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Tokyo Tech. 
Billion-Way Resiliency Project (2011-2015)	


•  Collaboration with ANL (Franck Cappello, FTI), LLNL (Bronis de 
Spinksi, SCR), Hideyuki Jitsumoto (U-Tokyo)… 

•  More precise system fault model and associated cost model of 
recovery and optimization 

•  Aggressive architectural, systems, and algorithmic improvements 
–  Use of localized flash/NVM for ultra fast checkpoints and recovery 
–  Advanced coding and clustering algorithms for reliability against multiple 

failures 
–  Combining coordinated & uncoordinated checkpoints 
–  Overlapping transfers in the checkpoint storage hierarchy for quick 

recovery  
–  Power optimized checkpoints 

•  Better monitoring and micro-recovery	
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Parallel file system 

Resilience architecture: 
Burst buffers 

Holis&c	
  Approach	
  to	
  Billion-­‐way	
  Resiliency	
  

•  Failure	
  Analysis,	
  APIs,	
  Modeling	
  and	
  Architectures	
  driving	
  mul&-­‐level	
  
checkpoint/restart	
  through	
  extensive	
  collabora&ons	
  between	
  LLNL	
  and	
  Tokyo	
  
Tech	
  

Compute nodes 

Failure Analysis:  
Analysis on TSUBAME2.0 

– 2.5 failure history 

Resilience APIs: (SC13) 
InfiniBand-based RDMA I/O APIs (IBIO) 

Resilience APIs: (IPDPS2014) 
Fault tolerant messaging interface (FMI) 

Scalabele Failuer Detection 

Resilience modeling: 
(CCGrid2014 Best Paper) 
Multi-level Checkpoint/

Restart model 



A cluster-based SC like TSUBAME 
is not supposed to work…	
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Why Does TSUBAME Work?	


•  For the many-core era, component complexity / 
Flops do not differ tremendously across machines 

•  Thus, hard-stop component failures will occur 
fairly equally 
–  But may not lead to application faults if detected early 

•  Many application errors also attributed to system 
software’s inability to scale with reliable 
operations, especially with domino effects 
–  Race conditions leading to anomalous pauses which will 

screw up your deamons which in turn de-mounts your 
file system which in turn… 
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Every	
  fault	
  is	
  recorded	
  and	
  made	
  
immediately	
  public	
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Log	
  Sani&za&on	
  Process	

•  Obvious	
  erroneous	
  entries	
  in	
  error	
  log	
  

– SSD	
  failure	
  categorized	
  as	
  “GPU	
  failure”	
  
– Simple	
  “node	
  down”	
  vs.	
  “CPU	
  failure	
  and	
  replace”	
  

•  Ini&al	
  failures	
  in	
  the	
  “bathtub	
  curve”	
  misleading	
  
– TSUBAME2.0	
  commissioned	
  Nov.	
  2010	
  
– Stable	
  year	
  period	
  Aug.1	
  2012	
  to	
  July	
  31,	
  2013	
  

•  Missing	
  info	
  in	
  error	
  log	
  
– No	
  indica&on	
  of	
  	
  
– extrapola&on	
  of	
  effect	
  of	
  failures	
  

•  Anomalous,	
  very	
  specific	
  failures	
  caused	
  by	
  
unresolved	
  “bug”	
  in	
  HW	
  (see	
  next	
  slide)	




Yearly	
  Distribu&on	
  of	
  Faults	
  in	
  
TSUBAME2.0	
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Table	
  1	
  TSUBAME2.0	
  	
  
Aug	
  1	
  2012	
  ~	
  July	
  31,	
  2013Failure	
  analysis	
  of	
  components 

	

SUM	
 Boot	
  

Failures	
 
Fail-­‐stop	
  
Failures	
 Unaffected	
 Mul=	


Failures	
 Repairs	
 GPU	
  
Repairs	
 

DIMM	
  
Repairs	
 

Unknown	
  Boot	
  Failure	
 35	
 35	
 0	
 

CPU	
 16	
 4	
 12	
 14	
 

Disk/Storage	
  (wo	
  SSD)	
 17	
 5	
 12	
 5	
 
Unknown	
  Node	
  

Failure	
 15	
 15	
 0	
 

Fan	
 100	
 100	
 13	
 

GPUs	
 

GPU-­‐PCI	
 362	
 362	
 96	
 39	
 

GPU-­‐Link	
 16	
 16	
 10	
 3	
 

GPU-­‐ECC	
 10	
 10	
 10	
 10	
 

	
  	
