Answering the Really Important Questions

(a few of them)

Al Geist Corporate Fellow Oak Ridge National Lab

> CCDSC 2014 Lyon France September 3, 2014

ORNL is managed by UT-Battelle for the US Department of Energy

Fault Tolerance -- Everything's fine What a/b Al's doom and gloom?

- Fundamental assumptions of applications and system software design did not anticipate exponential growth in parallelism
- Fault rate proportional to number of components. Jaguar and Titan have very different components and different number of cores, but approximately the same number of components.
- Memory is a special case. It is prone to cosmic ray errors proportional to area and circuit design. Jaguar saw ECC bit flips at rate of 350/min (1 flip/min/TB)
- Today's apps rely on checkpoint/restart and systems have improved RAS to handle increased fault rate. Titan loses a node every 1.5 days but system hasn't crashed in over 7 months!

China Milkyway2 3.1M cores 2013

USA Sequoia 1.5M cores 2012

Number of cores in Top systems 2000-2009

Fault Tolerance – Don't Worry, Be Happy! . . . Sort of

- Chekpoint will get a huge boost as NVRAM on node becomes the norm. Time to chekpoint drops to only a few seconds to a few minutes.
 - This provides the ability to have a higher chekpoint rate.
 High enough even for exascale... BUT
- Increased danger of wrong answers as Undetected error rates increase which don't trigger a restart and can get written out into the chkpt file.
- Need to reduce undetected error rate through improved detection in HW & SW

I didn't want the (grapes) right answer anyway

Ideal Exascale Research Program given a budget of 100 Million Euro

- Step 0 Don't do what the USA has done.
 - Exascale Plan delayed to FY16 due to two restarts (long story)
 - \$100M sent to vendors to do "research", which vendors admit will not be used in their exascale systems.
- Step 1 Set up long-term partnerships between your major Computer Centers and vendors
- Step 2 Have vendors (or vendor consortia) develop an viable roadmap to exascale based on the needs and constraints of the Computer Centers and their users
- Step 3 Fund vendors and research community to do the longrange research needed to address power, resilience, productivity of systems on the roadmap
- Step 4 Centers negotiate with their partner vendors to procure
 a series of ever bigger systems on that vendor's roadmap.
 Providing users a long-term common environment.

When will we have a Linpack-exaflop machine?

Exascale in the USA not until 2022

DOE Facilities have a fixed 4-5 year cadence

Present Roadmap for Largest US supercomputers 2012 - 2022

CORAL-2 1000 PF

Trinity-2 250-300 PF

CORAL 100-200 PF

Trinity 60 PF

Titan 26 PF and Sequoia 20PF

Power constraints of 20-30 MW facilities and pay-off schedules of 4 year leases limit accelerating this Roadmap to 2020.

What will it look like Architecturally? Physically?

When the first application reaches 1/4 exaflop on this?

ORNL's Jaguar was first computer to run application at sustained 1 PF

It took less than 2 months after delivery for this to happen

Physically

- 300-400 cabinets
- Consume 25-30 MW power
- Likely the last generation of HPC in CMOS (5-7 nm feature size)

Architecturally

Two diverse trends:

- Sea of many-core CPUs with millons of nodes and a billion cores
- Sea of GPUs controlled by few CPUs with 100,000 large nodes

Big change in memory architecture

High Bandwidth stacked memory and NVRAM on all these nodes.

Another Really Important Question

What if we do "Nothing"?

What has Al been up to? Not so important **CORAL** Collaboration ORNL, ANL, LLNL)

Current DOE Leadership Computers

Objective - Procure 3 leadership computers

Mira (ANL) 2012 - 2017

to be sited at ANL, ORNL and LLNL in CY17

Leadership Computers RFP requests >100 PF, 2 GB/core main memory, local NVRAM, and science performance 4x-8x the max(Titan, Sequoia)

Approach

Competitive process - one RFP (issued by LLNL) leading to 2 R&D contracts and 3 computer procurement contracts

For risk reduction and to meet a broad set of requirements,

2 architectural paths will be selected

Once Selected, Multi-year Lab-Awardee relationship to co-design computers

Both R&D contracts jointly managed by the 3 Labs

Each lab manages and negotiates its own computer procurement contract, and may exercise options to meet their specific needs

Understanding that long procurement lead-time may impact architectural characteristics and designs of procured computers

