Implementing a blocked Aasen’s algorithm with
a dynamic scheduler on multicore architectures

Ichitaro Yamazaki*, Dulceneia Becker®, and Jack Dongarra*“
*University of Tennessee, Knoxville, TN 37996, USA
tOak Ridge National Laboratory, Oak Ridge, TN, USA
iUm'versity of Manchester, Manchester, United Kingdom
{iyamazak, dbecker7, dongarra}@eecs.utk.edu

Alex Druinsky, Inon Peled, and Sivan Toledo
Tel-Aviv University, Tel-Aviv 69978, Israel
alexdrui@post.tau.ac.il, inon.peled @ gmail.com, stoledo@tau.ac.il

Grey Ballard, James Demmel, and Oded Schwartz
University of California, Berkeley, Berkeley, CA 94704, USA
{ballard, demmel}@cs.berkeley.edu, oded.schwartz@ gmail.com

Abstract—Factorization of a dense symmetric indefinite ma-
trix is a key computational kernel in many scientific and
engineering simulations. However, it is difficult to develop a
scalable factorization algorithm that guarantees numerical sta-
bility through pivoting and takes advantage of the symmetry at
the same time. This is because such an algorithm exhibits many
of the fundamental challenges in parallel programming like
irregular data accesses and irregular task dependencies. In this
paper, we address these challenges in a tiled implementation of
a blocked left-looking Aasen’s algorithm. To exploit parallelism
in this left-looking algorithm, we study several performance
enhancing techniques; e.g., parallel reduction to update a
panel, panel factorization by tall-skinny LU, and parallel
symmetric pivoting. Our performance results on up to 48 AMD
Opteron processors demonstrate that our implementation with
a dynamic scheduler obtains speedups of up to 2.8 over MKL,
while losing only one or two digits in the computed residue
norms.

I. INTRODUCTION

Many scientific and engineering simulations require the
solution of a dense symmetric indefinite linear system of
equations,

Az = b, ey

where A is an n-by-n dense symmetric indefinite matrix, b
is a given right-hand-side, and x is the solution vector to
be computed. Nonetheless, there is no scalable factorization
algorithm which takes advantage of the symmetry and has
a provable numerical stability. The main reason for this is
that stable factorization requires pivoting which is difficult
to parallelize efficiently. To address this, in this paper, we
develop an efficient implementation of a so-called blocked
left-looking Aasen’s algorithm that is proposed this year [1].

To solve (1)), the Aasen’s algorithm [2] computes an LTL™
factorization of the form

PAPT = LTL”,)

where P is a permutation matrix, L is a unit lower-
triangular matrix, and 7" is a symmetric tridiagonal matrix.
Then, the solution = can be computed by successively
solving the linear systems with the factored matrices L,
T, and L”. The left-looking Aasen’s algorithm performs
1/3n3 + O(n?) floating-point operations (flops) and is
component-wise backward stable.

To effectively utilize the memory hierarchy on a modern
computer, a partitioned-version of the Aasen’s algorithm
was recently proposed [3[]. This algorithm first factorizes
the panel in a left-looking fashion, and then uses BLAS-
3 operations to update the trailing submatrix in a right-
looking way. In comparison to a standard column-wise
algorithm, this partitioned algorithm slightly increases the
operation count, performing (1+1/n;)n®+0(n?) flops with
a block size of ny. Nevertheless, it is shown to significantly
shorten the factorization time on modern computers, where
data transfer is much more expensive than floating-point
operations [3]] . However, the panel factorization is still based
on BLAS-1 and BLAS-2 operations, which in comparison to
a BLAS-3 operation, have higher ratios of communication
volume to flop counts. As a result, this panel factorization
often obtains only a small fraction of the peak performance
on modern computers, and could become the bottleneck,
especially in a parallel implementation.

To further shorten the factorization time, a blocked-
version of the left-looking Aasen’s algorithm was proposed
this year [1l]. It computes an LTLT factorization, where T
is a banded matrix (instead of tridiagonal) with its half-

bandwidth being equal to the block size ny. In this blocked
algorithm, each panel can be factorized using an existing
LU factorization, such as recursive LU [4]], [5], [6] and
communication-avoiding LU (CALU) [7]. In comparison
to the panel factorization algorithm used in the partitioned
Aasen’s algorithm, these LU factorization algorithms reduce
communication, and hence are expected to speed up the
whole factorization process.