  	
  	
  GPU-­‐Unknown	
 10	
 6	
 4	
 9	
 5	
 

Memory	
 12	
 1	
 7	
 4	
 11	
 14	
 

Network	
 

Infiniband	
 22	
 4	
 16	
 2	
 4	
 

Other	
  Networks	
 78	
 55	
 23	
 0	
 
Other	
  HW	
 27	
 22	
 5	
 24	
 

Batch	
  System	
  (PBS	
  
Pro)	
 13	
 3	
 10	
 0	
 

PSU	
 33	
 26	
 7	
 33	
 

Rack	
 6	
 5	
 1	
 4	
 

SSD	
 34	
 12	
 22	
 32	
 
System	
  Board	
 22	
 9	
 13	
 22	
 

Total	
 828	
 94	
 533	
 198	
 3	
 287	
 57	
 14	
 
Corrected	
  Total	
 498	
 94	
 210	
 191	
 3	
 209	
 57	
 14	
 



Overview	
  of	
  Analysis	
  (1)	

•  TSUBAME2.0	
  highly	
  reliable	
  

–  500	
  failures,	
  only	
  210	
  fail	
  stop	
  /	
  year	
  	
  
•  System	
  MTTI	
  =	
  1.7	
  days,	
  node	
  MTTI	
  =	
  2500	
  days	
  
•  Much	
  befer	
  than	
  conjectured	
  MTTI	
  of	
  K	
  computer	
  

•  GPU	
  compara=vely	
  reliable	
  vs.	
  CPUs	
  
–  19	
  CPU+memory	
  fail-­‐stop	
  failures,	
  25	
  replacements,	
  MTBF	
  
118	
  years,	
  2.2218	
  FLOP/error	
  

–  53	
  GPU+memory	
  ECC	
  fail-­‐stop	
  failures,	
  57	
  replacements,	
  
MTBF	
  75	
  years,	
  1.6119	
  FLOP/error	
  

–  GPU	
  error	
  rate	
  x7	
  befer	
  /	
  flop	
  vs.	
  CPU,	
  propor&onal	
  to	
  
performance	
  difference	
  per	
  chip	
  

•  CPU+GPU	
  7216	
  units:	
  if	
  chip-­‐level	
  MTBF	
  is	
  similar	
  for	
  
TSUBAME3.0,	
  25-­‐30	
  Petaflop	
  possible	
  in	
  2015-­‐16	
  	
  



Overview	
  of	
  Analysis	
  (2)	

•  Failures	
  are	
  Largely	
  Independent	
  

– Only	
  3	
  mul&-­‐node	
  failures	
  out	
  of	
  210	
  fail	
  stops	
  
– Low	
  #	
  of	
  Infiniband	
  and	
  storage	
  failures	
  

•  TSUBAME2.0	
  Fat	
  Node	
  architecture	
  vs.	
  C.f.	
  
Many	
  Thin-­‐nodes	
  architecture	
  e.g.	
  BG/Q	
  
– Most	
  failures	
  contained	
  within	
  nodes	
  

• C.f.	
  BG/Q	
  –	
  failure	
  in	
  node	
  compromises	
  the	
  
en&re	
  task	
  à	
  parameter	
  sweep	
  jobs	
  NG	
  

– Local	
  checkpoint	
  &	
  dynamic	
  recovery	
  very	
  
effec&ve	
  



The reality speaks… DRAM Error Rates 	

•  Andy A. Hwang, Ioan Stefanovici, and Bianca Schroeder. “Cosmic Rays Don’t 

Strike Twice: Understanding the Nature of DRAM Errors and the Implications 
for System Design”. 

