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Abstract

In the multi-peta-flop era for supercomputers, the number of computing cores is growing exponentially. However,
as integrated circuit technology scales below 65 nm, the critical charge required to flip a gate or a memory cell has been
dangerously reduced, causing higher cosmic-radiations-induced soft error rate. Soft error threatens computing system
by producing silently data corruption which is hard to detect and correct. Current research of soft errors resilience
for dense linear solver offers limited capability when facing large scale computing systems, and suffers from both
soft error and round-off error due to floating point arithmetic. This work proposes a fault tolerant algorithm that can
recover the solution of a dense linear system Ax = b from multiple spatial and temporal soft errors. Experimental
results on the Kraken Supercomputer confirm scalable performance of the proposed fault tolerance functionality and
negligible overhead in solution recovery.
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1. Introduction

Soft errors, normally in the form of bit flips, are events in microelectronic circuit that result in transient modifi-
cation without permanently damaging the device. They corrupt computed data and produce erroneous results without
leaving a trace. High-end computer systems are especially susceptible to such errors due to the ever increasing chip
density and shrinking assembly scale. Between 2003 and 2004, the 2048-node ASC Q supercomputer for scientific
computing in Los Alamos National Laboratorys experienced failures from extensive soft errors [1]. By comparing the
error logs with a radiation experiment conducted in a lab, the cause was soon identified to be the cosmic ray striking
the parity-protected cache tag array. A similar incident has also appeared in a commercial computing system from
Sun Microsystems that caused outages for many of its customers due to cosmic ray soft errors [2]. These incidents
signify that soft error is a real issue that both hardware and software developers must face. Soft error rate (SER) in
memory is usually quantified using FIT (failure in time) per MB, 1 FIT is 1 failure per 10° operation hours per 10°
bits. Google has reported between 778 and 25,000 FIT from errors in the DRAMs of their server fleet, an order of
magnitude higher than previously expected [3].

Among HPC applications that could benefit from resilience capability to soft errors, dense linear algebra ap-
plications such as the HPL benchmark for the TOP500 competition [4] and the AORSA fusion energy simulation
program [5], are representative examples. These applications normally involve solving a dense system of equations of
the form Ax = b on large scale HPC systems with matrix sizes of A being as large as 500,000. Soft errors that occur
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during such long running applications produce incorrect solution with no apparent trace. This lowers productivity by
wasting valuable time and power in error tracing with little chance of ever locating the error.

To mitigate the impact of soft errors, hardware and software methods have been developed. For example, ECC
(error correcting code) [6] is a commonly used hardware technique which is although limited to a small number of soft
errors due to the overhead of encoding/decoding. In software, until now most of the soft error resilience techniques
for dense linear solvers are limited to small scale computing installations, such as on systolic arrays, assuming that
encoding/decoding can be carried out with exact arithmetic [7, 8]. Unfortunately, this assumption does not hold for
today’s Pflop/s supercomputer systems. In previous work [9], we have demonstrated the first attempt to take on the
challenge of recovering the solution from a dense linear system solver of Ax = b with a single error occurrence in both
L and U of the LU factorization. This work further extends that effort into multiple soft errors resilience as a more
performance friendly alternative to the complex hardware ECC. The proposed algorithms consider both the temporal
and spatial distribution of multiple errors. Temporal soft errors occur at different time, whereas spatial soft errors
manifest as simultaneous multiple bit flips in disparate locations. The proposed method may also be extended to other
one-sided factorizations for the recovery of linear system solution and factorization matrices.

The rest of the paper is organized as follows. Section 2 introduces an LU based dense linear solver. The impact of
soft error on the linear solver is then analyzed and the general workflow of the proposed soft error resilience algorithm
is shown in Section 3. Sections 4 and 5 develop the protection method for both the left factor L and right factor U.
Section 6 proposes a segmented encoding method to reduce the computational complexity of the error detection and
locating. Finally, the recovery algorithm is discussed in Section 7 and the experimental results are shown in Section 8.
Related work is described in Section 9 while Section 10 concludes the paper.

