
Tokyo Tech.
Billion-Way Resiliency Project
for Extreme Scale Computing

or
“How to Stay Healthy”	

Satoshi Matsuoka
Professor

Global Scientific Information and Computing (GSIC) Center
Tokyo Institute of Technology

Fellow, Association for Computing Machinery (ACM)

CCDSC Lyon, France
Sep. 2-5, 2014

Tokyo Tech.
Billion-Way Resiliency Project (2011-2015)	

•  Collaboration with ANL (Franck Cappello, FTI), LLNL (Bronis de
Spinksi, SCR), Hideyuki Jitsumoto (U-Tokyo)…

•  More precise system fault model and associated cost model of
recovery and optimization

•  Aggressive architectural, systems, and algorithmic improvements
–  Use of localized flash/NVM for ultra fast checkpoints and recovery
–  Advanced coding and clustering algorithms for reliability against multiple

failures
–  Combining coordinated & uncoordinated checkpoints
–  Overlapping transfers in the checkpoint storage hierarchy for quick

recovery
–  Power optimized checkpoints

•  Better monitoring and micro-recovery	

1

Parallel file system

Resilience architecture:
Burst buffers

Holis&c	
 Approach	
 to	
 Billion-­‐way	
 Resiliency	

•  Failure	
 Analysis,	
 APIs,	
 Modeling	
 and	
 Architectures	
 driving	
 mul&-­‐level	

checkpoint/restart	
 through	
 extensive	
 collabora&ons	
 between	
 LLNL	
 and	
 Tokyo	

Tech	

Compute nodes

Failure Analysis:
Analysis on TSUBAME2.0

– 2.5 failure history

Resilience APIs: (SC13)
InfiniBand-based RDMA I/O APIs (IBIO)

Resilience APIs: (IPDPS2014)
Fault tolerant messaging interface (FMI)

Scalabele Failuer Detection

Resilience modeling:
(CCGrid2014 Best Paper)
Multi-level Checkpoint/

Restart model

A cluster-based SC like TSUBAME
is not supposed to work…	

3

C C C

C C C

C C C

C C C

IO
H	

IO
H	

GPU	

GPU	

GPU	

HCA	

HCA	

QDR IBx2 8GB/s	

QPI	

PCIe
x16	

515GFlops
~120GB/s
 w/ECC	

76.8GFlops
~18GB/s	

S, H/X	

G	
V	

KVM
Virtualization	

～2000 SC Users
~93% System Utilization
~50% GPU Utilization	

Why Does TSUBAME Work?	

•  For the many-core era, component complexity /
Flops do not differ tremendously across machines

•  Thus, hard-stop component failures will occur
fairly equally
–  But may not lead to application faults if detected early

•  Many application errors also attributed to system
software’s inability to scale with reliable
operations, especially with domino effects
–  Race conditions leading to anomalous pauses which will

screw up your deamons which in turn de-mounts your
file system which in turn…

5

Every	
 fault	
 is	
 recorded	
 and	
 made	

immediately	
 public	

6	

Log	
 Sani&za&on	
 Process	

•  Obvious	
 erroneous	
 entries	
 in	
 error	
 log	

– SSD	
 failure	
 categorized	
 as	
 “GPU	
 failure”	

– Simple	
 “node	
 down”	
 vs.	
 “CPU	
 failure	
 and	
 replace”	

•  Ini&al	
 failures	
 in	
 the	
 “bathtub	
 curve”	
 misleading	

– TSUBAME2.0	
 commissioned	
 Nov.	
 2010	

– Stable	
 year	
 period	
 Aug.1	
 2012	
 to	
 July	
 31,	
 2013	

•  Missing	
 info	
 in	
 error	
 log	

– No	
 indica&on	
 of	
 	

– extrapola&on	
 of	
 effect	
 of	
 failures	

•  Anomalous,	
 very	
 specific	
 failures	
 caused	
 by	

unresolved	
 “bug”	
 in	
 HW	
 (see	
 next	
 slide)	

Yearly	
 Distribu&on	
 of	
 Faults	
 in	

TSUBAME2.0	

0	

10	

20	

30	

40	

50	

60	

70	

80	

Aug	
 Sep	
 Oct	
 Nov	
 Dec	
 Jan	
 Feb	
 Mar	
 Apr	
 May	
 Jun	
 Jul	

TSUBAME	
 2.0	
 Monthly	
 Faults	
 Aug.	
 2012	
 -­‐	
 Jul.	
 2013	

Faults	
 Boot	
 Faults	
 Down	
 Faults	
 GPU	
 Faults	

Table	
 1	
 TSUBAME2.0	
 	

Aug	
 1	
 2012	
 ~	
 July	
 31,	
 2013Failure	
 analysis	
 of	
 components 

	