No	
  significant	
  
difference	
  in	
  node	
  
DRAM	
  error	
  rates	
  (in	
  
fact	
  significantly	
  worse	
  
for	
  corrected	
  errors	
  for	
  
BG)	




Overview	
  of	
  Analysis	
  (3)	

•  Memory	
  failures	
  consistent	
  or	
  beWer	
  c.f.	
  
previous	
  work	
  
–  17,000	
  DIMMs	
  an	
  4264	
  GPUs	
  in	
  TSUBAME2.0	
  
–  14	
  DIMM	
  DUE	
  errors,	
  10	
  GPU	
  double	
  bit	
  EC	
  Errors	
  /	
  Year	
  
–  DUE	
  DIMM	
  errors	
  0.082%	
  vs.	
  Google[8]	
  0.22%	
  
–  GPU	
  memory	
  error	
  0.23%	
  vs.	
  0.83%	
  BG/P	
  Chipkill	
  [10]	
  
–  K	
  Computer	
  700,000	
  DIMMs	
  =>	
  600	
  DIMM	
  failures	
  predicted	
  
with	
  same	
  error	
  rate	
  as	
  TSUBAME2.0	
  =>	
  MTBF	
  ~=1/2	
  day	
  

•  Failures	
  seasonal,	
  but	
  not	
  due	
  to	
  temperature	
  
– Largely	
  due	
  to	
  boot	
  failures	
  in	
  peak-­‐shit	
  opera&ons	
  
during	
  summer	
  to	
  limit	
  power,	
  despite	
  SW	
  retries	
  

– Future	
  SCs	
  in	
  Clouds	
  need	
  to	
  cope	
  with	
  this	
  



Parallel file system 

Resilience architecture: 
Burst buffers 

Holis&c	
  Approach	
  to	
  Billion-­‐way	
  Resiliency	
  	
  
(Modeling	
  and	
  Permea&on	
  thru	
  Sotware	
  Stack)	
  

•  Failure	
  Analysis,	
  APIs,	
  Modeling	
  and	
  Architectures	
  driving	
  mul&-­‐level	
  
checkpoint/restart	
  through	
  extensive	
  collabora&ons	
  between	
  LLNL	
  and	
  Tokyo	
  
Tech	
  

Compute nodes 

Failure Analysis:  
Analysis on TSUBAME2.0 

– 2.5 failure history 

Resilience APIs:  
InfiniBand-based RDMA I/O APIs (IBIO) 

Resilience APIs:  
Fault tolerant messaging interface (FMI) 

Resilience modeling: 
Multi-level Checkpoint/

Restart model 



FMI:	
  Fault	
  Tolerant	
  Messaging	
  Interface	
  
	
   	
   	
  [IPDPS2014]	
  

•  FMI	
  is	
  a	
  survivable	
  messaging	
  interface	
  providing	
  MPI-­‐like	
  interface	
–  Scalable	
  failure	
  detec&on	
  ⇒	
  Overlay	
  network	
  
–  Dynamic	
  node	
  alloca&on	
  	
  ⇒	
  FMI	
  ranks	
  are	
  virtualized	
  
–  Fast	
  checkpoint/restart	
  	
  	
  	
  	
  ⇒	
  Diskless	
  checkpoint/restart	
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Applica&on	
  run&me	
  with	
  failures	
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•  Benchmark:	
  Poisson’s	
  equa&on	
  solver	
  using	
  Jacobi	
  itera&on	
  method	
  
–  Stencil	
  applica&on	
  benchmark	
  
–  MPI_Isend,	
  MPI_Irecv,	
  MPI_Wait	
  and	
  MPI_Allreduce	
  within	
  a	
  single	
  itera&on	
  

•  For	
  MPI,	
  we	
  use	
  the	
  SCR	
  library	
  for	
  checkpoin&ng	
  
–  Since	
  MPI	
  is	
  not	
  survivable	
  messaging	
  interface,	
  we	
  write	
  checkpoint	
  memory	
  on	
  tmpfs	
  

•  Checkpoint	
  interval	
  is	
  op&mized	
  by	
  Vaidya’s	
  model	
  for	
  FMI	
  and	
  MPI	
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Chapter 4: FMI: Fault Tolerant Messaging Interface 57
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes 
checkpoints via memcpy, and 

can exploit the bandwidth 



IBIO	
  read	
  

APIs	
  for	
  burst	
  buffers:[SC13]	
  