2. High Performance Linear System Solver

For dense matrix A, the LU factorization produces PA = LU (or P = ALU), where P is a pivoting matrix, and
L and U are unit lower and upper triangular matrix respectively. LU factorization is popular for solving system of
linear equations. With L and U, the linear system Ax = b is solved by Ly = b and then Ux = y. ScaLAPACK]10]
implements the right-looking version of LU with partial pivoting based on a block algorithm and 2D block cyclic data
distribution. Without loss of generality, this block algorithm is described with an N X N matrix (or submatrix) A.

Split A into 2 X 2 blocks with block size NB. A;; has size NBXNB, Ajp is NBX (N —NB), Ay; is (N - NB) X NB,
and Ay, is (N — NB) X (N — NB), which is also known as the “trailing matrix”. Decompose A as

An Ap|_|Ln O ||Un Un
Ay Ap Ly Lyl 0 Lxp

and therefore

Au| | Lal g — PDGETF2
Az Ly )
A12 = L11U12 — PDTRSM

LUy = Ay — Ly Upp — PDGEMM

This poses as one iteration (step) of the factorization, and pivoting is applied to the left and right side of the current
panel. The routines names in the ScaLAPACK LU are listed after “—”. For description, we use U to represent the
area of U}, modified by PDTRSM, and U for Ay, after PDGEMM. Note that the size of U and U changes as the LU
algorithm proceeds. Block algorithms offer good granularity to benefit from high performance BLAS routines, while
2D block-cyclic distribution ensures scalability with load balancing.

3. Soft Error Resilience Framework

Since soft errors occur at times and locations unknown to the host algorithm, different methodologies are required
to provide resilience to different part of the matrix. In this section, the error propagation in LU factorization is
discussed and a general workflow of error detection and recovery is given.

3.1. Error Pattern in the Block LU Algorithm
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During LU factorization, the left factor L and right factor U have
different “dynamics” with regard to the frequency of data change. For
L, once a panel is factorized, the resulted data stored under the diag-
onal comes to the final form without undergoing any further changes
except pivoting. Therefore Soft errors occurred in this area do not
propagate. This offers an opportunity to use traditional diskless check-
pointing method to protect these data. Algorithm based fault toler-
ance (ABFT) cannot be applied to the panel factorization since other-
wise checksum rows for the panel could be moved into data by pivoting
which causes erroneous result. In LU, partial pivoting that swaps rows
of both L and U is adopted for better stability, but this pivoting oper-
ation could break the static feature of the L data as explained in [9],
and therefore in this work the pivoting to the factorized L is delayed to
the end of factorization. Since soft errors could strike at any moment,
checkpointing frequency as high as once per panel factorization is nec-
essary, but this also potentially leads to high performance overhead and Figure 1: Example of error propagation
therefore checkpointing should be used to the minimum. For example, in the U result of a 30 X 30 matrix
even though the factorized U (result of PDTRSM) also stays static
once produced, it can be protected by ABFT checksum with much less
overhead.

U differs from L and U in that it undergoes changes constantly from trailing matrix update. If soft errors alter
data within U, and the erroneous data are carried along with computation to update the U, even a single-bit soft error
could propagate into large area of U, let alone multiple errors at different time of the factorization.

Figure 1 shows an example of error propagation in U in a small matrix. Gaussian elimination is applied to a 30x30
matrix. To simplify the illustration, no pivoting nor block algorithm is used. Each step of the Gaussian elimination
zeros out elements below the diagonal in one column. The color in the figure is related to the difference between the
correct and incorrect upper triangular results. Higher brightness means larger absolute difference in value and black
means no difference. During the factorization, Two soft errors were injected at step 1 and 3 at location (6,13) and (12,
18) by adding random values. Since both errors occurred below the row 3, these errors fell in the U area of steps 1 to
3. The two white dots at (6,13) and (12, 18) are the initial injection locations. Starting from step 4, the trailing matrix
update, which is a GEMM (matrix-matrix multiplication), picked up the erroneous data for computation. As the
iteration continued, the errors grew downward into the trailing matrix (in yellow). When they reached the diagonal,
the erroneous data started to participate in the vertical scaling of zeroing out values below diagonals, and as a result
the entire trailing matrix was contaminated immediately, shown in red dots. Both of the two errors followed the same
propagation pattern. This example shows that soft error propagation could result in large area of erroneous data.

