DIVIDE & CONQUER ON HYBRID GPU-ACCELERATED
MULTICORE SYSTEMS
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Abstract. With the raw compute power of GPUs being more widely available in commodity
multicore systems, there is an imminent need to harness their power for important numerical li-
braries such as LAPACK. In this paper, we consider the solution of dense symmetric and Hermitian
eigenproblems by LAPACK’s Divide & Conquer algorithm on such modern heterogeneous systems.

We focus on how to make the best use of the individual strengths of the massively parallel
manycore GPUs and multicore CPUs. The resulting algorithm overcomes performance bottlenecks
that current implementations, optimized for a homogeneous multicore face. On a dual socket quad-
core Intel Xeon 2.33 GHz with an NVIDIA GTX 280 GPU, we typically obtain up to about 10-fold
improvement in performance for the complete dense problem.

The techniques described here thus represent an example on how to develop numerical software
to efficiently use heterogeneous architectures. As heterogeneity becomes common in the architecture
design, the significance and need of this work is expected to grow.
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1. Introduction. LAPACK [2, 12] is one of the fundamental numerical libraries.
With a foundation of several decades of research in numerical linear algebra, today it
faces the challenge of having to adapt to new hardware trends to maintain its edge
from the high performance computing point of view.

As chip designers have to balance parallel performance and power consumption,
heterogeneous hybrid GPU-based multicore platforms are setting out to become an
important standard in contemporary platforms. The Matrix Algebra on GPU and
Multicore Architectures (MAGMA) project [1, 27, 40, 41] aims at providing LAPACK
functionalities on these new architectures. Recent efforts within this framework have
focused on one-sided factorizations [26, 42] and reduction to Hessenberg form [39].

However, with eigenvalue problems being ubiquitous in computational science,
availability of modern eigensolvers is a key component of the scientific software in-
frastructure and indeed crucial for application scientists from a large variety of disci-
plines. Note that dense eigenproblems do not only occur in their own right but also
as a key subproblem in projection-based sparse eigensolvers, see the comments in a
recent review paper on eigensolvers in electronic structure calculations [32]. Thus we
address in this paper the solution of Hermitian and real symmetric eigenproblems by
means of the Divide & Conquer algorithm [10, 20].

The core Divide & Conquer scheme in its original form applies to real symmet-
ric tridiagonal systems. By standard practice [2, 30], one first transforms the dense
real symmetric or complex Hermitian eigenproblem into a tridiagonal one via an or-
thogonal, respectively unitary, similarity transformation. Once the tridiagonal eigen-
problem has been solved in a second step, the solution of the dense eigenproblem is
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obtained by applying the appropriate orthogonal transformation to the eigenvectors
from the tridiagonal part.

The organization of this paper is as follows. Section 2 reviews the ideas behind
the Divide & Conquer algorithm from the theoretical and the high performance point
of view. Section 3 describes the key points to address in order to obtain a high
performance version of the algorithm on hybrid GPU-accelerated multicore systems.
All three parts of the dense problem are covered: the reduction to tridiagonal form
(Phase 1, Section 3.1), the solution of the tridiagonal problem (Phase 2, Section 3.2),
and the final orthogonal transformation of the eigenvectors (Phase 3, Section 3.3).
In Section 4, we study test cases and show performance results on our test system,
a dual socket quad-core Intel Xeon 2.33 GHz with an NVIDIA GTX 280 GPU. In
Section 5, we discuss perspectives and future work.

2. A brief overview of Divide & Conquer for tridiagonal eigenproblems.
In his important review in 1973, Golub [19] first developed the theory of tridiagonal
eigenproblems with a rank-1 modification. Bunch et al. [9] investigated this idea for
the first time experimentally in 1978. Building on these works, Cuppen [10] then
proposed a recursive scheme to solve the full tridiagonal eigenproblem in Divide &
Conquer fashion.

To obtain the eigenvalues and -vectors of a real symmetric tridiagonal matrix T,
three steps are performed:

1. The tridiagonal (sub-)eigenproblems 77 = Q:A1Q7 and Ty = Q2A2QY are
solved for two matrices 17,75 which are, up to a rank-1 modification, the
diagonal blocks of the original system 7.

2. Using the eigenpairs of 77,75, all eigenvalues of T are computed by solution
of a secular equation.

3. Once the eigenvalues of T' are known, the eigenvectors of T are computed
in two phases, consisting of an appropriate diagonal scaling followed by a
matrix-matrix multiplication.

