/06/17 09:30	ssh不可	-	ssh再起動	該当ノード	OtherSV
2a001054	s	2013/06/15 22:35 23:35	⁵⁻ 2013/06/17 09:30	ssh不可	-	ssh再起動	該当ノード	OtherSV
2a001125-vm1 2a001127-vm1 2a001130-vm1 2a001169-vm1 2a002094-vm1		2013/06/10- 2013/06/14	2013/06/14	仮想ノードダウン	調査中	仮想マシン再起動	該当ノード	
2a000010 2a000012 2a000044 2a000169	s	2013/06/14	2013/06/17	Uncorrectable PCI Express Error	GPU障害	GPU2抜き差し	該当ノード	GPU
2a000082	s	2013/06/14	2013/06/17	Uncorrectable PCI Express Error	GPU障害	GPU0抜き差し	該当ノード	GPU
2a004115	HX	2013/06/14	2013/06/18	Uncorrectable PCI Express Error	GPU障害	GPU1,2 スワップ	該当ノード	GPU
2a000030	S	2013/06/14	2013/06/14	ssh不可	-	再起動	該当ノード	OtherS1
2a000072 2a000117	s	2013/06/13	2013/06/13	Uncorrectable PCI Express Error	GPU障害	GPU2抜き差し	該当ノード	GPU
t2a000078	S	2013/06/13	2013/06/13	Uncorrectable PCI Express Error	GPU障害	GPU0抜き差し	該当ノード	GPU
2a001024	s	2013/06/13	2013/06/13	Uncorrectable PCI Express Error	GPU障害	GPU1,2 スワップ	該当ノード	GPU
2a001160	GV	2013/06/11	2013/06/11	Uncorrectable PCI Express Error	GPU障害	GPU1,2 スワップ	該当ノード	GPU
2a002027	GV	2013/06/11	2013/06/11	Uncorrectable PCI Express Error	GPU障害	GPU2抜き差し	該当ノード	GPU
2a001028	s	2013/06/10	2013/06/10	Uncorrectable PCI Express Error	GPU障害	GPU2抜き差し	該当ノード	GPU
2a002178	GV	2013/06/10	2013/06/10	Uncorrectable PCI Express Error	GPU障害	GPU1,2 スワップ	該当ノード	GPU
2a003129	GV	2013/06/10	2013/06/10	Uncorrectable PCI Express Error	GPU障害	GPU0抜き差し	該当ノード	GPU
2a004172	HX	2013/06/10	2013/06/10	Uncorrectable PCI Express Error	GPU障害	GPU0,1 スワップ	該当ノード	GPU
t2a006025 t2a006026 t2a006027 t2a006028	нх	2013/06/10	2013/06/10	System Power Supply: General Failure	PSU障害	P/S Bay2交換	該当ノード	PSU
12a001134-vm1 12a001158-vm1 12a001174-vm1 12a002013-vm1 12a002019-vm1 12a002028-vm1 12a002074-vm1 12a002084-vm1 12a002084-vm1		2013/06/03- 2013/06/07	2013/06/07	仮想ノードダウン	調査中	仮想マシン再起動	該当ノード	

Log Sanitization Process

- Obvious erroneous entries in error log
 - SSD failure categorized as "GPU failure"
 - Simple "node down" vs. "CPU failure and replace"
- Initial failures in the "bathtub curve" misleading
 - TSUBAME2.0 commissioned Nov. 2010
 - Stable year period Aug.1 2012 to July 31, 2013
- Missing info in error log
 - No indication of
 - extrapolation of effect of failures
- Anomalous, very specific failures caused by unresolved "bug" in HW (see next slide)

