
General-purpose approach Checkpointing and verification Application-specific methods

A nice little scheduling problem

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

CCDSC 2014 – Dareizé, September 3, 2014

Yves.Robert@ens-lyon.fr Scheduling 1/ 29

yves.robert@ens-lyon.fr

General-purpose approach Checkpointing and verification Application-specific methods

A nice little scheduling problem

Lame motivation

Yves.Robert@ens-lyon.fr Scheduling 2/ 29

General-purpose approach Checkpointing and verification Application-specific methods

A nice little scheduling problem

Theorem 1
Theorem 2
Theorem 3
Theorem 4
Theorem 5
Theorem 6

Theorem 8
Theorem 9

Yves.Robert@ens-lyon.fr Scheduling 2/ 29

General-purpose approach Checkpointing and verification Application-specific methods

A nice little scheduling problem

Conclusion: proving Theorem 7 would be nice

Yves.Robert@ens-lyon.fr Scheduling 2/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Algorithms for coping with silent errors

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

CCDSC 2014 – Dareizé, September 3, 2014

Yves.Robert@ens-lyon.fr Silent errors 3/ 29

yves.robert@ens-lyon.fr

General-purpose approach Checkpointing and verification Application-specific methods

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 10 years 120 years
MTBF – platform 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Yves.Robert@ens-lyon.fr Silent errors 4/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory

Yves.Robert@ens-lyon.fr Silent errors 5/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)

Yves.Robert@ens-lyon.fr Silent errors 6/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Should we be afraid? (courtesy Al Geist)

Yves.Robert@ens-lyon.fr Silent errors 7/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

Yves.Robert@ens-lyon.fr Silent errors 8/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

Yves.Robert@ens-lyon.fr Silent errors 8/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Yves.Robert@ens-lyon.fr Silent errors 9/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster

Yves.Robert@ens-lyon.fr Silent errors 9/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Silent errors:

detection latency ⇒ additional problems

Yves.Robert@ens-lyon.fr Silent errors 9/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Outline

1 General-purpose approach

2 Checkpointing and verification

3 Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors 10/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Outline

1 General-purpose approach

2 Checkpointing and verification

3 Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors 11/ 29

General-purpose approach Checkpointing and verification Application-specific methods

General-purpose approach

TimeXe Xd

Error
Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
­ Which checkpoint to roll back to?

Yves.Robert@ens-lyon.fr Silent errors 12/ 29

General-purpose approach Checkpointing and verification Application-specific methods

General-purpose approach

TimeXe Xd

Error
Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources

­ Which checkpoint to roll back to?
Assume verification mechanism

Yves.Robert@ens-lyon.fr Silent errors 12/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Optimal period?

TimeXe Xd

Error
Detection

Error and detection latency

Xe inter arrival time between errors; mean time µe

Xd error detection time; mean time µd

Assume Xd and Xe independent

Yves.Robert@ens-lyon.fr Silent errors 13/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Arbitrary distribution

WasteFF =
C

T

WasteFail =
T
2 + R + µd

µe

Only valid if T
2 + R + µd � µe

Theorem

Best period is Topt ≈
√

2µeC

Independent of Xd

Yves.Robert@ens-lyon.fr Silent errors 14/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!

Yves.Robert@ens-lyon.fr Silent errors 15/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Outline

1 General-purpose approach

2 Checkpointing and verification

3 Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors 16/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)

Yves.Robert@ens-lyon.fr Silent errors 17/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Base pattern (and revisiting Young/Daly)

TimeW W

Error Detection

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C S = W + V + C

WasteFF
C
T

V+C
S

Wastefail
1
µ(D + R + W

2) 1
µ(R + W + V)

Optimal Topt =
√

2Cµ Sopt =
√

(C + V)µ

Wasteopt

√
2C
µ 2

√
C+V
µ

Yves.Robert@ens-lyon.fr Silent errors 18/ 29

General-purpose approach Checkpointing and verification Application-specific methods

With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

Error Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Wasteopt = 2
√

C+V
µ

New Pattern p = 1, q = 3 Wasteopt = 2
√

4(C+3V)
6µ

Yves.Robert@ens-lyon.fr Silent errors 19/ 29

General-purpose approach Checkpointing and verification Application-specific methods

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

p checkpoints and q verifications, p ≤ q

p = 2, q = 5, S = 2C + 5V + W

W = 10w , six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

Keep only two checkpoints in memory and avoid any fatal
failure

Yves.Robert@ens-lyon.fr Silent errors 20/ 29

General-purpose approach Checkpointing and verification Application-specific methods