The solution of the two eigenproblems in step 1 can be performed by any method. In
particular, the algorithm can be applied recursively, leading to the Divide & Conquer
algorithm.

However, in practice the theoretically elegant ideas incur some surprisingly hard
numerically difficulties [16, 37]. The solution of the secular equation in step 2 is far
from trivial [24]. Moreover, numerical instabilities in a naive implementation can ruin
the numerical orthogonality of the eigenvectors computed in step 3. Only in 1995, Gu
& FEisenstat finally cured the orthogonality issues in numerically backward stable fash-
ion [20] by invoking an earlier result from perturbation theory [25]. Their ingenious
modification made the Divide & Conquer algorithm sufficiently reliable to be one
of LAPACK’s workhorses for the symmetric eigenproblem [2, 13, 24, 31]. A parallel
implementation for distributed memory architectures is also part of ScaLAPACK [38].

2.1. Theoretical aspects of Divide & Conquer. We review the algorithmic
steps in the Divide & Conquer scheme. For a pedagogical treatment at textbook level,
we refer the reader to the presentation in [11] on which the following description is
based.
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Consider the unreduced symmetric tridiagonal matrix 7" block-partitioned as
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where the classical choice is m = |n/2]. Hence T can be considered a rank-1
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For the computation of the eigenvalues of T in step 2, it thus suffices to work with
the similar matrix D + puu®. Here, D := blockdiag(A1, As) and p := b,,. If D — \I
is nonsingular, then

(2.4) det(D + puu” — M) = det (D — M)(I + p(D — X\) " tuu™)) .

1Both LAPACK and ScaLAPACK [38] make this choice. In a hybrid heterogeneous computing
environment, it can also make sense to consider an uneven partition, see the remarks in Section 3.2.
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This yields for step 2 a secular equation whose roots are the eigenvalues of T"

n 2
u.

(2.5) 0=1+py .
i=1 di — A

In step 3, for each (non-deflated) eigenvalue A of D + puu’’, one can compute the
corresponding eigenvector from

(2.6) (D — M)~ tu.

By (2.3), pre-multiplication of the vectors from (2.6) with blockdiag(Q1, Q2) finally
yields the eigenvectors of T.2

2.2. Performance aspects of Divide & Conquer. For a performance anal-
ysis, we now return to the overall algorithm from the beginning of Section 2. If we
assume that step 1 has been performed by a recursive call to the same algorithm,
what remains is to look at steps 2 and 3. (In [11], one can find an evaluation of the
recursive costs including step 1.)

It turns out that there is a both elegant and efficient algorithm for computing the
roots of the secular equation (2.5) in step 2. The details are given in [11, 24], we just
sketch the ideas here. As a consequence of eigenvalue interlacing [30], the roots are
located between poles of the secular function. Thus, if one replaces the linear model
in Newton’s root finder by a hyperbolic one determined by those poles, convergence
is fast and within O(n?) operations for all n eigenvalues.

The computations of 4 and of the eigenvectors of D+ paa” in step 3 have the same
complexity, O(n?) operations. The last part of step 3 however, the pre-multiplication
with blockdiag(Q1,@2), has O(n3) complexity when the matrices Q1, Q2 are dense,
making it the cost-dominating part of the overall scheme.

This is demonstrated by actual data displayed in Figure 2.1. We consider the
tridiagonal arising from a shifted 1D Laplace problem. Shown is the fraction of the
floating point instructions (using PAPI [7, 8] and TAU [36]) for the main components
of the algorithm. Function slaed3 holds exclusively the dense matrix multiplications.

In practical experiments, it turns out that the complexity of the Divide & Con-
quer algorithm varies with the matrix at hand [10, 13, 38]. There is a phenomenon
called deflation when the two submatrices T, T5 have a (numerically) identical eigen-
value, or if one entry of @ is numerically negligible. Deflation allows to omit the
eigenvector computation by explicit matrix-matrix multiply for those vectors where
deflation occurs. When substantial deflation occurs, the computational complexity
of tridiagonal Divide & Conquer becomes closer to quadratic rather than cubic. In
contrast to that, the example from Figure 2.1 shows one of the most difficult matrix
classes for the Divide & Conquer algorithm, see the remarks in [13, 28], and is thus a
good benchmark problem for our solver.