In this paper, we implement this blocked Aasen’s algo-
rithm on multicore architectures, and analyze its parallel
performance. Our implementation follows the framework of
PLASMA[T] and uses a dynamic scheduler called QUARK]
This is not only the first parallel implementation of the
blocked Aasen’s algorithm, but it is also the first imple-
mentation of a left-looking algorithm in PLASMA. To
efficiently utilize larger numbers of cores in parallel, all
the existing factorization routines in PLASMA update the
trailing submatrix in right-looking fashion. In order to fully
exploit the limited parallelism in the left-looking algorithm,
we study several performance enhancing techniques; e.g.,
parallel reduction to update the panel, panel factorization
by tall-skinny LU, and parallel symmetric pivoting. Our
experimental results on up to 48 AMD Opteron processors
demonstrate that a left-looking implementation can obtain
a good parallel performance. We also present numerical
results to show that in comparison to the widely-used stable
algorithm (Bunch-Kauffman algorithm of LAPACK), our
implementation loses only one or two digits in the computed
residue norms.

The remainder of the paper is organized as follows:
after listing the related work in Section we describe
the blocked Aasen’s algorithm in Section Then, in
Sections [IV] and [V] we present our parallel implementation
and performance results. Last, in Section we present our
final remarks. Table [l summarizes the notations used in this
paper. Some notations are reused in column-wise and block-
wise algorithms, but the meaning of the notation should
be clear from the context. Our discussion here assumes the
lower-triangular part of the symmetric matrix A is stored,
but it can easily be extended to the case, where the upper-
triangular part of A is stored.

II. RELATED WORKS

In Section [V] we compare the performance and accuracy
of our blocked Aasen’s algorithm with the following state-
of-the-art factorization algorithms that can take advantage
of symmetry in dense symmetric indefinite matrices on
multicore architectures:

Uhttp://icl.utk.edu/plasma/
Zhttp://http://icl.utk.edu/quark/

n dimension of A (number of diagonal blocks in A)
ny block size

Qij (4, j)-th element of A
Aij (i, 7)-th block of A
aj j-th column of A
a; i-th row of A
A.j j-th block-column of A
A i-th block-row of A
irm,jn i-th to m-th (block) rows and j-th to n-th (block) columns
identity matrix
€j j-th column of I
Table I

NOTATIONS USED IN THIS PAPER.

A. LAPACK - Bunch-Kauffman algorithm

LAPAC is a set of dense linear algebra routines that
is extensively used in many scientific and engineering
simulations. For solving symmetric indefinite systems (I},
LAPACK implements a partitioned LDL™ factorization with
Bunch-Kauffman algorithm [8]], [9] that computes

PAPT = LDLT,

where D is a block diagonal matrix with either 1-by-1 or
2-by-2 diagonal blocks. This algorithm performs the same
number of flops as the left-looking column-wise Aasen’s
algorithm, i.e. 1/3n® + O(n?) flops, and is norm-wise
backward stable. In [3]], a serial implementation of the
partitioned Aasen’s algorithm is shown to be as efficient
as this Bunch-Kauffman algorithm of LAPACK on a single
core. Unfortunately, at each step of the Bunch-Kauffman
algorithm, up to two columns of the trailing submatrix
must be scanned, where the index of the second column
corresponds to the index of the row with the maximum
modulo in the first column. Since only the lower-triangular
part of the submatrix is stored, this leads to irregular data
accesses and irregular task dependencies. As a result, it is
difficult to develop an efficient parallel implementation of
this algorithm. For instance, on multicores, LAPACK obtains
its parallelism using threaded BLAS, which leads to an
expensive fork-join programming paradigm.

B. PLASMA — Random Butterfly Transformation

PLASMA provides a set of dense linear algebra rou-
tines based on tiled algorithms that break the algorithms
into fine-grained computational tasks that operate on small
square submatrices called tiles. Since each tile is stored
contiguously in memory and fits in a local cache memory,
this algorithm can take advantage of the hierarchical mem-
ory architecture on the modern computer. Furthermore, by
scheduling the tasks as soon as all of their dependencies are
resolved, PLASMA can exploit a fine-grained parallelism
and utilize a large number of cores.

3http://www.netlib.org/lapack/

http://icl.utk.edu/plasma/
http://http://icl.utk.edu/quark/
http://www.netlib.org/lapack/

Randomization algorithms can exploit more parallelism
than corresponding deterministic algorithms can, and are
gaining popularity in linear algebra algorithms [10]. The
LDLT factorization of PLASMA [11l, [12] extends a
randomization technique developed for the LU factoriza-
tion [[13] to symmetric indefinite systems. Here, the original
matrix A is transformed into a matrix that is sufficiently ran-
dom so that, with a probability close to one, pivoting is not
needed. This randomization technique uses a multiplicative
preconditioner by means of random matrices called recursive
butterfly matrices Uy:

(UFUL .. .UL)A(ULUs ... Uy),

where
By

L [Rp Sk
Ur= ’B'“_\/i(Rk —Sk)’
and Ry and S} are random diagonal matrices. This random
butterfly transformation (RBT) requires only 2dn? + O(n)
flops in comparison to the 1/3n3 + O(n?) flops required
for the factorization. In practice, d = 2 achieves satisfying
accuracy, and this is the default setup used in PLASMA.
Since A is factorized without pivoting after RBT, it allows a
scalable factorization of a dense symmetric indefinite matrix.
The main drawback of this method is reliability. There
is no theory demonstrating its stability. Nonetheless, since
iterative refinement is required, the error can be evaluated
without extra computation and signal the failure of the
method. Numerical tests [11] showed that with iterative
refinement, it is accurate for many test cases, including

pathological ones, though it may fail in certain cases.

sz—l

Beside the dense factorization on multicores, a parallel
factorization of a dense symmetric indefinite matrix with
pivoting has been studied on distributed-memory systems
in [14]. Furthermore, many implementations of the sparse
LDLT factorization have been proposed on distributed and
shared memory architectures [15]], [16], [17].

III. AASEN’S ALGORITHMS

To compute the LTL” factorization, the Aasen’s algorithm
uses an intermediate Hessenberg matrix H which is de-
fined as H = T'LT. In this section, we describe column-wise
right- and left-looking Aasen’s algorithms (Sections
and [[II-B)), and a blocked left-looking version of the algo-
rithm (Section [lII-CJ).

A. Right-looking Aasen’s algorithm
By the 1-st column of the equation A = LTL”, we have
ti11=a1;n and £onota1 = a2m1 — o1 1. (B)

Hence, given the first columns of A and L, we can compute
the 1-st column of 7" and the 2-nd column of L (in our

implementation, we let £y.,1 = e;). Moreover, from the
trailing submatrix of the equation A = LTL”, we have

T T
Aznom = Lonztio €y, +Laniti185,, 4

T T
+£2:n,1 t2,1 ’62;”72 + L2:n,2:nT2:n,2:nL2;n72:n-
Hence, if we update the trailing submatrix as

T T
Azinom —= Lonitar €y, o+ Loniti1€y,

+ Lono to Einm 4

then the LTLT factorization of A can be computed by
recursively computing the LTL™ factorization of Agen 2

— T
A2:n,2:n - L2:n,2:nT2:n,2:nLQ;n,Q;n~

It is possible to update the trailing submatrix using two
rank-1 updates as in

T T
Azpom —= Lapihy, 1 —Clanatar €y, 1, ()

where hy., 1 = £o.p 0t21 + £2:5,11,1. Alternatively, it can
be updated using a symmetric rank-1 update as in

T T
A2:n,2:n - = W2:n,1£2;n71 - £2:n,lw2:n,1? (6)

where Wo., 1 = £ounota 1 + 2o 1t11

A numerical issue comes when the right-hand-side of the
second equation in (3) is scaled so that /55 is one. To
maintain the numerical stability, the element with the largest
modulo is used as the pivot. This right-looking Aasen’s
algorithm is equivalent to the Parllet-Reid algorithm [18].

The above algorithm performs a total of 2n® + O(n?)
flops. On the other hand, in an LDLT factorization, D
is block diagonal, and it requires only one rank-1 update
to update the trailing submatrix using each column of L,
requiring only half of the flops required by the right-looking
Aasen’s algorithm.

B. Left-looking Aasen’s algorithm

Given the first j columns of L and the first j — 1 columns
of T, the left-looking Aasen’s algorithm first computes
the j-th column of H; i.e., from the j-th column of the
equation H = TL”, we have, for k=1,2,...,5 — 1,

hij =tk k—10k—1,5 + e klij + ti ot1lrt1,5-

Then, the (7, j)-th element of H is computed from the (j, j)-
th element of equation A = LH,

J
-7
hjj =45 ; (aj,j - ij’khm) ~
k=1
Next, we obtain t;; from the (j,j)-th element of the

equation H = LT, i.e.,

—1 T
tig =45 (hjg— i1 ti,-1)-

1: for j =1tondo
2: Compute Hy.(j_1),; and update Tj ; (see Figure @)
3 if j > 1 then
4 Tjj+1 = Tjj,ﬂjfl
5: end if
6 Tj; =L T;;L; T
/4 Compute (4,]) th block of H
8 H;; =1 JLJTJ
9: if] < n then
10: // Extract L. j 1 of L
1 Lganmg = Ageymg = Lg+nymi Higg
12: L(j+1):n,j+1v Hj,j+1a Pj] = LU(L(j+1):n,j+1)
13: // Apply pivots to other part of matrices
14: L(j+1)m,1;j = P L(J+1)'n 1)
Is: G+Dm, (1) = PjAG 1) m, (1) P
16: // Extract TJ+1 J
17: TjJrLj = Hj41,]L7
18: end if
19: end for
Figure 1. Blocked left-looking Aasen’s algorithm.