SUM	
 Boot	

Failures	

Fail-­‐stop	

Failures	
 Unaffected	
 Mul=	

Failures	
 Repairs	
 GPU	

Repairs	

DIMM	

Repairs	

Unknown	
 Boot	
 Failure	
 35	
 35	
 0	

CPU	
 16	
 4	
 12	
 14	

Disk/Storage	
 (wo	
 SSD)	
 17	
 5	
 12	
 5	

Unknown	
 Node	

Failure	
 15	
 15	
 0	

Fan	
 100	
 100	
 13	

GPUs	

GPU-­‐PCI	
 362	
 362	
 96	
 39	

GPU-­‐Link	
 16	
 16	
 10	
 3	

GPU-­‐ECC	
 10	
 10	
 10	
 10	

	
 	
 	
 	
 GPU-­‐Unknown	
 10	
 6	
 4	
 9	
 5	

Memory	
 12	
 1	
 7	
 4	
 11	
 14	

Network	

Infiniband	
 22	
 4	
 16	
 2	
 4	

Other	
 Networks	
 78	
 55	
 23	
 0	

Other	
 HW	
 27	
 22	
 5	
 24	

Batch	
 System	
 (PBS	

Pro)	
 13	
 3	
 10	
 0	

PSU	
 33	
 26	
 7	
 33	

Rack	
 6	
 5	
 1	
 4	

SSD	
 34	
 12	
 22	
 32	

System	
 Board	
 22	
 9	
 13	
 22	

Total	
 828	
 94	
 533	
 198	
 3	
 287	
 57	
 14	

Corrected	
 Total	
 498	
 94	
 210	
 191	
 3	
 209	
 57	
 14	

Overview	
 of	
 Analysis	
 (1)	

•  TSUBAME2.0	
 highly	
 reliable	

–  500	
 failures,	
 only	
 210	
 fail	
 stop	
 /	
 year	
 	

•  System	
 MTTI	
 =	
 1.7	
 days,	
 node	
 MTTI	
 =	
 2500	
 days	

•  Much	
 befer	
 than	
 conjectured	
 MTTI	
 of	
 K	
 computer	

•  GPU	
 compara=vely	
 reliable	
 vs.	
 CPUs	

–  19	
 CPU+memory	
 fail-­‐stop	
 failures,	
 25	
 replacements,	
 MTBF	

118	
 years,	
 2.2218	
 FLOP/error	

–  53	
 GPU+memory	
 ECC	
 fail-­‐stop	
 failures,	
 57	
 replacements,	

MTBF	
 75	
 years,	
 1.6119	
 FLOP/error	

–  GPU	
 error	
 rate	
 x7	
 befer	
 /	
 flop	
 vs.	
 CPU,	
 propor&onal	
 to	

performance	
 difference	
 per	
 chip	

•  CPU+GPU	
 7216	
 units:	
 if	
 chip-­‐level	
 MTBF	
 is	
 similar	
 for	

TSUBAME3.0,	
 25-­‐30	
 Petaflop	
 possible	
 in	
 2015-­‐16	
 	

Overview	
 of	
 Analysis	
 (2)	

•  Failures	
 are	
 Largely	
 Independent	

– Only	
 3	
 mul&-­‐node	
 failures	
 out	
 of	
 210	
 fail	
 stops	

– Low	
 #	
 of	
 Infiniband	
 and	
 storage	
 failures	

•  TSUBAME2.0	
 Fat	
 Node	
 architecture	
 vs.	
 C.f.	

Many	
 Thin-­‐nodes	
 architecture	
 e.g.	
 BG/Q	

– Most	
 failures	
 contained	
 within	
 nodes	

• C.f.	
 BG/Q	
 –	
 failure	
 in	
 node	
 compromises	
 the	

en&re	
 task	
 à	
 parameter	
 sweep	
 jobs	
 NG	

– Local	
 checkpoint	
 &	
 dynamic	
 recovery	
 very	

effec&ve	

The reality speaks… DRAM Error Rates 	

•  Andy A. Hwang, Ioan Stefanovici, and Bianca Schroeder. “Cosmic Rays Don’t

Strike Twice: Understanding the Nature of DRAM Errors and the Implications
for System Design”.