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

¬ (proba 2w/W) Tlost = R + 2w + V

­ (proba 2w/W) Tlost = R + 4w + 2V

® (proba w/W) Tlost = 2R + 6w + C + 4V

¯ (proba w/W) Tlost = R + w + 2V

° (proba 2w/W) Tlost = R + 3w + 2V

± (proba 2w/W) Tlost = R + 5w + 3V

Wasteopt ≈ 2

√
7(2C + 5V)

20µ

Yves.Robert@ens-lyon.fr Silent errors 21/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Outline

1 General-purpose approach

2 Checkpointing and verification

3 Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors 22/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Literature

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others

Yves.Robert@ens-lyon.fr Silent errors 23/ 29

General-purpose approach Checkpointing and verification Application-specific methods

On-line ABFT scheme for PCG

Zizhong Chen, PPoPP’13

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV

Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d

Yves.Robert@ens-lyon.fr Silent errors 24/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Conclusion

Soft errors difficult to cope with, even for divisible workloads

Investigate graphs of computational tasks

Combine checkpointing and application-specific techniques

Multi-criteria optimization problem
execution time/energy/reliability
best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems ,

Yves.Robert@ens-lyon.fr Silent errors 25/ 29

General-purpose approach Checkpointing and verification Application-specific methods

A little game?

Framework

Compute something

Energy cost C1 = 10 and failure probability f1 = 0.2

Energy cost C2 = 8 and failure probability f2 = 0.3

. . . (many other modes) . . .

Problem

You win when you get twice the same result (no false positive)

Find optimal strategy and compute expected cost

Yves.Robert@ens-lyon.fr Silent errors 26/ 29

General-purpose approach Checkpointing and verification Application-specific methods

A mutlicore game?

Framework

Now you have p cores for each trial

Can freely run each core in a different mode (including idle)

Each configuration has a cost C , and several probabilities:
- ptom = two or more successes (then you know you won)
- pone = exactly one success (but you don’t know it)
- of course f = 1− ptom − pone

Problem

You win when you get twice the same result (no false positive)

Find optimal strategy and compute expected cost

Yves.Robert@ens-lyon.fr Silent errors 27/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Back to task graphs?

Framework

You’re given a (very big) task graph

Each task produces files that you can save (checkpoint) or not

Each task can choose from different execution speeds, with
different error probabilites

You can replicate some tasks, either for verification or for
faster execution of successor tasks

You may also be able to verify results by some
application-specific mechanism

Problem

Given energy budget or power cap, minimize execution time

For each task, many things to be decided by schedule /

Yves.Robert@ens-lyon.fr Silent errors 28/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Back to task graphs?

Framework

You’re given a (very big) task graph

Each task produces files that you can save (checkpoint) or not

Each task can choose from different execution speeds, with
different error probabilites

You can replicate some tasks, either for verification or for
faster execution of successor tasks

You may also be able to verify results by some
application-specific mechanism

Problem

Given energy budget or power cap, minimize execution time

For each task, many things to be decided by schedule /

Yves.Robert@ens-lyon.fr Silent errors 28/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Back to task graphs?

Framework

You’re given a (very big) task graph

Each task produces files that you can save (checkpoint) or not

Each task can choose from different execution speeds, with
different error probabilites

You can replicate some tasks, either for verification or for
faster execution of successor tasks

You may also be able to verify results by some
application-specific mechanism

Problem

Given energy budget or power cap, minimize execution time

For each task, many things to be decided by schedule /
The fox wants to save the polar bears . . .

Yves.Robert@ens-lyon.fr Silent errors 28/ 29

General-purpose approach Checkpointing and verification Application-specific methods

Thanks

INRIA & ENS Lyon

Anne Benoit

Frédéric Vivien

PhD students (Guillaume Aupy, Dounia Zaidouni)

Univ. Tennessee Knoxville

George Bosilca

Aurélien Bouteiller

Jack Dongarra

Thomas Hérault

Others

Franck Cappello, Argonne National Lab.

Henri Casanova, Univ. Hawai‘i

Saurabh K. Raina, Jaypee IIT, Noida, India

Marc Snir, Argonne National Lab.

Yves.Robert@ens-lyon.fr Silent errors 29/ 29

	General-purpose approach
	Checkpointing and verification
	Application-specific methods