Yearly Distribution of Faults in TSUBAME2.0

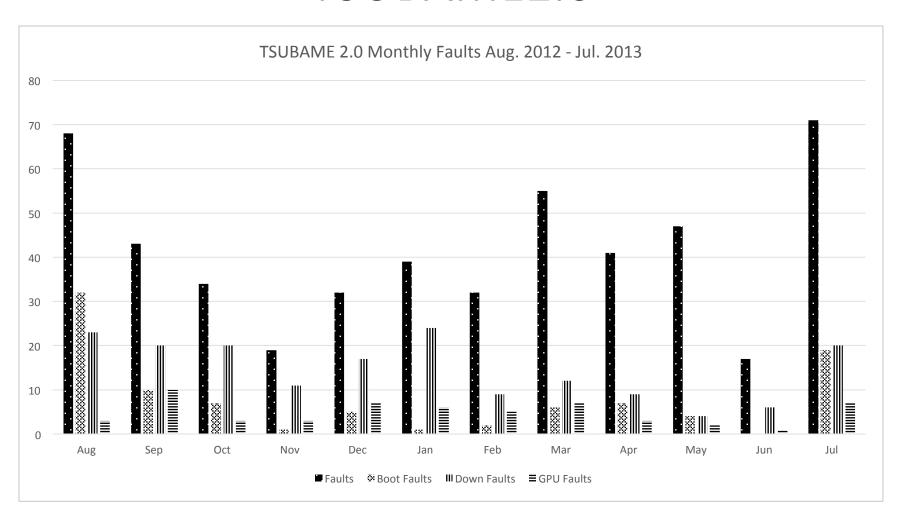


Table 1 TSUBAME2.0
Aug 1 2012 ~ July 31, 2013Failure analysis of components

	SUM	Boot Failures	Fail-stop Failures	Unaffected	Multi Failures	Repairs	GPU Repairs	DIMM Repairs
Unknown Boot Failure	35	35				0		
СРИ	16	4	12			14		
Disk/Storage (wo SSD)	17	5		12		5		
Unknown Node Failure	15		15			0		
Fan	100			100		13		
GPUs		.**	*******	•				
GPU-PCI	362		362			96	39	
GPU-Link	16		*********	16		10	3	
GPU-ECC	10		10			10	10	
GPU-Unknown	10	6	4			9	5	
Memory	12	1	7	4		11		14
Network								
Infiniband	22		4	16	2	4		
Other Networks	78		55	23		0		
Other HW	27	22		5		24		
Batch System (PBS Pro)	13		3	10		0		
PSU	33		26	7		33		
Rack	6			5	1	4		
SSD	34	12	22			32		
System Board	22	9	13			22		
Total Corrected Total	828 498	94 ••• 94 •••	533 210	198 191	3	287 209	57 57	14 14

Overview of Analysis (1)

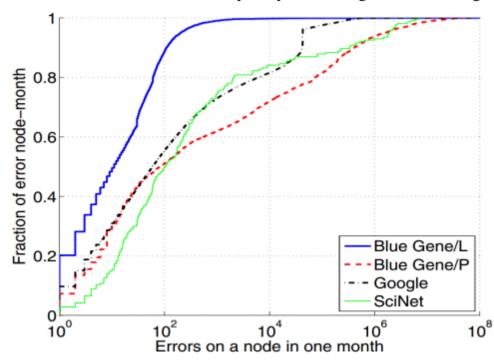
TSUBAME2.0 highly reliable

- 500 failures, only 210 fail stop / year
 - System MTTI = 1.7 days, node MTTI = 2500 days
 - Much better than conjectured MTTI of K computer

GPU comparatively reliable vs. CPUs

- 19 CPU+memory fail-stop failures, 25 replacements, MTBF 118 years, 2.22¹⁸ FLOP/error
- 53 GPU+memory ECC fail-stop failures, 57 replacements,
 MTBF 75 years, 1.61¹⁹ FLOP/error
- GPU error rate x7 better / flop vs. CPU, proportional to performance difference per chip
- CPU+GPU 7216 units: if chip-level MTBF is similar for TSUBAME3.0, 25-30 Petaflop possible in 2015-16

Overview of Analysis (2)

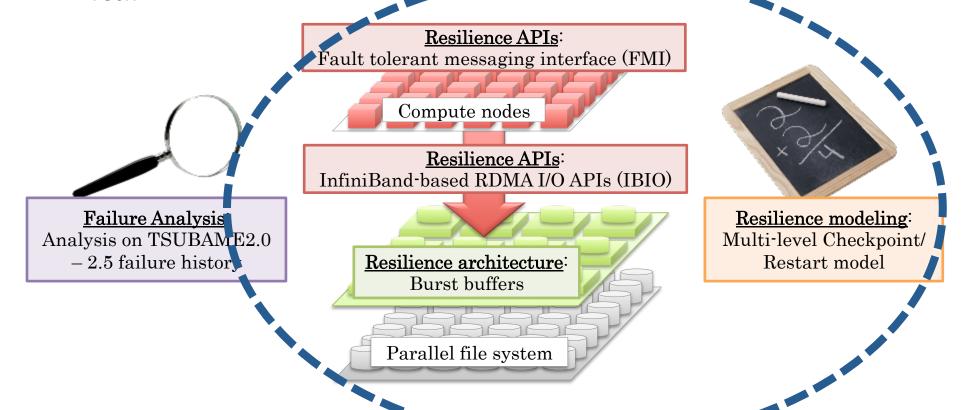

- Failures are Largely Independent
 - Only 3 multi-node failures out of 210 fail stops
 - Low # of Infiniband and storage failures
- TSUBAME2.0 Fat Node architecture vs. C.f.
 Many Thin-nodes architecture e.g. BG/Q
 - Most failures contained within nodes
 - C.f. BG/Q failure in node compromises the entire task → parameter sweep jobs NG
 - Local checkpoint & dynamic recovery very effective