	
  	
  	
  InfiniBand-­‐based	
  I/O	
  interface	
  (IBIO)	
  

•  Provide	
  POSIX	
  I/O	
  interfaces	
  
–  open,	
  read,	
  write	
  and	
  close	
  
–  Client	
  can	
  open	
  any	
  files	
  on	
  any	
  servers	
  

•  open(“hostname:/path/to/file”, mode)	
•  IBIO	
  use	
  ibverbs	
  for	
  communica&on	
  between	
  clients	
  and	
  servers	
  

–  Exploit	
  network	
  bandwidth	
  of	
  infiniBand	
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IBIO	
  write/read	
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Chunk buffers 
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•  IBIO	
  write	
  
1.  Applica&on	
  call	
  IBIO	
  client	
  func&on	
  with	
  data	
  to	
  write	
  
2.  IBIO	
  client	
  divides	
  the	
  data	
  into	
  chunks,	
  then	
  send	
  the	
  address	
  to	
  IBIO	
  server	
  for	
  RDMA	
  
3.  IBIO	
  server	
  issues	
  RDMA	
  read	
  to	
  the	
  address,	
  and	
  reply	
  ack	
  
4.  Con&nues	
  un&l	
  all	
  chunks	
  are	
  sent,	
  and	
  return	
  to	
  applica&on	
  
5.  Writer	
  threads	
  asynchronously	
  	
  write	
  received	
  data	
  to	
  storage	
  

•  IBIO	
  read	
  
–  Reads	
  chunks	
  by	
  reader	
  threads	
  and	
  send	
  to	
  clients	
  in	
  the	
  same	
  way	
  as	
  IBIO	
  write	
  

by	
  using	
  RDMA	
  

Compute node Burst buffer node 

Application 
IBIO 
Client 

IBIO 
Server 

Write 
threads 

addr 
RDMA 

ack 



Resilience	
  modeling	
  overview	
  [CCGrid2014	
  Best	
  
Paper]	
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[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 

•  To	
  find	
  out	
  the	
  best	
  checkpoint/restart	
  strategy	
  for	
  systems	
  with	
  burst	
  
buffers,	
  we	
  model	
  checkpoin&ng	
  strategies	
  

Efficiency	
  
Frac&on	
  of	
  &me	
  an	
  applica&on	
  

spends	
  only	
  	
  
in	
  useful	
  computa&on	
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec
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Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both
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However,	
  we	
  are	
  not	
  there	
  yet	

•  How	
  do	
  we	
  proac&vely	
  prevent	
  faults,	
  and	
  assume	
  such	
  
correc&on	
  in	
  the	
  overall	
  model	
  and	
  sys	
  sotware?	
  

•  How	
  do	
  we	
  detect	
  “faults?”	
  
–  Some	
  advances	
  fault	
  injec&on	
  /	
  ABFT-­‐style	
  fault	
  detec&on	
  
–  However,	
  real	
  machine	
  failure	
  modes	
  are	
  extremely	
  elusive	
  

•  We	
  face	
  these	
  every	
  day	
  with	
  TSUBAME…	
  	
  

–  How	
  do	
  we	
  dis&nguish	
  between	
  applica&on	
  bugs,	
  system	
  
sotware	
  bugs,	
  “ephemeral”	
  sot	
  errors,	
  moderately	
  failing	
  
hardware,	
  and	
  hard	
  error	
  crashes?	
  

•  What	
  is	
  the	
  right	
  recovery	
  for	
  each	
  failure	
  mode?	
  
