
Answering the Really Important Questions!
Once and For All  

 
(my humble contribution to this panel)

Thilo Kielmann  
Thilo.Kielmann@vu.nl

1

mailto:Thilo.Kielmann@vu.nl?subject=


2

Disclaimer:	


!

Exascale…	


!
1-2 orders of magnitude bigger than 
the limits of my imagination	





When will we have a 
Linpack-exaflop machine?

• I don’t know. I am not a hardware guy…  

• Why don’t you ask Satoshi?

3



When will we have a 
Linpack-exaflop machine? (2)

• We won’t. (There is this resiliency thing…)  

• But that is a bit pessimistic.

4



When will we have a 
Linpack-exaflop machine? (3)

• Well, we actually could have one, if we manage to 
handle this fault-tolerance issue…  

5



What fault-detection, fault-avoidance, and/or fault-
recovery mechanisms do you see in use now?

• working assumption: 

• MTBF(exascale) << application runtime 

• Active replication: (3-fold) 

• I doubt we could afford wasting 2/3 of the machine, esp. at exascale 

• Checkpoint/restart 

• All checkpoints are overhead (except for the last one) 

• Can we usefully checkpoint leaving large fractions of time available 
for the application? (more doubts) 

6



But there are huge systems already in 
commercial production!

7



What can we learn from the cloud?!

• Data centers and supercomputers are siblings, separated at birth: 

• Large numbers of machines 
• Heterogeneous system 

• (certainly after the first hardware upgrade) 
• Lots of data 
• Large numbers of users who don’t want to wait 
• Energy consumption in the MWatt range 
• Failure probability for the whole system ≈1 (?) 

• And it seems to work well…

8



What is different?
• Build a reliable system from (many) unreliable 

components 

• Do not expect the whole machine (data center) to 
sustain operation without failures 

• Instead, have many, small units encapsulating 
failures, along with resilience mechanisms 

• replicate data (only)?

9



In 5-10 Years, HPC will be in 
the cloud!

• Maybe, most of it ?? 

• But only if the search engines, OS vendors, and book sellers of this 
world will get it right… 

• PaaS and SaaS define the vocabulary for the future HPC-C programmer 

• how to define this? who determines that? 

• what kind of QoS/SLO can we define? 

• what kind of SLO do you want for a saxpy ? 

• Even for IaaS clouds, we live with “r3.8xlarge” rather than with 
Gflops x Gbytes-mem x Pbytes-persistent 

10



Why isn't everyone 
programming in D?

• What is a programming language? 

• Wikipedia: A programming language is a formal constructed 
language designed to communicate instructions to a machine, 
particularly a computer. 

• This is missing the point, the human factor: 

• A programming language is designed for humans to 
communicate their ideas about how a computer should execute 
something.

11



Why isn't everyone 
programming in D? (2)

• Humans are different by: 

• programming education (hobbyists physicists, …, professionals 
computer scientists) 

• cultural background (Fortran, COBOL, Lisp, C, Python,…) 

• personal preferences (typed vs. untyped, imperative vs. 
declarative,…) 

• Problems are different: 

• different nails need different hammers

12



Why isn't everyone 
programming in D? (3)

• This is a new formulation of a very old question, a nice red herring 
for computer scientists. 

!

• See also: NIERSTRASZ, Oscar. The next 700 concurrent object-
oriented languages. Reflections on the future of object-based 
concurrency. Object composition, Centre Universitaire 
d'Informatique, University of Geneva, 1991.

13



Why isn't everyone 
programming in D? (4)

• I don’t believe in a single best programming language or model. 

• We can agree to disagree, as long as everybody can solve his/her 
own problems in the his/her personal comfort zone.

14



What is the "Big Data" version of the Linpack 
benchmark?

• What about Graph500?

15



What are YOU currently doing to bring about the golden 
age of computational science?!
Don't be shy.

• Ask me in the wine cellar! 

• I promise, I won’t be shy…

16