The reality speaks... DRAM Error Rates

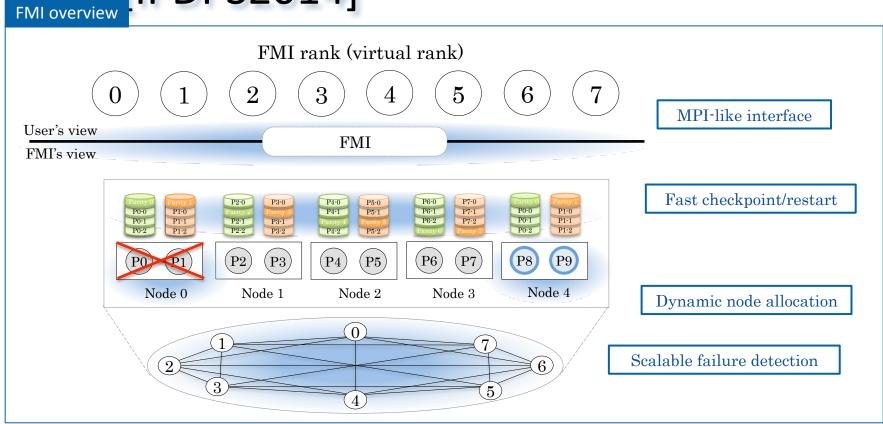
 Andy A. Hwang, Ioan Stefanovici, and Bianca Schroeder. "Cosmic Rays Don't Strike Twice: Understanding the Nature of DRAM Errors and the Implications

System	Time	Nodes	# DIMMs	DRAM in	TByte	Nodes	Nodes	Total	FIT
	(days)			system (TB)	years	with errors	w/ chipkill errs	# Errors	
BG/L	214	32,768	N/A	49	28	1,742 (5.32%)	N/A	$227 \cdot 10^{6}$	97,614
BG/P	583	40,960	N/A	80	127	1,455 (3.55%)	1.34%	$1.96 \cdot 10^{9}$	167,066
SciNet	211	3,863	31,000	62	35	97 (2.51%)	N/A	$49.3 \cdot 10^{6}$	18,825
Google	155	20,000	$\sim 130,000$	220	93	20,000	N/A	$27.27 \cdot 10^9$	N/A

Table 1. Summary of system configurations and high-level error statistics recorded in different systems

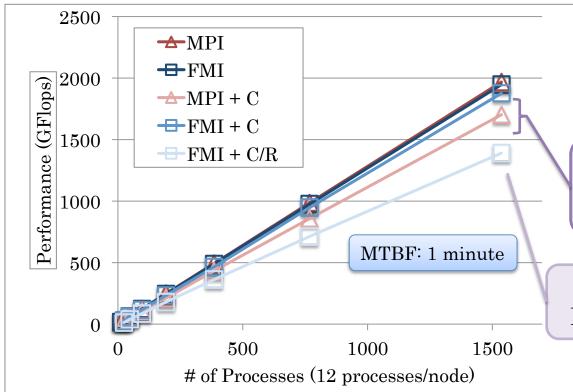

No significant difference in node DRAM error rates (in fact significantly worse for corrected errors for BG)

Overview of Analysis (3)


- Memory failures consistent or better c.f. previous work
 - 17,000 DIMMs an 4264 GPUs in TSUBAME2.0
 - 14 DIMM DUE errors, 10 GPU double bit EC Errors / Year
 - DUE DIMM errors 0.082% vs. Google[8] 0.22%
 - GPU memory error 0.23% vs. 0.83% BG/P Chipkill [10]
 - K Computer 700,000 DIMMs => 600 DIMM failures predicted with same error rate as TSUBAME2.0 => MTBF ~=1/2 day
- Failures seasonal, but not due to temperature
 - Largely due to boot failures in peak-shift operations during summer to limit power, despite SW retries
 - Future SCs in Clouds need to cope with this

Holistic Approach to Billion-way Resiliency (Modeling and Permeation thru Software Stack)

 <u>Failure Analysis</u>, <u>APIs</u>, <u>Modeling</u> and <u>Architectures</u> driving multi-level checkpoint/restart through extensive collaborations between LLNL and Tokyo Tech

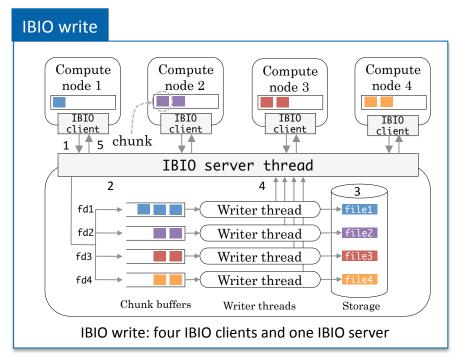

FMI: Fault Tolerant Messaging Interface [IPDPS2014]