3. Achieving High Performance on Hybrid GPU-accelerated Multicore
Systems. The development of high performance linear algebra for homogeneous mul-
ticore architectures has been successful in some cases, and difficult for others. The

2While (2.6) holds in theory, one can see that in finite precision this formula can easily cause
complications for close eigenvalues. The computed vectors lose their orthogonality. However, as a
cure one can replace u by a numerically near-by # in the eigenvector formula and obtain, with careful
evaluation of the associated expression, numerically orthogonal vectors, see [11, 20] for more details.
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Fic. 2.1. Fraction of the floating point instructions for the main components of the tridiagonal
Divide & Congquer algorithm on three tridiagonal Toeplitz matrices of increasing size — the bulk is in
slaed3, the matriz-matric multiplications of the algorithm. This establishes the itmportance of this
kernel for high performance.

situation is similar for GPUs — some algorithms map well while others do not. A com-
bination of multicore and GPUs though can be beneficial if the respective individual
strengths of the two components can be leveraged successfully. In this way, a hybrid
algorithm that properly splits and schedules the tasks (so that expensive communi-
cations are either avoided or overlapped with computations as much as possible) can
be very efficient [40].

Indeed, hybrid algorithms have been successfully used in a number of one and
two-sided matrix factorizations [39, 42]. A key ingredient for the one-sided matrix
factorizations is the splitting of the computations into a so-called panel-factorization
on the CPU, followed by updates of the Schur complement, done on the GPU. This
particular task scheduling is mandated by the fact that the panel factorization is inef-
ficient on the GPU while updates on the other hand can be performed very efficiently
there.

Our eigensolver requires a two-sided reduction to tridiagonal form but similar
considerations apply in this context. The essential details are given in Section 3.1.
The performance-relevant aspects of the tridiagonal Divide & Conquer part have been
described in the previous Section 2.2, their influence on the technical execution is
described in Section 3.2. The back-transformation of the eigenvectors is conceptually
the easiest and briefly reviewed in Section 3.3.

3.1. Phase 1: reduction to tridiagonal form. For the sake of simplicity in
presentation, we assume henceforth the dense system at hand to be real symmetric
but the following discussion applies equally to the complex Hermitian case.

The first phase of the overall procedure consists of reducing the given matrix A
to real symmetric tridiagonal form,

(3.1) T = QT AQ.

The orthogonal similarity transformations used in this step form @ as a product of
elementary Householder reflectors, see for example LAPACK’s subroutine sytrd. A
single Householder reflector is designed to annihilate all elements below or above the
first off-diagonal of A, see [11].



6 C. Vomel, S. Tomov, and J. Dongarra

In terms of work in the overall algorithm, Phase 1 generally is the most expensive
one of the three phases [13, 43]. Achieving high performance is thus especially impor-
tant here. In a related context, namely the orthogonal reduction of a non-symmetric
matrix to Hessenberg form [39], it was noted that the traditional reduction from
dense to tridiagonal form does not maintain high performance when migrated from
the traditional single-core LAPACK environment to multicore architectures. It was
found that with up to 20% of the work consisting of Level 2 BLAS operations, the
overall algorithm would run at only a small fraction of the machine’s theoretical peak
performance. This bottleneck is aggravated in the two-sided reduction to tridiagonal
form where the Level 2 BLAS can make up to 50% of the total number of floating
point operations.

One important approach to overcoming this dilemma consists of a reduction to
intermediate banded and subsequent tridiagonal form [5, 6, 21, 22, 23]. Reduction to
banded form can be done using BLAS 3 and avoids complicated data dependencies
that would otherwise impose Level 2 BLAS operations. However, it is still hard to
achieve high performance in the bulge-chasing technique used to go from narrow-
banded to tridiagonal form and GPU-acceleration may mainly benefit the reduction
to banded form [3].

Alternatively to the aforementioned strategy, we adapt the panel-factorization
techniques outlined in [39] to our case. The data for A is copied to the GPU and all
subsequent Level 3 BLAS updates are performed directly on the GPU. The panels
are factored in a hybrid fashion, using both the CPU and GPU. From the technical
point of view, the algorithm mirrors the LAPACK implementation of the compact
WY block Householder transformation [4, 35]. Communications occur only for the
computation of the Householder data while processing the panels. Once it is available
on the GPU, a panel is sent back to the CPU. There, all factorization operations
with memory-footprint restricted to the panel are performed using LAPACK code.
The time-consuming (Level 2 BLAS) symmetric matrix-vector products of the trailing
submatrix with the Householder transformation vectors are not performed on the CPU
but on the GPU where this can be done more efficiently. Since the trailing matrix
is already on the GPU, we only have to send the corresponding Householder vector,
perform the matrix-vector product on the GPU and, finally, return the result back to
the CPU.