No	
 significant	

difference	
 in	
 node	

DRAM	
 error	
 rates	
 (in	

fact	
 significantly	
 worse	

for	
 corrected	
 errors	
 for	

BG)	

Overview	
 of	
 Analysis	
 (3)	

•  Memory	
 failures	
 consistent	
 or	
 beWer	
 c.f.	

previous	
 work	

–  17,000	
 DIMMs	
 an	
 4264	
 GPUs	
 in	
 TSUBAME2.0	

–  14	
 DIMM	
 DUE	
 errors,	
 10	
 GPU	
 double	
 bit	
 EC	
 Errors	
 /	
 Year	

–  DUE	
 DIMM	
 errors	
 0.082%	
 vs.	
 Google[8]	
 0.22%	

–  GPU	
 memory	
 error	
 0.23%	
 vs.	
 0.83%	
 BG/P	
 Chipkill	
 [10]	

–  K	
 Computer	
 700,000	
 DIMMs	
 =>	
 600	
 DIMM	
 failures	
 predicted	

with	
 same	
 error	
 rate	
 as	
 TSUBAME2.0	
 =>	
 MTBF	
 ~=1/2	
 day	

•  Failures	
 seasonal,	
 but	
 not	
 due	
 to	
 temperature	

– Largely	
 due	
 to	
 boot	
 failures	
 in	
 peak-­‐shit	
 opera&ons	

during	
 summer	
 to	
 limit	
 power,	
 despite	
 SW	
 retries	

– Future	
 SCs	
 in	
 Clouds	
 need	
 to	
 cope	
 with	
 this	

Parallel file system

Resilience architecture:
Burst buffers

Holis&c	
 Approach	
 to	
 Billion-­‐way	
 Resiliency	
 	

(Modeling	
 and	
 Permea&on	
 thru	
 Sotware	
 Stack)	

•  Failure	
 Analysis,	
 APIs,	
 Modeling	
 and	
 Architectures	
 driving	
 mul&-­‐level	

checkpoint/restart	
 through	
 extensive	
 collabora&ons	
 between	
 LLNL	
 and	
 Tokyo	

Tech	

Compute nodes

Failure Analysis:
Analysis on TSUBAME2.0

– 2.5 failure history

Resilience APIs:
InfiniBand-based RDMA I/O APIs (IBIO)

Resilience APIs:
Fault tolerant messaging interface (FMI)

Resilience modeling:
Multi-level Checkpoint/

Restart model

FMI:	
 Fault	
 Tolerant	
 Messaging	
 Interface	

	
 	
 	
 [IPDPS2014]	

•  FMI	
 is	
 a	
 survivable	
 messaging	
 interface	
 providing	
 MPI-­‐like	
 interface	
–  Scalable	
 failure	
 detec&on	
 ⇒	
 Overlay	
 network	

–  Dynamic	
 node	
 alloca&on	
 	
 ⇒	
 FMI	
 ranks	
 are	
 virtualized	

–  Fast	
 checkpoint/restart	
 	
 	
 	
 	
 ⇒	
 Diskless	
 checkpoint/restart	

15	

1 0 3 2 5 4 7 6
FMI rank (virtual rank)

FMI	
 overview	

Scalable failure detection

MPI-like interface
FMI

User’s view

P3 P2 P5 P4

Node 1 Node 2 Node 3

P9 P8

Node 4

P7 P6

Dynamic node allocation

Fast checkpoint/restart
P2-2
P2-1

Parity 2
P2-0

P3-2
P3-1

Parity 3
P3-0

P4-2
Parity 4

P4-1
P4-0

P5-2
Parity 5

P5-1
P5-0

Parity 6
P6-2
P6-1
P6-0

Parity 7
P7-2
P7-1
P7-0

P0-2
P0-1
P0-0

 Parity 0

P1-2
P1-1
P1-0

Parity 1

0
7 1

6 2
3

4 5

FMI’s view

Node 0

P1 P0

P0-2
P0-1
P0-0

Parity 0

P1-2
P1-1
P1-0

Parity 1

P0-2
P0-1
P0-0

 Parity 0

P1-2
P1-1
P1-0

Parity 1

Applica&on	
 run&me	
 with	
 failures	

0

500

1000

1500

2000

2500

0 500 1000 1500

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

•  Benchmark:	
 Poisson’s	
 equa&on	
 solver	
 using	
 Jacobi	
 itera&on	
 method	

–  Stencil	
 applica&on	
 benchmark	

–  MPI_Isend,	
 MPI_Irecv,	
 MPI_Wait	
 and	
 MPI_Allreduce	
 within	
 a	
 single	
 itera&on	

•  For	
 MPI,	
 we	
 use	
 the	
 SCR	
 library	
 for	
 checkpoin&ng	

–  Since	
 MPI	
 is	
 not	
 survivable	
 messaging	
 interface,	
 we	
 write	
 checkpoint	
 memory	
 on	
 tmpfs	