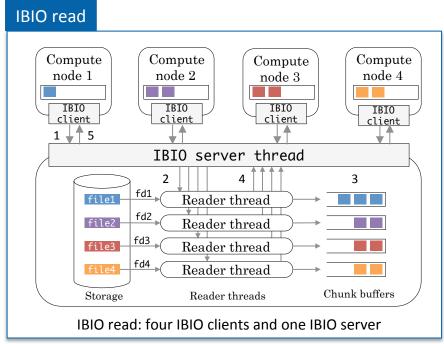
- FMI is a survivable messaging interface providing MPI-like interface
 - Scalable failure detection ⇒ Overlay network
 - Dynamic node allocation ⇒ FMI ranks are virtualized
 - Fast checkpoint/restart ⇒ Diskless checkpoint/restart

Application runtime with failures

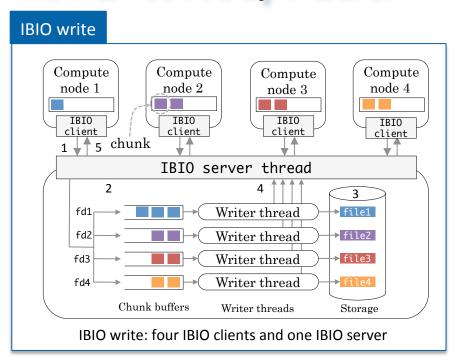
- Benchmark: Poisson's equation solver using Jacobi iteration method
 - Stencil application benchmark
 - MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Allreduce within a single iteration
- For MPI, we use the SCR library for checkpointing
 - Since MPI is not survivable messaging interface, we write checkpoint memory on tmpfs
- Checkpoint interval is optimized by Vaidya's model for FMI and MPI

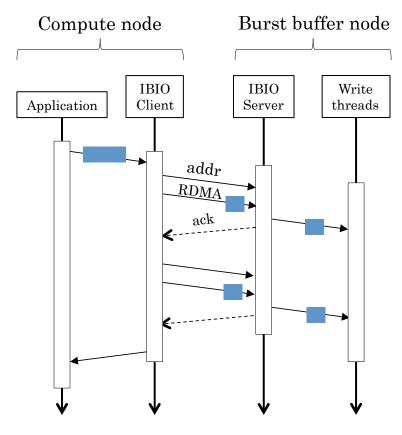
P2P communication performance


	1-byte Latency	Bandwidth (8MB)
MPI	3.555 usec	$3.227~\mathrm{GB/s}$
FMI	3.573 usec	$3.211~\mathrm{GB/s}$


FMI directly writes checkpoints via memcpy, and can exploit the bandwidth

Even with the high failure rate, FMI incurs only a 28% overhead

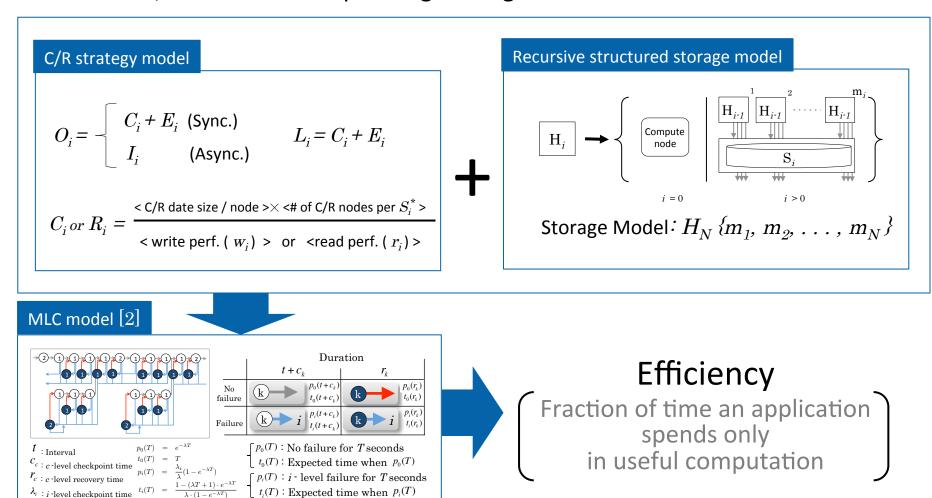

APIs for burst buffers:[SC13] InfiniBand-based I/O interface (IBIO)


- Provide POSIX I/O interfaces
 - open, read, write and close
 - Client can open any files on any servers
 - open("hostname:/path/to/file", mode)
- IBIO use ibverbs for communication between clients and servers
 - Exploit network bandwidth of infiniBand