5 10 15 20 25 30

3.2. General Workflow

We proposed an ABFT based method to protect the LU factorization based linear solver. This method can tolerate
multiple occurrences of soft error in the whole area of factorization result and recover the correct solution x to the
linear system of equations Ax = b. The general workflow of error detection and recovery is in Algorithm 1. Checksum
that is generated before solving the system is used to check and locate the soft errors and eventually recover the
solution. The verification process is performed with no “online checking” interruption.

4. Encoding for Multiple Errors in L

The first step of the workflow in Algorithm 1 is to checkpoint the input matrix A with a generator matrix G. For

. . . . | | .
the single error case, it has been demonstrated in [9] that generator matrix G; = [W w ] and check matrix
L e ,

r - 1 -1 . S . . . .
w w 1 work for the entire area of factorization result. In this section, we apply this idea to multiple
Lo W, —

errors in L, and the next section further extends it to protecting U. Only the encoding issue is discussed. For a scalable

H, =
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Algorithm 1 Fault Tolerant System Workflow

Require: Ax = b; Generator matrix G; Check matrix H
Step 1: Checkpoint Aby A, = [A A xG]
Step 2: Perform LU factorization L. .U, = P X A, in block algorithm of block size N B with partial pivoting; Pivoting
to L is delayed; Panel factorization result in each step is checkpointed immediately once produced; Errors in L are
correct after factorization and then pivoting in L is applied
Step 3: Detect error occurrence by checking ¢ = ||U, X H||
if Found error(s) by 6 >> 0 then
Step 3.1: Locate initial error(s) in U using §
Step 3.2: Calculate £ by £ = U(\L\(P x b)), and
Step 3.3: Adjust X to the correct solution x = X + A
else
Step 4: Reach the correct solution x = U\(L\(P X b))
end if

implementation, we continues to use the local checkpointing method in [9] where each process checkpoints its local
participating blocks in the current panel area.

For any column of the factorized panel in L, [I1,0,- - , 11T, the vertical checkpointing produces the following
three checksums ¢ to c3:

L+bh+--+lh=c
wili + wab + -+ wilp = ¢ (2)
urly + s + -+l = 3

Since all computation is carried out in floating point number that has a fixed number of digits for exponent and
fraction, the selection of w; and u; should avoid causing large contrast between operands that encourages the accumu-
lation of round-off errors. As an opposite example, in [8], the use of Vandermonde matrix where w; = j and u; = 7
incurs fast increase of value magnitude in checksum and causes notable precision loss from round-off errors.

To work with round-off errors, we propose to choose w; and u; from random numbers between 0 and 1. Suppose
soft errors change /; and /; to [; and l} respectively, i < j. During the error locating step (step 3.1) in Algorithm 1,
re-generating the checksum gives:

L+ttt + L =6
W]l]+"'+Wili+"'+lej+"'+Wklk262 (3)
uply +- i+ +uli+ o+l = &G

Subtract (3) from (2), we have

G-cr=hi-Li+G-1
G = =willi =) +wjill; = 1)) (€]
C/‘\3 —C3 = M,‘(l,‘ — l,) + Llj(lj - l/)

Define the system of equations in (4) as the “symptom equations”. The symptom equations establish the relationship
between soft errors and checksum, however it cannot be solved “as is” since the six unknowns l: lAj, wi, w; and u;, u;
outnumber the available three equations.

To reduce the number of unknowns, let u; = wl.z, i=1,---,k. Combine the first and second equation in (4):

(& = c2) = wi(¢ —c1)) 5)

fi=1 =
J J
Wj—W,‘

And similarly combine the first and third equation:
. (G =c3)=wié — )

lj =1 2.2 (6)

Wj_wi
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Eliminate lAj — I from (5) and (6) by connecting the right hand sides, (4) can be eventually reduced to
(G =) —wi+wj)(&a—c2) +wiwi(c1 —c) =0 @)

Define this equation as the “check equation”. w;, w; can be determined by iterating through all possibilities in w with
O(N?) complexity because i < j, and for each i, N — i pairs of w; w ; are tested in (7).