•  Checkpoint	
 interval	
 is	
 op&mized	
 by	
 Vaidya’s	
 model	
 for	
 FMI	
 and	
 MPI	

16	

Chapter 4: FMI: Fault Tolerant Messaging Interface 57

0

50

100

150

200

250

300

350

0 500 1000 1500

C
/R

 T
hr

ou
gh

pu
t (

G
B

/s
ec

on
ds

)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance

Even with the high failure rate,
FMI incurs only a 28% overhead

MTBF: 1 minute

 FMI directly writes
checkpoints via memcpy, and

can exploit the bandwidth

IBIO	
 read	

APIs	
 for	
 burst	
 buffers:[SC13]	

	
 	
 	
 InfiniBand-­‐based	
 I/O	
 interface	
 (IBIO)	

•  Provide	
 POSIX	
 I/O	
 interfaces	

–  open,	
 read,	
 write	
 and	
 close	

–  Client	
 can	
 open	
 any	
 files	
 on	
 any	
 servers	

•  open(“hostname:/path/to/file”, mode)	
•  IBIO	
 use	
 ibverbs	
 for	
 communica&on	
 between	
 clients	
 and	
 servers	

–  Exploit	
 network	
 bandwidth	
 of	
 infiniBand	
 	

17	

Chunk buffers

Compute
node 1

Compute
node 2

Compute
node 3

Compute
node 4

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4	

Compute
node 1

Compute
node 2

Compute
node 3

Compute
node 4

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO	
client	

Storage

IBIO server thread	

file3	
 file2	
 file1	
3	

file4	

Storage

file3	
 file2	
 file1	

Chunk buffers

4	
 3	

fd1	

fd2	

fd3	

fd4	

2	

Writer thread
Writer thread
Writer thread
Writer thread

Writer threads Reader threads

chunk	
 1	

4	

5	

IBIO	
client	

1	
 5	

Reader thread
Reader thread
Reader thread
Reader thread

2	

fd1	

fd2	

fd3	

fd4	

IBIO	
 write:	
 four	
 IBIO	
 clients	
 and	
 one	
 IBIO	
 server	
 IBIO	
 read:	
 four	
 IBIO	
 clients	
 and	
 one	
 IBIO	
 server	

IBIO	
 write	

IBIO	
 write/read	

18	

Chunk buffers

Compute
node 1

Compute
node 2

Compute
node 3

Compute
node 4

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4	

Storage

file3	
 file2	
 file1	
3	

fd1	

fd2	

fd3	

fd4	

2	

Writer thread
Writer thread
Writer thread
Writer thread

Writer threads

chunk	
 1	

4	

5	

IBIO	
client	

IBIO	
 write:	
 four	
 IBIO	
 clients	
 and	
 one	
 IBIO	
 server	

IBIO	
 write	

•  IBIO	
 write	

1.  Applica&on	
 call	
 IBIO	
 client	
 func&on	
 with	
 data	
 to	
 write	

2.  IBIO	
 client	
 divides	
 the	
 data	
 into	
 chunks,	
 then	
 send	
 the	
 address	
 to	
 IBIO	
 server	
 for	
 RDMA	

3.  IBIO	
 server	
 issues	
 RDMA	
 read	
 to	
 the	
 address,	
 and	
 reply	
 ack	

4.  Con&nues	
 un&l	
 all	
 chunks	
 are	
 sent,	
 and	
 return	
 to	
 applica&on	

5.  Writer	
 threads	
 asynchronously	
 	
 write	
 received	
 data	
 to	
 storage	

•  IBIO	
 read	

–  Reads	
 chunks	
 by	
 reader	
 threads	
 and	
 send	
 to	
 clients	
 in	
 the	
 same	
 way	
 as	
 IBIO	
 write	

by	
 using	
 RDMA	

Compute node Burst buffer node

Application
IBIO
Client

IBIO
Server

Write
threads

addr
RDMA

ack

Resilience	
 modeling	
 overview	
 [CCGrid2014	
 Best	

Paper]	

19	

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12

•  To	
 find	
 out	
 the	
 best	
 checkpoint/restart	
 strategy	
 for	
 systems	
 with	
 burst	

buffers,	
 we	
 model	
 checkpoin&ng	
 strategies	

Efficiency	

Frac&on	
 of	
 &me	
 an	
 applica&on	

spends	
 only	
 	

in	
 useful	
 computa&on	
 	

	

	

Hi
Compute	

node	

Si

i = 0	
 i > 0	

1 2 mi

Hi-1 Hi-1 Hi-1

Storage	
 Model: HN {m1, m2, . . . , mN }

Recursive	
 structured	
 storage	
 model	
 C/R	
 strategy	
 model	

Li = Ci + Ei	
 Oi =	

Ci + Ei (Sync.) 	