IBIO write/read

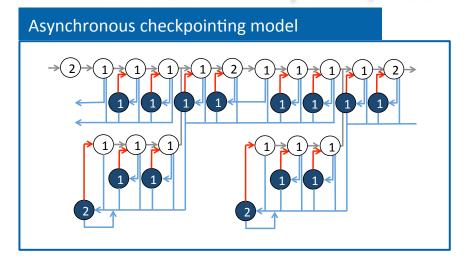
IBIO write

- Application call IBIO client function with data to write
- 2. IBIO client divides the data into chunks, then send the address to IBIO server for RDMA
- 3. IBIO server issues RDMA read to the address, and reply ack
- 4. Continues until all chunks are sent, and return to application
- Writer threads asynchronously write received data to storage


IBIO read

 Reads chunks by reader threads and send to clients in the same way as IBIO write by using RDMA

Resilience modeling overview [CCGrid2014 Best


Paper]

 To find out the best checkpoint/restart strategy for systems with burst buffers, we model checkpointing strategies

Resilience modeling:

Multi-level Checkpoint/Restart model

: Interval

 $C_c: c$ -level checkpoint time

 $r_c: c$ -level recovery time

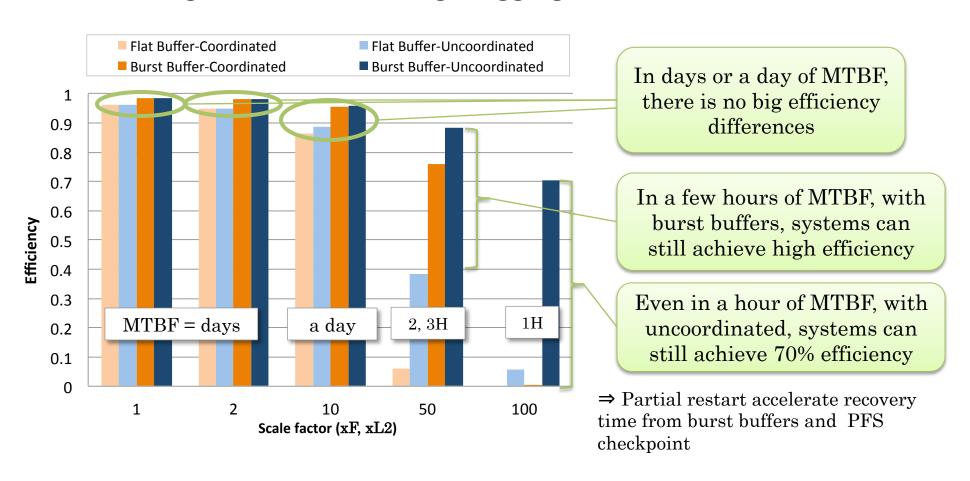
	$t + c_k$ Du	ration r_{k}
No failure		$ \begin{array}{c} p_0(r_k) \\ t_0(r_k) \end{array} $
Failure	$i \int_{t_i(t+c_k)}^{p_i(t+c_k)} t_i(t+c_k)$	$i \int_{t_i(r_k)}^{p_i(r_k)} t_i(r_k)$

Poisson's distribution

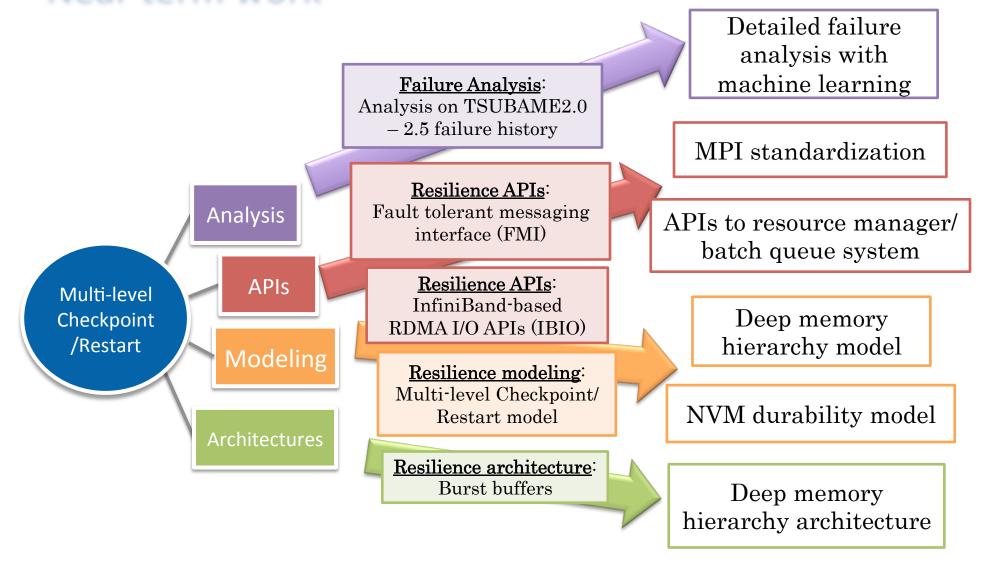
$$p_0(T) = e^{-\lambda T}$$

$$t_0(T) = T$$

$$p_i(T) = \frac{\lambda_i}{\lambda} (1 - e^{-\lambda T})$$


$$t_i(T) = \frac{1 - (\lambda T + 1) \cdot e^{-\lambda T}}{\lambda \cdot (1 - e^{-\lambda T})}$$