The error detection and recovery algorithm can be extended to ¢ errors with complexity O(N") to determine the
locations of up to ¢ errors. For example, when ¢ = 3, symptom equation 4 is

6] —C] Zii—li+l,\j—lj+l;—lk
& = e = willy = 1) + willy = 1) + welly = o)
3 =3 = uilli = ) +uj(ly = 1)) + ue(le = )
Gp—ca=h(li =)+ hi(l; = 1))+l = L)

®)

Here i, j and & correspond to the three errors’ locations. Similar to the double-error case, the check equation can be
derived as

Ca(wi —wj) + W (w;Cy — C) — W;(Wicl —C)  Ci(wi—w))+ww;C, — C2) — W%(W5C1 -()

(wi —wpw; — (w; — Wk)Wi + (W) — wow? (Wi —wpwi — (w; — Wk)W§ + (wj — ww?

Similarly, by iterating through all possible pairs of w;, w; and wy using the check equation, the three error locations
can be determined and the error value can be found accordingly.

5. Encoding for Multiple Errors in I/ and

Soft errors in U and U differ from those in L because they participate in the computation and cause error propa-
gation. The 7 = 2 case is discussed in detail and is then extended to ¢ > 2 errors.

5.1. Soft Errors Modeling

For temporal multiple soft errors, Luk et al. has proposed to cast soft error to a differnt initial matrix to avoid
the difficulty of knowing when soft error occurs [7]. The effect of soft error during factorization is treated as rank-
one perturbation to the original matrix. Fitzpatrick et al. applied this method to double error modeling for Gaussian
elimination [8]. This section extends the encoding method in section 4 to provide protection to U.

LU factorization can be viewed as multiplying a set of triangularization matrices from the left to the input matrix
A to get the final triangular form. Let Ay = A, and A; = L, P,1A,—. P, is the partial pivoting matrix at step ¢ — 1.
At the end of the factorization, PAy = LU, where U is an upper triangular matrix.

Suppose two soft errors occur in the U or U area at locations (i, Jj1) and (i, j») in step s; and s, separately. In the
most general case, 5| # s3, i1 # iy and j; # j,. Without loss of generality, let s; < ;.

At step 57, express the soft error as a perturbation to the matrix at location (ip, j): ASZ = A, — 5e,~2eJT.Z. Ay, is the

state of the matrix at step s, before soft error occurs, and A s, 1s outcome of A, modified by a soft error of magnitude
0 at location (i, j2). e;, and e, are column vectors with all Os except a 1 at rows i, and j, respectively.
The error at step s, is cast back as a perturbation to the matrix at step sy,

~

AS2 = Asz - 6@[285‘2 = L52—1P52—1L52—2P52—2 e lepslAS] - 66[262
(Lsy-1Psy-1Lg, 2P, -+ Ly Py ) Ay, = Ay = (L1 Py, Ly, 2Py, -+ Lo, Py)) ' Seye]

Let f = (Lsz—IPsz—lLsz—ZPsz—2 T L51Ps1)_léeiza and (Ls-1Psy-1Ls, 2P0 -+~ Lé‘lPS])_lAASz = AAE’ we have:

~

A = A, - fe! )

~
o)

Continue casting (9) to the soft error at step s, eventually we have

Asfl =Ap - de; - ge]T»2

(10)
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Here g = (Ly,—1Ps,_1 Ly, 2P, 2+ LoPo)™" X f = (Lg,-1 Pyy-1 Ly, 2Py, - - - LoPo) ' be;,
Through this modeling process, the two soft errors are cast back to the input matrix Ag as perturbation to column
Jj1 and j,. For more than 2 errors, the same process can be repeated and the general model for ¢ errors is

t
Ao = Ao - Z djel an
j=1

5.2. Errors Detection and Locating

With the model for soft errors, errors’ locations can be determined. This model is for the case where soft errors
occur only in matrix A. In fact checksum and the right hand sides b of Ax = b are equally susceptible to soft errors.
These cases can be protected by duplication and cross check, and the protection method for L in section 4 can be
directly applied to protect right hand sides.

In [8], four columns of checksum are used to locate two soft errors. Instead, we show that for N errors, N + 1
columns are sufficient for error detection and data recovery.

For the input matrix A € R V¥ checksum is generated before the factorization using generator matrix

eT 1 ... 1
G=| wl |=|w - wy (12)
wHT w% wlz\,

and A is encoded as [A, A x GT] = [A, Ae, Aw, Aw?]. The squaring operation is elementwise.
LU factorization is applied with the three additional checksum columns on the right as

P[A, Ae, Aw, Aw?] = L[U, c, v, s]

¢, v, s € R¥1 gre checksum after factorization.