In summary, communications concern panel data (GPU to CPU), the computed
Householder data (CPU to GPU), and the result of block Householder vector times the
trailing submatrix (GPU to CPU). The intermediate Householder vectors and their
products with the trailing sub-matrices are kept on the GPU as well and used in the
subsequent trailing matrix update. Note that every panel communication of O(n xnb)
data involves O(n? x nb) flops in updates, and that every O(n) Householder data
transfer can be amortized by O(n?) flops in the subsequent matrix-vector product.
This O(n) ratio between floating point operations and data communication is key for
efficiency, the same consideration that motivated the original development of blocked
algorithms in the later 1980s [17].

3.2. Phase 2: Divide & Conquer for the tridiagonal eigenproblem. Key
to achieving high performance in the second phase of the algorithm is again the
amortization of expensive communication between CPU and GPU through algorith-
mic parts with a favorable ‘volume/surface’ ratio between floating point operations
and data traffic.

In Divide & Conquer, these considerations concern to a large extent the efficient
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combination of (possibly multi-threaded) Level 3 BLAS on the (multicore) CPU, and
of Level 3 BLAS that has been optimized for the GPU. Indeed, Figure 2.1 showed
that in the hardest cases, when deflation is not possible, the bulk of the computation
lies in matrix-matrix multiplications to obtain eigenvectors from those of the two
submatrices (see the last part of Step 3 in Section 2.1).

In order to achieve high performance, it is necessary to involve both the CPU and
GPU in the computation, with the workload balanced according to communication
costs and computational performance. One previous example of such an approach for
GPU-acceleration was investigated in [18] in the context of the LU factorization.

As a starting point, one can compute the Level 3 BLAS matrix-matrix multiply
(GEMM) performance ratio of multicore CPU vs GPU as an indicator of how to
split between the CPU and the GPU. Subsequently, the ratio of the splitting can be
adjusted to account for the data transfer time and other factors.

In the architecture used in the experiments shown in Section 4, a hybrid dual
socket quad-core Intel Xeon 2.33 GHz with NVIDIA GTX 280 GPU, it turned out as
optimal to off-load about 75% to the GPU and leave 25% to the CPU, corresponding
to a performance ratio of 3 to 1. In general, the work-balance between CPU and GPU
is an important parameter that is to be tuned, even automatically, to account for the
heterogeneity. It is interesting that the work distribution could both be done on the
scheduling level or, equivalently, in the mathematical formulation by allowing uneven
partition of the tridiagonal matrix, see the remarks in Section 2.1.

It is possible to even further economize on the amount of data movement. Recall
that one of the factors in the cost-dominating matrix-matrix product is generated from
(2.6). Thus, instead of sending the eigenvectors of D + puul as a dense matrix, it is
better to just send the data necessary for invoking (2.6) and perform the computations
locally. In this context, note that the calculation of different eigenvectors of D + puu®
by (2.6) is data-parallel and thus well suited for the GPU.

3.3. Phase 3: eigenvector computation. From the algorithmic point of view,
Phase 3 is the most straightforward. We have to perform the matrix-matrix multi-
plication between @) from Phase 1 and the matrix of eigenvectors of the tridiagonal
matrix from Phase 2. When Phase 1 is executed as described in Section 3.1, all the
computations of Phase 3 are Level 3 BLAS and can be efficiently applied both on the
CPU and the GPU.

Since @ is stored as product of block Householder reflectors in WY form [4, 35],
nothing has to be recomputed during the application of ). The multiplication is
performed simultaneously for different subsets of eigenvectors on GPU and CPU.
Similar to Phase 2, the workload is balanced to account for the different computational
capacities and communication costs.