 $\lambda_i: i$ -level checkpoint time


$$\lambda = \sum \lambda_i$$

Efficiency with Increasing Failure Rates and Checkpoint Costs

Assuming there is no message logging overhead

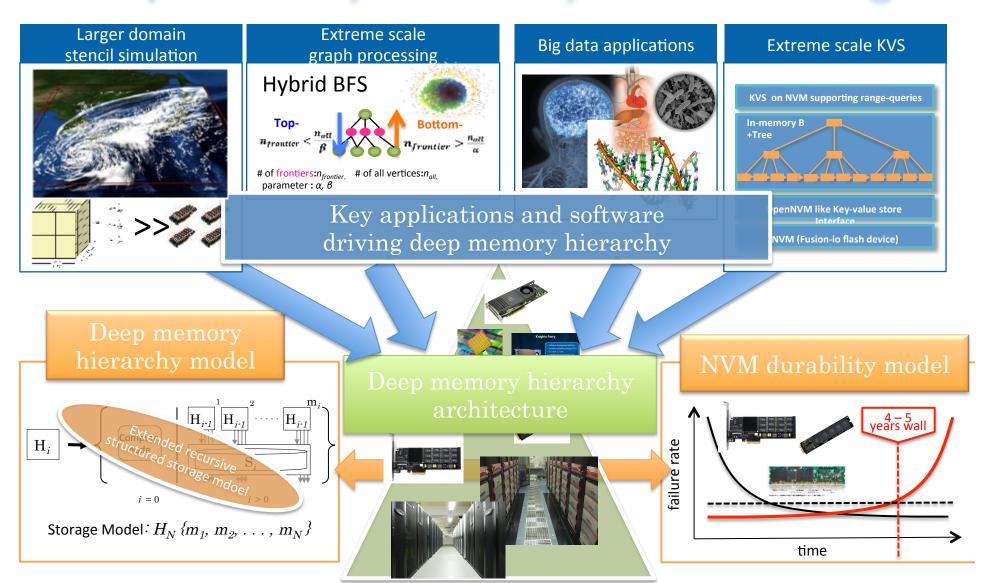
Near term work

However, we are not there yet

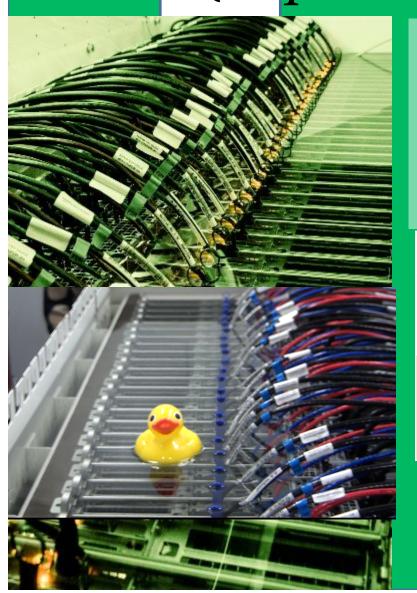
- How do we proactively prevent faults, and assume such correction in the overall model and sys software?
- How do we detect "faults?"
 - Some advances fault injection / ABFT-style fault detection
 - However, real machine failure modes are extremely elusive
 - We face these every day with TSUBAME...
 - How do we distinguish between application bugs, system software bugs, "ephemeral" soft errors, moderately failing hardware, and hard error crashes?
- What is the right recovery for each failure mode?
 - "Recover node state and try again" only partially applicable to tremendously abundant set of failure modes
 - There are various algorithms but they need to scale to 100,000 nodes or more...