Due to soft errors, A becomes erroneous. As shown in the error model, the LU factorization infected with soft
errors is equal to an soft-error-free LU factorization of a different initial (erroneous) matrix Ay. Using A to represent
the original correct initial matrix and A for the erroneous initial matrix, (5.2) becomes:

PIA, Ae, Aw, AW*]1 =L[U, ¢, ¥, 5]
And using relationship between ¢ and Ae:
¢ = L'"PAe=L"'"PA + de; + geJTZ)e =L"YWLU + f’de; + ﬁge]T.z)e =Ue+L7'"Pd+1'Pg

Therefore, & — Ue = L' Pd + f,‘llsg.
By the same token, ¥ — Ow = wj, L-1Pd + wjzf,‘lﬁg, and §— Ow? = w?l L~1Pd + wif,‘llsg.
é-Ue=x+y
Letx=L"'"Pde R andy = L-'Pge R"'. We have { ¥ — Uw = wj x + wj,y
§—0Ow? = w21x+ Wiy
This system of equations is the vector form of (4), and similarly can be reduced to the check equation:

B =0wH = (wj, +wp)® = Ow) + wjw;, (& - Ue) =0 (13)

wj, and wj, can be determined by iterating through all possible N x (N — 1) combinations in w for a pair that makes
(13) hold. As a result, the error columns j; and j, are determined. Later, using the error columns, solution of Ax = b
can be recovered.

For ¢ soft errors, with the error model in (11), the symptom equation is:

C()—UWO = w?1x1+~--+w?x,
Jt
¢ — Ow! = wlx+--+wlhyx
Ji Ji (14)

o —Uw™t = w?:lxl +et w;t‘lx,
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All the powers in (14) are elementwise. This general case of check equation in vector form for ¢ soft errors exhibits
the same structure as in the scalar form. For ¢ = 3 it has been shown that check equation (9) can be used to determine
error locations except the scalar residues C; is replaced with vector residues ¢; — Ow'.

For two errors, the complexity of locating w;, and w;, is O(N?) because for each pair of w;, and w;, a vector norm
is calculated to test for zero vector in (13) which takes O(N) operations. For ¢ > 2, the complexity to determine the
error columns exceeds the complexity of LU factorization, rendering this method computationally impractical for real
use. The same problem exists for L protection too when ¢ > 3. The next section provides solution to this issue.

Since errors in U and U propagate, the solution to (14) alone is insufficient for recovering the right factor U
as only the columns of the initial errors can be determined. However for a system of linear equations, by using
Sherman-Morrison-Woodbury formula, the solution can be recovered.

6. Complexity Reduction

As the number of tolerable errors ¢ increases, the complexity of locating initial error columns grows exponentially.
To allow practical use, a complexity reduction method is proposed in this section.

6.1. Reduction for L

In the complexity O(N") for locating ¢ errors, N is the factor that determines the range of search. By breaking
the search range into smaller segments, the complexity can be decreased to an affordable level. There exist many
ways of segmenting N but since each segment requires separate storage for checksum, the segmenting method should
minimize the overall storage requirement. Use N; to represent the segment size, the k;, root of the vector length is
chosen in this work as the segment size where k is integer and , k > 1.

Split N into equally sized segments of length Ny = N i, Apply the encoding method in (2) to each of the N i
segments. For each vector to tolerate ¢ errors, ¢ + 1 checksum items are required. Therefore for a vector of length N,
the total amount of space required to store checksums is

N"F x (t+ 1) (15)

And the storage overhead over that for the data vector has the trend

. 1-1 l T t+l_
Jim (V'Ex @+ D)% ) = lim =0 (16)

~ VN

Since the expensive error locating procedure is now carried out within a smaller range, the complexity of error
detection is largely reduced. The total overhead of locating ¢ soft errors includes N 1% vector norms of length VN,
ON) ift<k
ONt) ift>k

Note that the number of tolerable soft error ¢ is for each segment. Therefore to tolerate the same amount of soft
errors, each segment could opt for a smaller ¢ than in the k = 1 case. For a fixed ¢, increasing k has the same effect by
reducing the range of search, but comes at the cost of more extra storage according to (15).