–  “Recover	
  node	
  state	
  and	
  try	
  again”	
  only	
  par&ally	
  applicable	
  to	
  
tremendously	
  abundant	
  set	
  of	
  failure	
  modes	
  

–  There	
  are	
  various	
  algorithms	
  but	
  they	
  need	
  to	
  scale	
  to	
  100,000	
  
nodes	
  or	
  more…	
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TSUBAME2.0 Periodic Health 
Check List	


Check	
  Category Check	
  Performed Interval Ac&on	
  on	
  Fautl Subject	
 Av.	
  Exec	
  Time	

Network	
 Infiniband	
  Status,	
  Check	
 2H	
 No&fy	
  Sysadmin	
 Node	
 5.6E-­‐02	

Clock	
 System	
  Clock	
  Drit	
 2H	
 No&fy	
  Sysadmin	
 Node	
 2.4E-­‐01	


GPU	

PCIe	
  Link	
  Speed,	
  Driver	
  Permission,	
  Device	
  Memory	
  
ECC	
  Error	
 2H	
 Auto	
  Offline	
 Node	
 7.8E-­‐02	


HDD	
 Available	
  Space,	
  Filesystem	
  Mount	
 2H	
 No&fy	
  Sysadmin	
 Node	
 1.2E-­‐02	

SSD	
 Par&&on	
  and	
  Size	
 2H	
 No&fy	
  Sysadmin	
 Node	
 Difo	


SSD	
 Permission	
 1D	
  	
 Node	
 Difo	


SSD	
 fsck	
  /scratch	
  space	
 1H	
 No&fy	
  Sysadmin	
 Node	
 Difo	


SSH	
 SSH	
  login	
  deamon	
 1H	
 Auto	
  Offline	
 All	
  Nodes	
 2.3E+01	

Process	
 Zombie	
  Process	
 1H	
 Kill	
  Zombie	
 Node	
 6.2E+00	


PBS	
 PBS	
  scheduler	
  status,	
  qstat	
  response	
  (60	
  seconds)	
 1H	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 2.3E-­‐01	


PBS	
 MOM	
  Check	
  	
  	
 Node	
 5.4E-­‐02	

PBS	
 Decommision	
  Wai&ng	
  Reserve	
  Job	
 1H	
 Auto	
  Decommisioning	
 Admin	
  Node	
 6.5E+00	

OpenSM	
 Check	
  opera&on	
 1H	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 7.7E+01	

Lustre	
 Check	
  MDS,	
  OSS,	
  OST	
  ac&vity	
 1H	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 1.5E-­‐01	

Interac&ve	
 Load	
  Average	
 1D	
 No&fy	
  Sysadmin	
 Interac&ve	
 8.0E-­‐03	

H	
  (Reserva&on)	
  
Queue	
 Check	
  Actual	
  reserva&on	
  and	
  batch	
  status	
 1D	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 4.4E-­‐01	


VM	
  Check	
 SSH	
  Login,	
  available	
  space,	
  etc.	
 1D	
 No&fy	
  Sysadmin	
 All	
  Virtual	
  Nodes	
 3.0E+02	

IBCORE/IBEDGE	
 Link	
  up/down,	
  link	
  speed	
 1D	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 2.5E+01	

IBEDGE	
 connec&vity	
  to	
  storage	
 1H	
 No&fy	
  Sysadmin	
 Admin	
  Node	
 8.8E-­‐01	
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Actual Errors Detected 
Many Errors are Detected before 

Catastrophic Application Faults	

　	


2012	

Apr	
 May	
 June	
 July	
 Aug	
 Sep	
 Oct	
 Nov	
 Dec	


HDD	
 Check	
  Available	
  Space	
 27	
 90	
 88	
 22	
 14	
 47	
 22	
 44	
 15	

Check	
  Mount	
 49	
 67	
 58	
 81	
 110	
 86	
 12	
 28	
 27	


GPU	
 PCIe	
  Link	
  Speed,	
  Driver	
  Permission,	
  Device	
  
Memory	
  ECC	
  Error	


31	
 61	
 68	
 46	
 75	
 62	
 32	
 23	
 31	


Network	
 Infiniband	
  Status	
  Check	
 2	
 13	
 18	
 68	
 47	
 25	
 15	
 2	
 4	

SSH	
 SSH	
  Login	
 184	
 217	
 462	
 211	
 256	
 657	
 55	
 26	
 31	


Duplicated	
  
Detec&on	


VM	
  Check	
SSH	
  Login,	
  Check	
  Available	
  Space	
  &	
  Mount	
 641	
 820	
 638	
 611	
 682	
 2029	
 753	
 427	
 373	

Duplicated	
  
Detec&on	


Process	
 Zombie	
  Process	
 134	
 5955	
 481	
 4378	
 1692	
 694	
 1252	
 997	
 9493	