TSUBAME2.0 Periodic Health Check List

Check Category	Check Performed	Interval	Action on Fautl	Subject	Av. Exec Time
Network	Infiniband Status, Check	2H	Notify Sysadmin	Node	5.6E-02
Clock	System Clock Drift	2H	Notify Sysadmin	Node	2.4E-01
GPU	PCIe Link Speed, Driver Permission, Device Memory ECC Error	2H	Auto Offline	Node	7.8E-02
HDD	Available Space, Filesystem Mount	2H	Notify Sysadmin	Node	1.2E-02
SSD	Partition and Size	2H	Notify Sysadmin	Node	Ditto
SSD	Permission	1D		Node	Ditto
SSD	fsck /scratch space	1H	Notify Sysadmin	Node	Ditto
SSH	SSH login deamon	1H	Auto Offline	All Nodes	2.3E+01
Process	Zombie Process	1H	Kill Zombie	Node	6.2E+00
PBS	PBS scheduler status, qstat response (60 seconds)	1H	Notify Sysadmin	Admin Node	2.3E-01
PBS	MOM Check			Node	5.4E-02
PBS	Decommision Waiting Reserve Job	1H	Auto Decommisioning	Admin Node	6.5E+00
OpenSM	Check operation	1H	Notify Sysadmin	Admin Node	7.7E+01
Lustre	Check MDS, OSS, OST activity	1H	Notify Sysadmin	Admin Node	1.5E-01
Interactive	Load Average	1D	Notify Sysadmin	Interactive	8.0E-03
H (Reservation) Queue	Check Actual reservation and batch status	1D	Notify Sysadmin	Admin Node	4.4E-01
VM Check	SSH Login, available space, etc.	1D	Notify Sysadmin	All Virtual Nodes	3.0E+02
IBCORE/IBEDGE	Link up/down, link speed	1D	Notify Sysadmin	Admin Node	2.5E+01
IBEDGE	connectivity to storage	1H	Notify Sysadmin	Admin Node	8.8E-01


Actual Errors Detected Many Errors are Detected before Catastrophic Application Faults

						2012					
			May .							Dec	
HDD	Check Available Space	27	90	88	22	14	47	22	44	15	
	Check Mount	49	67	58	81	110	86	12	28	27	
GPU	PCIe Link Speed, Driver Permission, Device Memory ECC Error	31	61	68	46	75	62	32	23	31	
Network	Infiniband Status Check	2	13	18	68	47	25	15	2	4	
SSH	SSH Login	184	217	462	211	256	657	55	26		Duplicated Detection
VM Check	SSH Login, Check Available Space & Mount	641	820	638	611	682	2029	753	427	373	Duplicated Detection
Process	Zombie Process	134	5955	481	4378	1692	694	1252	997		Duplicated Detection
				2010							
				2013							
HDD	Check Available Space	Jan 21	Feb 8	Mar 14		May 11					
1100	Check Mount	29	32	22		22					
GPU		23	_	55							
dr 0	PCIe Link Speed, Driver Permission, Device Memory ECC Error	23	40	33	40	31					
Network	Infiniband Status Check	4	7	7	13	3					
SSH	SSH Login	74	27	82	765	35	Dunlicated	d Detection	1		
VM Check	SSH Login, Check Available Space & Mount	517	326	411	145	357	·	Detection			
Process	Zombie Process	4305	3505	3320	19408			Detection Detection			25


Lessons Learned from Health Checks

- Just like our bodies, a minor system error often does not immediately lead to application failure
- Frequent health checks and corrective actions
 - TSUBAME Storage recovers entirely automatically
- The current HPC failure models nor system software stack does not always have such check & corrective features in a standard way
- We expect TSUBAME3.0 (2Q2016), a ~20
 Petaflops machine, to operate in a similar way, scalable to 100+ petaflops range
 - # nodes, components, complexity largely the same

Deep memory hierarchy and modeling

TSUBAME-KFC (Kepler Fluid Cooling)

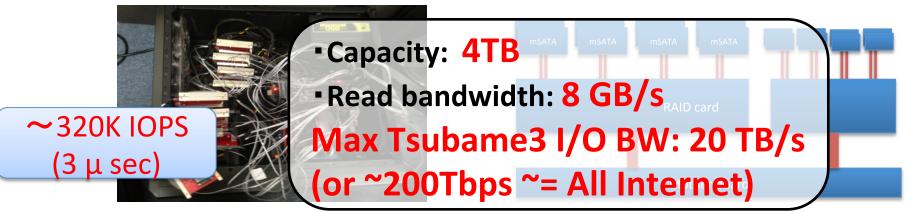
A TSUBAME3.0 prototype system with advanced next gen cooling 40 compute nodes are oil-submerged 1200 liters of oil (Exxon PAO ~1 ton) #1 Nov. 2013 Green 500!!

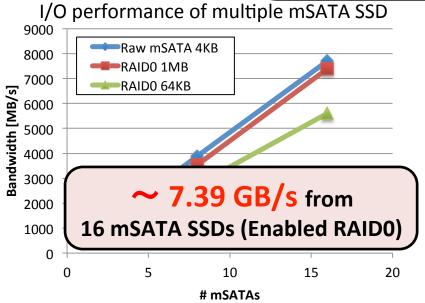
Single Node	5.26 TFLOPS DFP
System (40 nodes)	210.61 TFLOPS DFP
	630TFlops SFP