and iterating in VN for the correct pair of w; and w; O(N't x N'~1) + O((Nt)') = O(N) + O(N¥) =

6.2. Reduction for U

For U and U, without any complexity management, locating ¢ soft errors requires O(N**!) operations, one order
higher than the original complexity for L protection. To reduce the complexity to an affordable level, the segmenting
method in section 6.1 is extended to the block LU algorithm for U and U protection.
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6.2.1. Block Encoding of Matrix

In block LU algorithm, the panel factorization itself is an LU factorization of a tall and skinny block, therefore the
encoding technique in (5) can be used to protect a panel or several panels too if the encoding is performed accordingly.
For the whole matrix, the segmented encoding can be applied based on the following theorem (proof is omitted due
to space constrain):

Theorem 6.1. Block Encoding protects the trailing matrix at the end of each iteration of LU factorization

For illustration, consider the following example: take a matrix A of 2 X 2 blocks encoded using the generator in (12)

A = [Au A AnG A12G]

“ Ay An AnG AnG

Carry out LU factorization to A, and we have: A, = [Zi ng} [UO“ gz gi EZ]

Cii =UnG, Cip =UnG

Cyi =g, Cyp =UxnG’

four checksum blocks offer protection to the three data blocks U, Uy, and Uy, independently. Since G in (12) offers
t errors protection capability, the three data blocks in U each can tolerate up to ¢ soft errors.

In ScaLAPACK, matrix A is split into blocks of size NB x NB, therefore when k = 2, the encoding block size

N is N x VYN rounded to multiple of NB. Error detection is performed on each VN x VN blocks. For Uy, first

[|U X G(:, 1) = Cq1(:, 1)]| is checked and if the norm is sufficiently large, the error detection procedure in 5.2 is then

performed for this VN x VN block.

The complexity of performing blocked error detection and locating includes the error check that is either a full

or upper triangular matrix-vector multiplication and the error locating operation within the block. Suppose Ny = N 3

rounded to a multiple of NB, and the generator matrix G has size Ny X ¢ for ¢ error resilience capability. Since error

checking is only carried out in the upper triangular blocks of A, there areintotal 1 +2+---+ N I~ number of blocks.

D |
Therefore the error checking complexity is (1 +2 + - - + N171) X O(N+)?) = w X O(N©).
And the error locating complexity is O(Nt x N t). For instance, when k = 2 and ¢ = 2, the total overhead of error

detection and locating is M x O(N) + O(N?) = O(N*) < O(N®). Therefore the overhead is affordable for the
solver based on LU factorization.

The total amount of extra storage for storing checksum columns is N X N -1 x (t + 1). And the storage overhead
over that for the data vector has the trend limy_,e (N X N7 X (£ + 1) X ) = limy_e % =0.

And C; to C4 are calculated as: { This shows that after LU factorization, the added

7. Recovery Algorithm

After soft errors are detected and located by their columns, the correct solution to the system of equations Ax = b
can be recovered using the Sherman-Morrison-Woodbury formula as suggested by [8]. The computing complexity of
recovery the solution x is O(N .

8. Performance Evaluation

Soft errors in the left factor are static, and the detection and recovery for this area has been validated in [11, 9]
showing little performance impact to the host algorithm. The algorithms for multiple soft errors in the right factor,
namely U and U, on the other hand, have higher complexity and are most effectively affected by the proposed encoding
and complexity reduction method. Therefore only the validation for this part is shown in this section.

The experiments are performed on a large scale distributed memory system: the Kraken supercomputer by Cray
Inc. at the Oak Ridge National Lab. Kraken has 9,408 compute nodes. Each node has two Istanbul 2.6 GHz six-core
AMD Opteron processors and 16 GB of memory. All the nodes are Connected by the Cray SeaStar2+ interconnect.
In the experiments, two soft errors are injected into location (336,361) and (347, 359) at the beginning of the 2nd and
3rd panel factorization, respectively. Data values are incremented with random magnitudes to simulate the results of
bit flips in the memory slots that hold these data. The block size for encoding is VN.
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120 60
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0 N O [ easo0(ee 125000 (16x16) | 250000(3x32) | 500000 (64x64) | 1000000 (128x128)
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 scalAPACKPDGESV 0.4187 15925 5.5959 17.7025 51205
Matrix Size FT-PDGESV(no erron ) 0.4155 1585 55731 17.5969 507183
FT-PDGESV(2 errors) 0.4086 15409 54418 17.0516 505969