Ii (Async.)	

Ci or Ri =	

<	
 C/R	
 date	
 size	
 /	
 node	
 >☓	
 <#	
 of	
 C/R	
 nodes	
 per	
 Si

*	
 >	
 	

<	
 write	
 perf.	
 (
 wi)	
 	
 >	
 	
 	
 or	
 	
 	
 <read	
 perf.	
 (
 ri)	
 >	
 	

+	

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration
t + ck rk

No
failure

Failure

λi : i -level checkpoint time

: c -level checkpoint time
rc : c -level recovery time

cc
t : Interval

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T)
t0 (T)

: No failure for T seconds
: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds
: Expected time when pi (T)

MLC	
 model	
 [2]

20	

p0 (T)
t0 (T)

: No failure for T seconds

: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds

: Expected time when pi (T)

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

λi :	
 i	
 -­‐level	
 checkpoint	

&me	

λ = λi∑

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration t + ck rk
No

failure

Failure

t : Interval

: c -level checkpoint time

rc : c -level recovery time

cc
1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

Asynchronous	
 checkpoin&ng	
 model	
 	

Poisson’s distribution

Resilience	
 modeling:	
 	

	
 	
 	
 	
 	
 Mul&-­‐level	
 Checkpoint/Restart	
 model	

Efficiency	
 with	
 Increasing	
 Failure	
 Rates	

and	
 Checkpoint	
 Costs	
 	

IPSJ SIG Technical Report

Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both

c⃝ 2013 Information Processing Society of Japan 5

21	

•  Assuming	
 there	
 is	
 no	
 message	
 logging	
 overhead	

	

In days or a day of MTBF,
there is no big efficiency

differences

In a few hours of MTBF, with
burst buffers, systems can
still achieve high efficiency

Even in a hour of MTBF, with
uncoordinated, systems can
still achieve 70% efficiency

⇒ Partial restart accelerate recovery
time from burst buffers and PFS
checkpoint

MTBF = days a day 2, 3H 1H

Near	
 term	
 work	

Modeling	

APIs	

Architectures	

Resilience architecture:

Burst buffers

Resilience APIs:
InfiniBand-based

RDMA I/O APIs (IBIO)

Resilience APIs:
Fault tolerant messaging

interface (FMI)

Resilience modeling:
Multi-level Checkpoint/

Restart model

MPI standardization

APIs to resource manager/
batch queue system

Deep memory
hierarchy model

NVM durability model

Deep memory
hierarchy architecture

Analysis	

Mul&-­‐level	

Checkpoint
/Restart	

Detailed failure
analysis with

machine learning Failure Analysis:
Analysis on TSUBAME2.0

– 2.5 failure history

However,	
 we	
 are	
 not	
 there	
 yet	

•  How	
 do	
 we	
 proac&vely	
 prevent	
 faults,	
 and	
 assume	
 such	

correc&on	
 in	
 the	
 overall	
 model	
 and	
 sys	
 sotware?	

•  How	
 do	
 we	
 detect	
 “faults?”	

–  Some	
 advances	
 fault	
 injec&on	
 /	
 ABFT-­‐style	
 fault	
 detec&on	

–  However,	
 real	
 machine	
 failure	
 modes	
 are	
 extremely	
 elusive	

•  We	
 face	
 these	
 every	
 day	
 with	
 TSUBAME…	
 	

–  How	
 do	
 we	
 dis&nguish	
 between	
 applica&on	
 bugs,	
 system	

sotware	
 bugs,	
 “ephemeral”	
 sot	
 errors,	
 moderately	
 failing	

hardware,	
 and	
 hard	
 error	
 crashes?	

•  What	
 is	
 the	
 right	
 recovery	
 for	
 each	
 failure	
 mode?	