Duplicated	
  
Detec&on	


　	

2013	


Jan	
 Feb	
 Mar	
 Apr	
 May	

HDD	
 Check	
  Available	
  Space	
 21	
 8	
 14	
 0	
 11	


Check	
  Mount	
 29	
 32	
 22	
 68	
 22	

GPU	
 PCIe	
  Link	
  Speed,	
  Driver	
  Permission,	
  Device	
  

Memory	
  ECC	
  Error	

23	
 46	
 55	
 40	
 31	


Network	
 Infiniband	
  Status	
  Check	
 4	
 7	
 7	
 13	
 3	

SSH	
 SSH	
  Login	
 74	
 27	
 82	
 765	
 35	
Duplicated	
  Detec&on	


VM	
  Check	
SSH	
  Login,	
  Check	
  Available	
  Space	
  &	
  Mount	
 517	
 326	
 411	
 145	
 357	
Duplicated	
  Detec&on	


Process	
 Zombie	
  Process	
 4305	
 3505	
 3320	
19408	
 313	
Duplicated	
  Detec&on	
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Lessons Learned from Health Checks	


•  Just like our bodies, a minor system error often 
does not immediately lead to application failure 

•  Frequent health checks and corrective actions  
–  TSUBAME Storage recovers entirely automatically 

•  The current HPC failure models nor system 
software stack does not always have such check 
& corrective features in a standard way 

•  We expect TSUBAME3.0 (2Q2016), a ~20 
Petaflops machine, to operate in a similar way, 
scalable to 100+ petaflops range 
–  # nodes, components, complexity largely the same 
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Deep memory 
hierarchy model 

Hi 
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Deep	
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TSUBAME-KFC 
	


Single Node	
 5.26 TFLOPS DFP	


System (40 nodes)	
 210.61 TFLOPS DFP 
630TFlops SFP 

Storage (3SSDs/node)	
 1.2TBytes SSDs/Node 
Total 50TBytes 

~50GB/s BW 

A TSUBAME3.0 prototype system 
with advanced next gen cooling 
40 compute nodes are oil-submerged 
1200 liters of oil (Exxon PAO ~1 ton) 
#1 Nov. 2013 Green 500!! 

	


	


	


	


	


	


(Kepler Fluid Cooling)	




Preliminary	
  I/O	
  Evalua=on	
  on	
  GPU	
  
and	
  NVRAM	


Mother	
  board	


	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  RAID	
  card	


mSATA	
 mSATA	
 mSATA	
 mSATA	


0	
  

1000	
  

2000	
  

3000	
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7000	
  

8000	
  

9000	
  

0	
   5	
   10	
   15	
   20	
  

Ba
nd

w
id
th
	
  [M

B/
s]

	


#	
  mSATAs	


Raw	
  mSATA	
  4KB	
  
RAID0	
  1MB	
  
RAID0	
  64KB	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

3.5	
  

0.274	
  0.547	
  1.09	
   2.19	
   4.38	
   8.75	
   17.5	
   35	
   70	
   140	
  

Th
ro
ug
hu

pu
t	
  [
G
B/
s]

	


Matrix	
  Size	
  [GB]	


Raw	
  8	
  mSATA	
  
8	
  mSATA	
  RAID0	
  (1MB)	
  
8	
  mSATA	
  RAID0	
  (64KB)	
  

I/O	
  performance	
  of	
  mul&ple	
  mSATA	
  SSD	
 I/O	
  performance	
  from	
  GPU	
  to	
  mul&ple	
  mSATA	
  SSDs	


〜	
  7.39	
  GB/s	
  from	
  	
  
16	
  mSATA	
  SSDs	
  (Enabled	
  RAID0)	
  

〜	
  3.06	
  GB/s	
  from	
  	
  
8	
  mSATA	
  SSDs	
  to	
  GPU	
  

How	
  to	
  design	
  local	
  storage	
  for	
  next-­‐gen	
  supercomputers	
  ?	
  