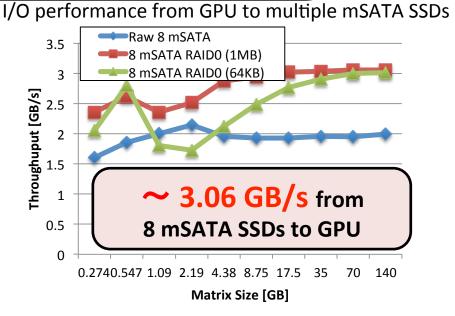
Storage (3SSDs/node)

1.2TBytes SSDs/Node Total 50TBytes

~50GB/s BW

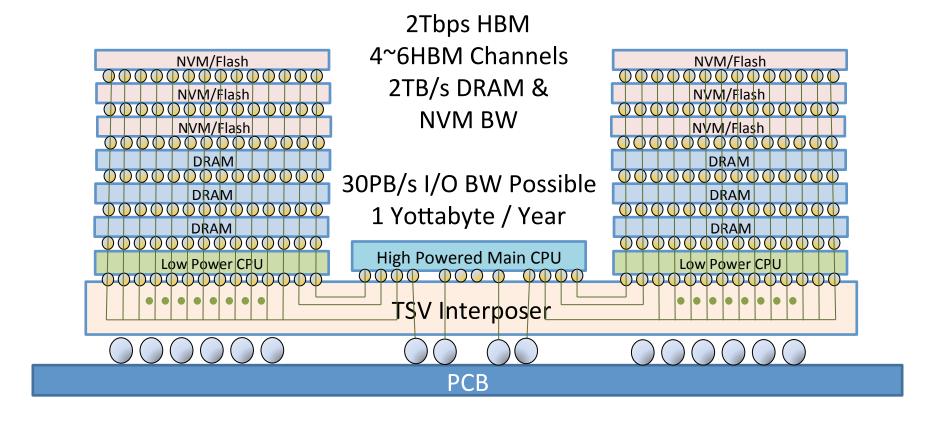



EBD- I/O (Many-core I/O)


Preliminary I/O Evaluation on GPU and NVRAM

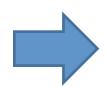
How to design local storage for next-gen supercomputers?

- Local I/O prototype using 16 mSATA SSDs



Tsubame 4: 2021~ DRAM+NVM+CPU with 3D/2.5D Die Stacking

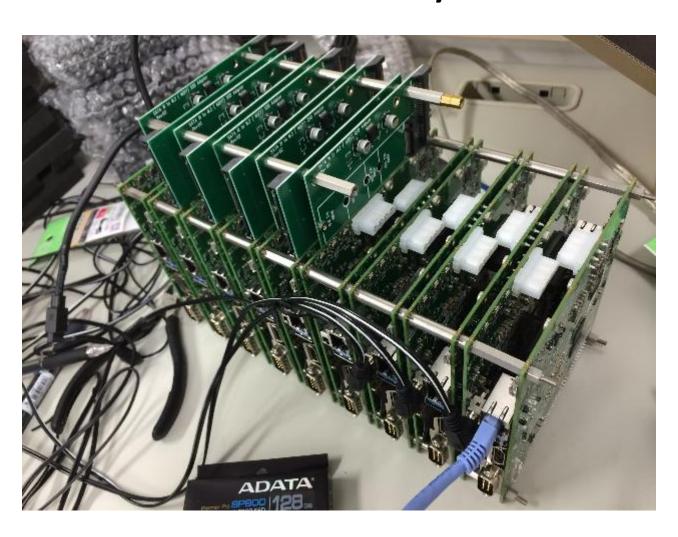

Ultimate Convergence Big Data and Extreme Compute


Direct Chip-Chip Interconnect with planar VCSEL optics

TSUBAME4 2021~ K-in-a-Box (Golden Box) BD/EC Convergent Architecture

1/500 Size, 1/150 Power, 1/500 Cost, x5 DRAM+ NVM

10 Petaflops, 10 Petabyte Hiearchical Memory (K: 1.5PB), 10K nodes


50GB/s Interconnect (200-300Tbps Bisection BW) (Conceptually similar to HP "The Machine")

Datacenter in a Box
Large Datacenter will become "Jurassic"

"If it broke don't fix it" System

- Commoditized HW: aggregation of replace-as-a-whole units
 - Human repair expensive => Designing for human repair expensive (c.f. servers vs. smart phones)
 - Redundancy in system design avoiding costly repair for lower aggregate TCO (e.g. RAID)
- Future SCs and IDCs not subject to post-deployment repairs, but (almost) self-healing
 - Sufficient redundancy (dark silicon, planar emission photodiodes...)
 to last the lifetime of a machine (~5 years)
 - Auto-diagnostics with sufficient coverage to automate the process
 - Q: to what extreme can we optimize our system design?
 - Q: what are the SW (+HW) infrastructure necessary?
 - Q: how will Cloud & Big Data apps supported?

GoldenBox Proto1 (NVIDIA K1-based) To be shown at SC14 Tokyo Tech. Booth...