–  “Recover	
 node	
 state	
 and	
 try	
 again”	
 only	
 par&ally	
 applicable	
 to	

tremendously	
 abundant	
 set	
 of	
 failure	
 modes	

–  There	
 are	
 various	
 algorithms	
 but	
 they	
 need	
 to	
 scale	
 to	
 100,000	

nodes	
 or	
 more…	

23	

TSUBAME2.0 Periodic Health
Check List	

Check	
 Category Check	
 Performed Interval Ac&on	
 on	
 Fautl Subject	
 Av.	
 Exec	
 Time	

Network	
 Infiniband	
 Status,	
 Check	
 2H	
 No&fy	
 Sysadmin	
 Node	
 5.6E-­‐02	

Clock	
 System	
 Clock	
 Drit	
 2H	
 No&fy	
 Sysadmin	
 Node	
 2.4E-­‐01	

GPU	

PCIe	
 Link	
 Speed,	
 Driver	
 Permission,	
 Device	
 Memory	

ECC	
 Error	
 2H	
 Auto	
 Offline	
 Node	
 7.8E-­‐02	

HDD	
 Available	
 Space,	
 Filesystem	
 Mount	
 2H	
 No&fy	
 Sysadmin	
 Node	
 1.2E-­‐02	

SSD	
 Par&&on	
 and	
 Size	
 2H	
 No&fy	
 Sysadmin	
 Node	
 Difo	

SSD	
 Permission	
 1D	
 	
 Node	
 Difo	

SSD	
 fsck	
 /scratch	
 space	
 1H	
 No&fy	
 Sysadmin	
 Node	
 Difo	

SSH	
 SSH	
 login	
 deamon	
 1H	
 Auto	
 Offline	
 All	
 Nodes	
 2.3E+01	

Process	
 Zombie	
 Process	
 1H	
 Kill	
 Zombie	
 Node	
 6.2E+00	

PBS	
 PBS	
 scheduler	
 status,	
 qstat	
 response	
 (60	
 seconds)	
 1H	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 2.3E-­‐01	

PBS	
 MOM	
 Check	
 	
 	
 Node	
 5.4E-­‐02	

PBS	
 Decommision	
 Wai&ng	
 Reserve	
 Job	
 1H	
 Auto	
 Decommisioning	
 Admin	
 Node	
 6.5E+00	

OpenSM	
 Check	
 opera&on	
 1H	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 7.7E+01	

Lustre	
 Check	
 MDS,	
 OSS,	
 OST	
 ac&vity	
 1H	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 1.5E-­‐01	

Interac&ve	
 Load	
 Average	
 1D	
 No&fy	
 Sysadmin	
 Interac&ve	
 8.0E-­‐03	

H	
 (Reserva&on)	

Queue	
 Check	
 Actual	
 reserva&on	
 and	
 batch	
 status	
 1D	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 4.4E-­‐01	

VM	
 Check	
 SSH	
 Login,	
 available	
 space,	
 etc.	
 1D	
 No&fy	
 Sysadmin	
 All	
 Virtual	
 Nodes	
 3.0E+02	

IBCORE/IBEDGE	
 Link	
 up/down,	
 link	
 speed	
 1D	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 2.5E+01	

IBEDGE	
 connec&vity	
 to	
 storage	
 1H	
 No&fy	
 Sysadmin	
 Admin	
 Node	
 8.8E-­‐01	

24

Actual Errors Detected
Many Errors are Detected before

Catastrophic Application Faults	

　	

2012	

Apr	
 May	
 June	
 July	
 Aug	
 Sep	
 Oct	
 Nov	
 Dec	

HDD	
 Check	
 Available	
 Space	
 27	
 90	
 88	
 22	
 14	
 47	
 22	
 44	
 15	

Check	
 Mount	
 49	
 67	
 58	
 81	
 110	
 86	
 12	
 28	
 27	

GPU	
 PCIe	
 Link	
 Speed,	
 Driver	
 Permission,	
 Device	

Memory	
 ECC	
 Error	

31	
 61	
 68	
 46	
 75	
 62	
 32	
 23	
 31	

Network	
 Infiniband	
 Status	
 Check	
 2	
 13	
 18	
 68	
 47	
 25	
 15	
 2	
 4	

SSH	
 SSH	
 Login	
 184	
 217	
 462	
 211	
 256	
 657	
 55	
 26	
 31	

Duplicated	

Detec&on	

VM	
 Check	
SSH	
 Login,	
 Check	
 Available	
 Space	
 &	
 Mount	
 641	
 820	
 638	
 611	
 682	
 2029	
 753	
 427	
 373	

Duplicated	

Detec&on	

Process	
 Zombie	
 Process	
 134	
 5955	
 481	
 4378	
 1692	
 694	
 1252	
 997	
 9493	

Duplicated	

Detec&on	

　	