-­‐	
  Local	
  I/O	
  prototype	
  using	
  16	
  mSATA	
  SSDs	
  

・Capacity:	
  	
  4TB	
  
・Read	
  bandwidth:	
  8	
  GB/s	
  
Max	
  Tsubame3	
  I/O	
  BW:	
  20	
  TB/s	
  
(or	
  ~200Tbps	
  ~=	
  All	
  Internet)	
  

EBD- I/O  
(Many-core I/O)	


〜320K	
  IOPS	
  	
  
(3	
  μ	
  sec)	




Tsubame	
  4:	
  2021~	
  DRAM+NVM+CPU	
  with	
  
3D/2.5D	
  Die	
  Stacking	
  

Ul&mate	
  Convergence	
  Big	
  Data	
  and	
  Extreme	
  Compute	


PCB	


TSV	
  Interposer	


High	
  Powered	
  Main	
  CPU	
Low	
  Power	
  CPU	


DRAM	


DRAM	


DRAM	


NVM/Flash	


NVM/Flash	


NVM/Flash	


Low	
  Power	
  CPU	


DRAM	


DRAM	


DRAM	


NVM/Flash	


NVM/Flash	


NVM/Flash	


2Tbps	
  HBM	
  
4~6HBM	
  Channels	
  
2TB/s	
  DRAM	
  &	
  	
  

NVM	
  BW	
  
	
  

30PB/s	
  I/O	
  BW	
  Possible	
  
1	
  Yofabyte	
  /	
  Year	
  

Direct Chip-Chip Interconnect with planar VCSEL  
optics	




TSUBAME4	
  2021~	
  K-­‐in-­‐a-­‐Box	
  (Golden	
  Box)	
  
BD/EC	
  Convergent	
  Architecture	


1/500	
  Size,	
  1/150	
  Power,	
  1/500	
  Cost,	
  x5	
  DRAM+	
  NVM	
  
Memory	
  

	
  
	
  
	
  
	
  
	
  

10	
  Petaflops,	
  10	
  Petabyte	
  Hiearchical	
  Memory	
  (K:	
  1.5PB),	
  
10K	
  nodes	
  

50GB/s	
  Interconnect	
  (200-­‐300Tbps	
  Bisec&on	
  BW)	
  
(Conceptually	
  similar	
  to	
  HP	
  “The	
  Machine”)	
  

Datacenter	
  in	
  a	
  Box	
  
Large	
  Datacenter	
  will	
  become	
  “Jurassic”	
  

	
  
	
  
	
  



“If	
  it	
  broke	
  don’t	
  fix	
  it”	
  System	

•  Commodi&zed	
  HW:	
  aggrega&on	
  of	
  replace-­‐as-­‐a-­‐whole	
  units	
  

– Human	
  repair	
  expensive	
  =>	
  Designing	
  for	
  human	
  repair	
  
expensive	
  (c.f.	
  servers	
  vs.	
  smart	
  phones)	
  

– Redundancy	
  in	
  system	
  design	
  avoiding	
  costly	
  repair	
  for	
  
lower	
  aggregate	
  TCO	
  (e.g.	
  RAID)	
  

•  Future	
  SCs	
  and	
  IDCs	
  not	
  subject	
  to	
  post-­‐deployment	
  
repairs,	
  but	
  (almost)	
  self-­‐healing	
  
–  Sufficient	
  redundancy	
  (dark	
  silicon,	
  planar	
  emission	
  photodiodes…)	
  
to	
  last	
  the	
  life&me	
  of	
  a	
  machine	
  (~5	
  years)	
  

–  Auto-­‐diagnos&cs	
  with	
  sufficient	
  coverage	
  to	
  automate	
  the	
  process	
  

– Q:	
  to	
  what	
  extreme	
  can	
  we	
  op&mize	
  our	
  system	
  design?	
  
– Q:	
  what	
  are	
  the	
  SW	
  (+HW)	
  infrastructure	
  necessary?	
  
– Q:	
  how	
  will	
  Cloud	
  &	
  Big	
  Data	
  apps	
  supported?	
  



GoldenBox	
  Proto1	
  (NVIDIA	
  K1-­‐based)	
  
To	
  be	
  shown	
  at	
  SC14	
  Tokyo	
  Tech.	
  Booth…	