4. Test Problems and Results. This Section shows performance data for all
three phases of the eigensolver described in Section 3. The architecture used for
this study is a dual socket quad-core Intel Xeon CPU E5410 @2.33 GHz with an
NVIDIA GTX 280 GPU attached through a PCI-e x16 slot. The GTX280 GPU has
30 multiprocessors, each multiprocessor having eight SIMD functional units @1.33
GHz. The theoretical performance peaks in single precision are 936 GFlop/s for the
GTX280 and 149 GFlop/s for the eight core CPU host; the theoretical bus bandwidth
peaks are correspondingly 141.7 GB/s for the GPU and 10.64 GB/s for the CPU.
Achievable bandwidth peaks (through the PCl-e x16) are 5.7 GB/s host to device
and 5.5 GB/s device to host using pinned memory. The latency for transfers in either
direction is about 11 microseconds. We use CPU BLAS and LAPACK from MKL 10.3
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and GPU BLAS from CUBLAS 4.0 RC and MAGMA 1.0 RC4. All computations are
performed in single precision. Achievable SGEMM performances using these libraries
are 375 GFlop/s for the GPU and 128 GFlop/s for the CPU. The GPU driver used
is 270.27 from NVIDIA.

The presentation of the following results is analogous to the layout of Section 3.
The performance of the reduction to tridiagonal form is shown in Section 4.1; Sec-
tion 4.2 gives details about the tridiagonal part, and Section 4.3 presents the trans-
formation of the eigenvectors.

In order to interpret the results, it is important to keep in mind that the com-
plexity of Phases 1 and 3 is determined by the dimension of the original dense matrix.
The complexity of Phase 2 however, the tridiagonal problem, depends on both the
matrix dimension and the numerical data of the tridiagonal at hand, see the remarks
in Section 2.2. Further, performance depends on the type of the kernels used and
the amount and frequency of data transfers between the CPU and the GPU. This is
discussed separately below for each of the three phases.

4.1. Phase 1: reduction to tridiagonal form. As pointed out in the intro-
ductory remarks, the reduction of a dense matrix to tridiagonal form is oblivious to
the numerical data. It thus suffices to study performance for just one class of sample
matrices.

Figure 4.1 shows the performance of the dominating part, Phase 1 from Sec-
tion 3.1, the reduction to tridiagonal form.
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Fic. 4.1. Performance of the reduction to tridiagonal form on a single and eight Intel Xeon
2.83 GHz cores using MKL, and a hybrid system of eight Intel Xeon cores and a GTX280 GPU.
MAGMA denotes our algorithm.

The gains of the reduction to tridiagonal form mirror those reported for reduction
to Hessenberg form in [39]. The performance of up to about 120 GFlops demonstrates
the usefulness of GPU acceleration of this phase.

The CPUs with MKL perform well as long as a matrix is small enough to fit
into the fast local caches in the memory hierarchy. For larger problems however, we
observe a performance drop on the CPUs that is to be expected for memory-bound
computations. In contrast, the hybrid code can well amortize latency costs of CPU-
GPU data transfers for larger matrices through available parallelism. This accounts
for the greater performance seen on the larger problems.
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The time for the CPU-GPU data transfers are included in the measurements.
At the beginning of this phase the matrix is on the CPU memory. It is copied once
to the GPU memory at the beginning of the computation. Further, throughput the
computation panels (blocks of 32 columns below the diagonal) are transferred to the
CPU and panel results of the same size are copied back to the GPU. This amounts to
communicating about 2n?/2 elements between the CPU and GPU in 2n/32 transfers.
In addition, to process each column of a panel, data of size of the column is sent to
the GPU, multiplied by the trailing matrix, and the result sent back to the CPU.
This amounts to a total of 2n?/2 elements transferred in about 2n transactions. To
summarize, the communication for this phase amounts to 3n? elements transferred in
2n +n/16 + 1 transactions.

4.2. Phase 2: Divide & Conquer for the tridiagonal eigenproblem. We
first return to the benchmark problem in Figure 2.1 from Section 2.2. Toeplitz-like
eigenvalue distributions represent one of the most difficult matrix classes for the Di-
vide & Conquer algorithm [13, 28]. In fact, for these kind of problems, LAPACK’s
tridiagonal MRRR algorithm [14, 15], its biggest competitor, runs an order of mag-
nitude faster, see [13, 28].

The difficulties of LAPACK’s Divide & Conquer can be directly attributed to its
O(n?) complexity. Figure 4.2 demonstrates this on a single core.
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F1G. 4.2. Sequential execution time for the Divide & Conquer using one single Intel Xeon 2.33
GHz core and MKL. Shown are the times for the O(n®) flops in matriz-matriz multiply (GEMM)
and for the rest O(n?) flops (in the bubbles) for various matriz sizes.