2013	

Jan	
 Feb	
 Mar	
 Apr	
 May	

HDD	
 Check	
 Available	
 Space	
 21	
 8	
 14	
 0	
 11	

Check	
 Mount	
 29	
 32	
 22	
 68	
 22	

GPU	
 PCIe	
 Link	
 Speed,	
 Driver	
 Permission,	
 Device	

Memory	
 ECC	
 Error	

23	
 46	
 55	
 40	
 31	

Network	
 Infiniband	
 Status	
 Check	
 4	
 7	
 7	
 13	
 3	

SSH	
 SSH	
 Login	
 74	
 27	
 82	
 765	
 35	
Duplicated	
 Detec&on	

VM	
 Check	
SSH	
 Login,	
 Check	
 Available	
 Space	
 &	
 Mount	
 517	
 326	
 411	
 145	
 357	
Duplicated	
 Detec&on	

Process	
 Zombie	
 Process	
 4305	
 3505	
 3320	
19408	
 313	
Duplicated	
 Detec&on	
 25

Lessons Learned from Health Checks	

•  Just like our bodies, a minor system error often
does not immediately lead to application failure

•  Frequent health checks and corrective actions
–  TSUBAME Storage recovers entirely automatically

•  The current HPC failure models nor system
software stack does not always have such check
& corrective features in a standard way

•  We expect TSUBAME3.0 (2Q2016), a ~20
Petaflops machine, to operate in a similar way,
scalable to 100+ petaflops range
–  # nodes, components, complexity largely the same

26

Deep memory
hierarchy model

Hi
Compute	

node	

Si

i = 0	
 i > 0	

1 2 mi

Hi-1 Hi-1 Hi-1

Storage	
 Model: HN {m1, m2, . . . , mN }

NVM durability model

fa
ilu
re
	
 ra

te
	

&me	

Deep	
 memory	
 hierarchy	
 and	
 modeling	

Deep memory hierarchy
architecture

Extreme	
 scale	
 	

graph	
 processing	

Hybrid	
 BFS	

Top-­‐
down	

BoWom-­‐
up	

#	
 of	
 fron&ers:nfron%er，　 #	
 of	
 all	
 ver&ces:nall,	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 parameter	
 :	
 α,	
 β	

OpenNVM	
 like	
 Key-­‐value	
 store	

Interface	

NVM	
 (Fusion-­‐io	
 flash	
 device)	

KVS	
 	
 on	
 NVM	
 suppor=ng	
 range-­‐queries	

In-­‐memory	
 B
+Tree	

Extreme	
 scale	
 KVS	

>>	

Larger	
 domain	
 	

stencil	
 simula&on	
 Big	
 data	
 applica&ons	

In
tr
o
d
u
ct
io
n

P
ro
b
le
m

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

p
ol
ym

er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

p
ol
ym

er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
k
sa
n
d
r
D
ro
zd

,
N
a
oy
a
M
ar
u
ya
m
a
,
S
a
to
sh
i
M
a
ts
u
o
ka

(T
IT

E
C
H
)

A
M
u
lt
i
G
P
U

R
ea

d
A
lig

n
m
en

t
A
lg
or
it
h
m

w
it
h
M
o
d
el
-b
a
se
d
P
er
fo
rm

a
n
ce

O
p
ti
m
iz
a
ti
o
n

N
o
ve

m
b
er

1
,
2
0
1
1

5
/
5
4

Key applications and software
driving deep memory hierarchy

4	
 –	
 5	
 years	
 wall	

TSUBAME-KFC
	

Single Node	
 5.26 TFLOPS DFP	

System (40 nodes)	
 210.61 TFLOPS DFP
630TFlops SFP

Storage (3SSDs/node)	
 1.2TBytes SSDs/Node
Total 50TBytes

~50GB/s BW

A TSUBAME3.0 prototype system
with advanced next gen cooling
40 compute nodes are oil-submerged
1200 liters of oil (Exxon PAO ~1 ton)
#1 Nov. 2013 Green 500!!

	

	

	

	

	

	

(Kepler Fluid Cooling)	

Preliminary	
 I/O	
 Evalua=on	
 on	
 GPU	

and	
 NVRAM	

Mother	
 board	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 RAID	
 card	

mSATA	
 mSATA	
 mSATA	
 mSATA	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

0	
 5	
 10	
 15	
 20	

Ba
nd

w
id
th
	
 [M

B/
s]

	

#	
 mSATAs	

Raw	
 mSATA	
 4KB	

RAID0	
 1MB	

RAID0	
 64KB	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0.274	
 0.547	
 1.09	
 2.19	
 4.38	
 8.75	
 17.5	
 35	
 70	
 140	

Th
ro
ug
hu

pu
t	
 [
G
B/
s]

	

Matrix	
 Size	
 [GB]	

Raw	
 8	
 mSATA	

8	
 mSATA	
 RAID0	
 (1MB)	

8	
 mSATA	
 RAID0	
 (64KB)	

I/O	
 performance	
 of	
 mul&ple	
 mSATA	
 SSD	
 I/O	
 performance	
 from	
 GPU	
 to	
 mul&ple	
 mSATA	
 SSDs	

〜	
 7.39	
 GB/s	
 from	
 	

16	
 mSATA	
 SSDs	
 (Enabled	
 RAID0)	

〜	
 3.06	
 GB/s	
 from	
 	

8	
 mSATA	
 SSDs	
 to	
 GPU	

How	
 to	
 design	
 local	
 storage	
 for	
 next-­‐gen	
 supercomputers	
 ?	

