A nice little scheduling problem

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

CCDSC 2014 — Dareizé, September 3, 2014

Yves.Robert@ens-lyon.fr Scheduling

yves.robert@ens-lyon.fr

A nice little scheduling problem

Lame motivation

Yves.Robert@ens-lyon.fr Scheduling

A nice little scheduling problem

Theorem 1
Theorem 2
Theorem 3
Theorem 4
Theorem 5
Theorem 6

Theorem 8
Theorem 9

Yves.Robert@ens-lyon.fr Scheduling

A nice little scheduling problem

Conclusion: proving Theorem 7 would be nice

Yves.Robert@ens-lyon.fr Scheduling

Algorithms for coping with silent errors

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

CCDSC 2014 — Dareizé, September 3, 2014

Yves.Robert@ens-lyon.fr Silent errors

yves.robert@ens-lyon.fr

Exascale platforms

@ Hierarchical
e 10° or 10° nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 10 years | 120 years
MTBF — platform 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

Yves.Robert@ens-lyon.fr Silent errors

@ Instantaneous error detection = fail-stop failures,
e.g. resource crash

o Silent errors (data corruption) = detection latency
Silent error detected only when the corrupt data is activated

@ Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

@ Cannot always be corrected by ECC memory

Yves.Robert@ens-lyon.fr Silent errors

@ Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

@ SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

o Silent errors are the black swan of errors (Marc Snir)

Yves.Robert@ens-lyon.fr Silent errors

Should we be afraid? (courtesy Al Geist)

Fear of the Unknown

Hard errors — permanent component failure either HW or SW
(hung or crash)

Transient errors —a blip or short term failure of either HW or SW

Silent errors — undetected errors either hard or soft, due to lack of
detectors for a component or inability to detect (transient effect

too short). Real danger is that answer may be incorrect but the
user wouldn’t know.

Statistically, silent error rates are increasing.
Are they really? Its fear of the unknown

Are silent errors really a problem
or just monsters under our bed? /

Yves.Robert@ens-lyon.fr

Silent errors

Probability distributions for silent errors

Yves.Robert@ens-lyon.fr Silent errors

Probability distributions for silent errors

Theorem: i, = Hind ¢or arbitrary distributions
p

Yves.Robert@ens-lyon.fr Silent errors

Lesson learnt for fail-stop failures

(Not so) Secret data

e Tsubame 2: 962 failures during last 18 months so = 13 hrs
e Blue Waters: 2-3 node failures per day

e Titan: a few failures per day

e Tianhe 2: wouldn’t say

2C
Topt = V21C = WASTEqp R ([—
v
Petascale: C=20min p=24hrs = WASTEos = 17%

Scale by 10: C=20min p=24hrs = WASTEqp = 53%
Scale by 100: € =20 min p = 0.24 hrs = WASTEqp = 100%

Yves.Robert@ens-lyon.fr Silent errors

Lesson learnt for fail-stop failures

Secret data

e Tsuba 02 failures during last 18 months sg
e Blue Waters: Sl failures per day
e Titan: a few failures p

Exascale # Petascale x1000
Need more reliable components
Need to checkpoint faster

C=20min pu=24hrs = Eopt = 17%
C=20min pu=24hrs = Wa t = 53%
C=20min pu=0.24hrs = WAST = 100%

Yves.Robert@ens-lyon.fr

Silent errors

Lesson learnt for fail-stop failures

(Not so) Secret data

e Tsubame 2: 962 failures during last 18 months so = 13 hrs
e Blue Waters: 2-3 node failures per day

e Titan: a few failures per day

Silent errors:

detection latency = additional problems

Petascale: C=20min p=24hrs = WASTEos = 17%
Scale by 10: C =20min pu=24hrs = WASTEq = 53%
Scale by 100: € =20 min p = 0.24 hrs = WASTEqp = 100%

Yves.Robert@ens-lyon.fr Silent errors

@ General-purpose approach
@ Checkpointing and verification

© Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach

Outline

@ General-purpose approach

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach
General-purpose approach

Error
; } Detection

X Xy Time

Error and detection latency

@ Last checkpoint may have saved an already corrupted state

@ Saving k checkpoints (Lu, Zheng and Chien):

@ Critical failure when all live checkpoints are invalid
@ Which checkpoint to roll back to?

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach
General-purpose approach

Error
; } Detection

X Xy Time

Error and detection latency

@ Last checkpoint may have saved an already corrupted state

@ Saving k checkpoints (Lu, Zheng and Chien):
@ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources
@ Which checkpoint to roll back to?
Assume verification mechanism

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach

Optimal period?

Error
; } Detection

X. Xy Time

Error and detection latency

@ X inter arrival time between errors; mean time pi
@ X, error detection time; mean time gy

@ Assume Xy and X, independent

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach
Arbitrary distribution

C
WASTEFF = —
FF = T
T
T+R+
WASTER,j = 27/”
He

Only valid if % + R+ pg < e

@ Best period is Topt = /241 C
@ Independent of Xy

Yves.Robert@ens-lyon.fr Silent errors

General-purpose approach
Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) @ ® ®

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!