However, using the techniques outlined in Section 3.2, the algorithm can be accel-
erated substantially. The left part of Figure 4.3 shows the speedup of the parts with
O(n?®) complexity; the right part displays the total speedup of the overall tridiagonal
problem.

The results show that the performance of the hybrid matrix-matrix multiply
(GEMM) scales both with increasing the number of CPU cores and when adding
the GPU. Operations are split in a ratio of one to three between the eight CPU cores
and the GPU, as described in Section 3.2. The computations are overlapped with
the transfers to and from the GPU. With the strong scaling of the O(n?) part, the
smaller O(n?) part of the overall algorithm then becomes a bottleneck, resulting in a
total speedup of 9.
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Fic. 4.3. Speedup in the tridiagonal Divide & Congquer due to Level 3 BLAS (left) and the
resulting speedup for the overall tridiagonal algorithm (right). The results are for two systems — a
multicore system with eight Intel Xeon 2.83 GHz cores (using MKL), and a hybrid system of the
same multicore but enhanced with a GTX280 GPU. MAGMA denotes our algorithm

In order to understand what fluctuations in performance a user could encounter in
practice on the tridiagonal part, we also ran our code for a variety of application test
matrices from electronic structure calculations. As extremes we encountered on one
end a matrix class from LAPW [33] which behaved just like the benchmark problem
above. On the negative end, we found a matrix class from SIESTA [34] where only
50% performance gains were achievable. On matrices from the test collection [28]
where some deflation happens, the tridiagonal Divide & Conquer algorithm tended to
behave more like an O(n?8) rather than an O(n3) algorithm [13]. Thus, on average
the practitioner can expect about 80% of the speedup reported for the model problem.
A heuristic argument due to Cuppen [10] suggests that the less diagonally dominant
a tridiagonal at hand, the closer it resembles the above benchmark problem. There
seems no precise, formal proof of this assertion but it can well serve a practitioner to
make a first educated guess.

4.3. Phase 3: eigenvector computation. Figure 4.4 shows the performance
of matrix-matrix multiply needed for Phase 3 of the overall algorithm. Just like
Phase 1, this operation is oblivious to the numerical data and one class of sample
matrices suffices to show what performance can be expected.

Like in Phase 2, a good load balance ratio is about one to three between the
eight CPU cores and the GPU. Besides participating in the update of the orthogonal
matrix, one of the CPU cores is responsible for the triangular factors of the block
Householder reflectors. In addition to the eigenvector matrix data, the CPU-GPU
communications for this phase involve the columns of the block reflectors plus their
associated triangular factors as computed in Phase 1.

5. Conclusive and perspective. Despite the importance of numerical eigen-
solvers for many applications and the great performance promised by GPU-accelerated
multicore architectures, it is hard to keep up the pace with algorithmic developments.
To the best of our knowledge, this paper describes the first dense eigensolver for such
modern architectures in scientific literature.

We provided in-depth theoretical considerations for the algorithmic design of all
three phases of the dense algorithm and studied performance on practical examples.
In conclusion, since the performance of the tridiagonal part is matrix dependent, so
is the performance of the overall dense algorithm. Realistically, on a test architecture
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Fic. 4.4. Performance of matriz-matriz multiply on a single and eight Intel Xeon 2.33 GHz
cores using MKL, and a hybrid system of eight Intel Xeon cores and a GTX280 GPU. MAGMA
denotes our algorithm.

like the one used in this paper, a user can expect an overall speedup of about one
order of magnitude over LAPACK in a practical application if the matrix is large
enough and the bulk of computations arises from non-deflated eigenvalues.

With further optimized BLAS kernels such as [29] becoming available in MAGMA
and CUBLAS, we plan to extend our work to other GPU architectures and other
precisions. The use of multiple GPUs on a single node or in a distributed environment
is another area of current research, leading for example to the development of hybrid
distributed algorithms in the style of ScaLAPACK. With data distributed according to
a ScaLAPACK block-cyclic layout, panels could be sent between CPU and processed
by ScaLAPACK code that is enhanced with GPU computations for trailing matrices
outside the current panel. In this regard, new features introduced in CUDA 4.0 do
offer a unified view of CPU/GPU memory to simplify coding and mitigate the latency
for CPU-GPU data transfers.

The current MAGMA 1.0 release [27] contains a basic version of the Divide &
Conquer algorithm that does not yet implement the ideas outlined here. The algo-
rithm described in this paper will be part of a future MAGMA release.
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