(a) Result on Kraken with 16,384 (128 x 128) cores (b) Weak scalability result on Kraken

Figure 2: Experiment result on Kraken

Figure 2a shows the effectiveness of the complexity reduction method for U with a 16 x 16 process grid on Kraken,
t = 2. The overhead is in Gflop/s and calculated as FLOP. iw}fsT =ld ifp Srrg,. When N; = N, block encoding for soft
errors in U is not in effect. The whole matrix is encoded with a generator matrix of size N X 3. In this case the
overhead is close to 100% (the blue line), which means the error detection and recovery combined take as much time
as solving the linear system of equations. This is consistent with the theoretical complexity of O(N'*!') = O(N?). The
red line, on the other hand, is the result when N;, = VN. The overhead drops quickly from a little less than 40% to
2%, which verifies that block encoding largely reduces the error detection overhead. The cost of this improvement is
the extra space for storing checksum which is roughly 1% of the input matrix of size 50,000.

Figure 2b is the weak scalability experiment result where matrix size and grid dimension are doubled in proportion.
Throughout all the testing sizes from 64 to 16,384 cores, FT-PDGESV declares around 1% overhead with and without
soft error recovery. The solution to the linear system was successfully recovered.

The experiment result confirms that the complexity of recovering the solution to Ax = b from two soft errors in
the right factor has been effectively managed by the complexity reduction method, and soft errors can be precisely
detected and located with the presence of round-off error. The fault tolerance functionalities can recover the solution
of the dense linear system with trivial performance impact.

9. Related Work

In the field of fault tolerance for HPC systems, checkpoint-restart (C/R) is the most commonly used method [12].
The running state of the application is written to reliable storage at certain intervals automatically by the message
passing middleware or at the request of the user application. C/R requires the least user intervention but suffers from
high overhead from checkpointing through disk I/O. To reduce the overhead, diskless checkpointing [13] turns to
system memory for checksum storage rather than disks. Applications have seen better fault tolerance performance
than C/R [14] for dense linear algebra problem. Both C/R and diskless checkpointing need the error information
for recovery, which is not available with soft error. Algorithm based fault tolerance (ABFT) eliminates the need for
periodical checkpointing. This significantly reduced checkpointing overhead during computing, and the checksum by
ABFT reflects the most current status of the data and therefore offers clues for soft error detection and recovery. ABFT
was originally introduced to deal with silent error in systolic arrays [15, 16]. Data is encoded before the computation
begins. Matrix algorithms are designed to work on the encoded checksum along with matrix data, and the correctness
is checked after the matrix operation completes.

Using ABFT to mitigate single soft errors in dense matrix factorization has been explored in [7, 17]. Later, this
was extended to multiple errors [18, 8, 19] by adopting methodology from finite-field based error correcting code (e.g.
Reed-Solomon [20]) where only the right factor of factorization result is protected and computation is assumed to take
place with exact arithmetics. These make the ECC based error location determination method loose effectiveness.

Recently, iterative solvers were evaluated for soft error vulnerability [21, 22, 23], signifying the continued aware-
ness of soft error for solving large scale problems. For dense matrices, the effect of soft errors on linear algebra
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packages like BLAS and LAPACK has also been studied [24], which showed that their reliability can be improved
by checking the output of the routine, and the error patterns do not depend on the problem size. Also, the possibil-
ity of predicting the fault propagation is explored. For dense matrix factorization based solver, method to mitigate
single soft error has been discussed in [9] and the recovery of matrix factorization was shown in [11] using QR for
demonstration.

10. Conclusion

Soft error resilient algorithm for LU factorization based dense linear system solver is proposed in this work. Both
spatial and temporal multiple soft errors in the whole matrix can be addressed with the existence of round-off errors
from floating point operation. Once errors are detected, the solution of Ax = b can be recovered with low overhead
using the complexity reduction technique. Experimental results on the Kraken supercomputer confirm both the soft
error mitigation capability and the negligible performance overhead. In future work, the proposed method will be
extended to the protection of dense matrix factorizations like LU and QR.
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