Yves.Robert@ens-lyon.fr Silent errors

Checkpointing and verification

Outline

@ Checkpointing and verification

Yves.Robert@ens-lyon.fr Silent errors

Checkpointing and verification

Coupling checkpointing and verification

@ Verification mechanism of cost V
@ Silent errors detected only when verification is executed

@ Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

o Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)

Yves.Robert@ens-lyon.fr Silent errors

Checkpointing and verification

Base pattern (and revisiting Young/Daly)

Error Detection
V| C ; V| C V| C
w W Time
Fail-stop (classical) | Silent errors

Pattern T=W+C S=W+V+C
WASTEFF % %
WASTEgi | (D + R+ %) LR+ W+ V)
Optimal Topt = V2Cp Sopt =/ (C+ V)
WASTEopt | /25 2,/

Yves.Robert@ens-lyon.fr

Silent errors

Checkpointing and verification

With p =1 checkpoint and g = 3 verifications

Error Detection
f<] I_I;F% el [Fl[M e

w w w w w w Time
Base Pattern | p=1,g =1 | WASTEqpt = 2 %
4(C+3V
New Pattern | p=1,q9 =3 | WASTEqp: = 2 %

Yves.Robert@ens-lyon.fr Silent errors

Checkpointing and verification
BALANCEDALGORITHM

el [[[[[[T

A ow ow Time

2w 2w

p checkpoints and g verifications, p < g
p=2,9g=5S5S=2C+5V+ W
W = 10w, six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

@ Keep only two checkpoints in memory and avoid any fatal
failure

Yves.Robert@ens-lyon.fr Silent errors

Checkpointing and verification
BALANCEDALGORITHM

el M MM [[

N ow ow Time

2w 2w

@ (proba 2w/W) Tiost = R+2w + V

@ (proba 2w/ W) Tiost = R+ 4w + 2V

@ (proba w/W) Tiost =2R+6w + C +4V

@ (proba w/W) Tiost = R+ w +2V

® (proba 2w/W) Tiost = R + 3w + 2V

® (proba 2w/W) Tiost = R+ 5w + 3V
WASTEqp: ~ 2 7(2(;025\/)

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods

Outline

© Application-specific methods

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods
Literature

e ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

@ Asynchronous (chaotic) iterative methods (old work)

o Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

e FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

@ PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

@ ... Many others

Yves.Robert@ens-lyon.fr Silent errors

On-line ABFT scheme for PCG

1 : Compute r'0) = b— Az(0) 2(0) = pr—1p(0) p(0) = (00
and pp ='rl'mllz“n for some initial guess ()
2 : checkpoint: A, M, and b
3 : for i=0,1,...
4 if ((i>0) and d=0))
5 : if (. > 1071
or ,: - =bl| = 1010y
6 : recover: A, M, b, i, pi,
p'.'!,'J J.l'!_‘., and (i,
T : else if (%(ed) =0)
g8 : checkpoint: i, p;, p"i-", and x(%)
9: endif
10: endif
11: q{"} = A;p':"':'
12: P ORI O]
13: gl = gli) 4 gpld)
14 PO = 8 _ ()
15: solve Mzt = ;—H*l)_ where M = M7
16: pigq = rHDT 6D
17: Bi = pis1/p
10: pli+1) = L(i+1) | g, p(0)
19: check convergence; continue if necessary
20: end

Yves.Robert@ens-lyon.fr

Application-specific methods

Zizhong Chen, PPoPP'13

@ lterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

@ Detect soft errors by checking
orthogonality and residual

@ Verification every d iterations
Cost: scalar product+SpMV

@ Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

@ Experimental method to
choose ¢ and d

Silent errors

Application-specific methods
Conclusion

Soft errors difficult to cope with, even for divisible workloads
Investigate graphs of computational tasks
Combine checkpointing and application-specific techniques

Multi-criteria optimization problem
execution time/energy/reliability
best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems @ J

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods
A little game?

Framework

o Compute something

@ Energy cost C; = 10 and failure probability 1 = 0.2
@ Energy cost C, = 8 and failure probability f» = 0.3
o

... (many other modes) ...

Problem
@ You win when you get twice the same result (no false positive)

e Find optimal strategy and compute expected cost

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods
A mutlicore game?

Framework
@ Now you have p cores for each trial
@ Can freely run each core in a different mode (including idle)
@ Each configuration has a cost C, and several probabilities:
- p'™ = two or more successes (then you know you won)

- p°"® = exactly one success (but you don’t know it)

- of course f =1 — ptom — pone

Problem
@ You win when you get twice the same result (no false positive)

@ Find optimal strategy and compute expected cost

Silent errors

Yves.Robert@ens-lyon.fr

Application-specific methods

Back to task graphs?

Framework

@ You're given a (very big) task graph

Each task produces files that you can save (checkpoint) or not

Each task can choose from different execution speeds, with
different error probabilites

@ You can replicate some tasks, either for verification or for
faster execution of successor tasks

You may also be able to verify results by some
application-specific mechanism

Problem
@ Given energy budget or power cap, minimize execution time

@ For each task, many things to be decided by schedule ®

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods

Back to task graphs?

Framework

@ You're given
@ Each task prq heckpoint) or not

@ Each task ca
different erro

bn speeds, with

@ You can repli ication or for

faster executi

@ You may also
application-sg

Problem
execution time
schedule ®

@ Given energy

@ For each task

Yves.Robert@ens-lyon.fr Silent errors 28/ 29

Application-specific methods

Back to task graphs?

10t

Pr e

The fox wants to save the polar bears ...

Yves.Robert@ens-lyon.fr Silent errors

Application-specific methods
Thanks

INRIA & ENS Lyon
@ Anne Benoit
@ Frédéric Vivien
e PhD students (Guillaume Aupy, Dounia Zaidouni)
Univ. Tennessee Knoxville
@ George Bosilca
@ Aurélien Bouteiller
@ Jack Dongarra
@ Thomas Hérault
Others
Franck Cappello, Argonne National Lab.

Henri Casanova, Univ. Hawai'i
Saurabh K. Raina, Jaypee IIT, Noida, India
Marc Snir, Argonne National Lab.

Yves.Robert@ens-lyon.fr Silent errors

	General-purpose approach
	Checkpointing and verification
	Application-specific methods