-­‐	
 Local	
 I/O	
 prototype	
 using	
 16	
 mSATA	
 SSDs	

・Capacity:	
 	
 4TB	

・Read	
 bandwidth:	
 8	
 GB/s	

Max	
 Tsubame3	
 I/O	
 BW:	
 20	
 TB/s	

(or	
 ~200Tbps	
 ~=	
 All	
 Internet)	

EBD- I/O
(Many-core I/O)	

〜320K	
 IOPS	
 	

(3	
 μ	
 sec)	

Tsubame	
 4:	
 2021~	
 DRAM+NVM+CPU	
 with	

3D/2.5D	
 Die	
 Stacking	

Ul&mate	
 Convergence	
 Big	
 Data	
 and	
 Extreme	
 Compute	

PCB	

TSV	
 Interposer	

High	
 Powered	
 Main	
 CPU	
Low	
 Power	
 CPU	

DRAM	

DRAM	

DRAM	

NVM/Flash	

NVM/Flash	

NVM/Flash	

Low	
 Power	
 CPU	

DRAM	

DRAM	

DRAM	

NVM/Flash	

NVM/Flash	

NVM/Flash	

2Tbps	
 HBM	

4~6HBM	
 Channels	

2TB/s	
 DRAM	
 &	
 	

NVM	
 BW	

	

30PB/s	
 I/O	
 BW	
 Possible	

1	
 Yofabyte	
 /	
 Year	

Direct Chip-Chip Interconnect with planar VCSEL
optics	

TSUBAME4	
 2021~	
 K-­‐in-­‐a-­‐Box	
 (Golden	
 Box)	

BD/EC	
 Convergent	
 Architecture	

1/500	
 Size,	
 1/150	
 Power,	
 1/500	
 Cost,	
 x5	
 DRAM+	
 NVM	

Memory	

	

	

	

	

	

10	
 Petaflops,	
 10	
 Petabyte	
 Hiearchical	
 Memory	
 (K:	
 1.5PB),	

10K	
 nodes	

50GB/s	
 Interconnect	
 (200-­‐300Tbps	
 Bisec&on	
 BW)	

(Conceptually	
 similar	
 to	
 HP	
 “The	
 Machine”)	

Datacenter	
 in	
 a	
 Box	

Large	
 Datacenter	
 will	
 become	
 “Jurassic”	

	

	

	

“If	
 it	
 broke	
 don’t	
 fix	
 it”	
 System	

•  Commodi&zed	
 HW:	
 aggrega&on	
 of	
 replace-­‐as-­‐a-­‐whole	
 units	

– Human	
 repair	
 expensive	
 =>	
 Designing	
 for	
 human	
 repair	

expensive	
 (c.f.	
 servers	
 vs.	
 smart	
 phones)	

– Redundancy	
 in	
 system	
 design	
 avoiding	
 costly	
 repair	
 for	

lower	
 aggregate	
 TCO	
 (e.g.	
 RAID)	

•  Future	
 SCs	
 and	
 IDCs	
 not	
 subject	
 to	
 post-­‐deployment	

repairs,	
 but	
 (almost)	
 self-­‐healing	

–  Sufficient	
 redundancy	
 (dark	
 silicon,	
 planar	
 emission	
 photodiodes…)	

to	
 last	
 the	
 life&me	
 of	
 a	
 machine	
 (~5	
 years)	

–  Auto-­‐diagnos&cs	
 with	
 sufficient	
 coverage	
 to	
 automate	
 the	
 process	

– Q:	
 to	
 what	
 extreme	
 can	
 we	
 op&mize	
 our	
 system	
 design?	

– Q:	
 what	
 are	
 the	
 SW	
 (+HW)	
 infrastructure	
 necessary?	

– Q:	
 how	
 will	
 Cloud	
 &	
 Big	
 Data	
 apps	
 supported?	

GoldenBox	
 Proto1	
 (NVIDIA	
 K1-­‐based)	

To	
 be	
 shown	
 at	
 SC14	
 Tokyo	
 Tech.	
 Booth…	