In addition, from the j-th column of the equation A = LH,
we have

V. =a34+1)m,j Ze(j—&-l):n,khk,jv
k=1

and we can extract the (j + 1, j)-th element of H and the
(j + 1)-th column of L by

v
and £(j11)m 1 = —- (7

hjt1, =01
vy

Finally, from the (j + 1, j)-th element of the equation H =
TL”, we get

_) 9T
tiv1,y = hyr1,5055

Again, a numerical issue comes when scaling v with —-
in the second equation of (7). To maintain the numerlcal
stability, the element of v with the largest modulo is used
as the pivot.

This left-looking algorithm performs a total of n® +
O(n?) flops, hence requiring only half of the flops needed
by the right-looking algorithm. This is because the left-
looking algorithm takes advantage of the fact that the j-
th symmetric pivoting can be applied any time before the
trailing submatrix is updated using the j-th column of L.
Specifically, the left-looking algorithm applies the pivoting
to the original matrix A and then extracts the next column
from it. If the symmetric pivoting and the submatrix update
must be alternately applied, then the left-looking algorithm
is not possible because the j-th update must be applied
to the trailing submatrix before applying the (j + 1)-th
symmetric pivot. Furthermore, in order to keep the trailing

Approach 1:

1: // Compute Hy.(j_1);

2: fork:1,2toj—1d0

3: H;, J Tk kLJ k

4: Hk]—Hk]+Tkk+1LJk+1
5. if kK > 1 then

6: Hyj = Hyj + Tha1L])
7. end if

8: end for

9: // Update T} ;

10: Ty 5 = Ajj = Ljn-nHig-,
11: if J > 1 then

12: Tj,j:Tj L T,J 1Lj] 1
13: end if

Approach 2:

: // Compute Hy.(j_1 5
cfork=1toj—1do
Up = Ty i L], k
Vi = Thg1L] iy
Hy; =Up+V;
if K > 1 then

Hy ;= Hp;+ Tk,qu}:k_l
end if
: end for
: // Update T} ;
s Wiy = %Vl G- +Urg-1
c Ty = Aj5 — L]1(J 1)W 1:(4
Wis—1L],

R I A S o

—_ =
N = O

J=1),j

J,1:(5—1)

Figure 2. Compute Hy.(; 1) ; and update Tj ;.

submatrix symmetric, two rank-1 updates (B) or (6) are
needed, doubling the number of ﬂops

C. Blocked left-looking Aasen’s algorithm

Either the right- or left-looking Aasen’s algorithm can be
extended to a blocked algorithm. Even though the right-
looking algorithm exhibits more parallelism, it requires
twice as many flops as the left-looking algorithm does.
Hence, in this paper, we focus on the left-looking algorithm.

If we replace all the element-wise operations with
block-wise operations in the left-looking algorithm in Sec-
tion |lII-B} we then have a blocked version of the algorithm:
From the j-th block column of H = T'L” and the (3, 7)-th

4A right-looking algorithm could update A2 2.0 by Aoip 2:n— =
e2=n,1h2T;n,1 and compute A2, 2:n = thn,Q;annzm. However, the
symmetry is lost in the trailing submatrix, and the whole submatrix
including both its upper- and lower-triangular parts must be updated leading
to %n3 + o(n?) flops.

Random matrix

\
\
1
<<

n _=50), approach 1
=100), approach 1
=200), approach 1
—50) approach 2 |
=100), approach 2
_200) approach 2

Residue norm, [|Ax-b||

UUUUUU

500 1000 1 500 2000
Matrix dimension

Figure 3. Solution accuracy using two updating schemes in Figure 2}

block of A = LH, we have for k=1,2,...,5—1,
Hyj=Top—1Lx—15+TexLle; +Thpr1Lliyry; (8)

and)
J
Hj;=Lj; (Am - ZLJ,ka,j> - ©))
k=1

Then, we obtain 7} ; from the (3, j)-th block of H = TL™,
i.e.,

Ty = (Hjj—Tjj-1L],
Next from the j-th block column of A = LH, we can extract
the (j + 1)-th block column of L,

Pl Lji1)mjr1Hjp1,; = LU(V),

JJ— 1) L;JT (10)

where)
J
V= AGsnyms — O LiavmaHg,
k=1
and L(j11):n,j4+1 and Hj,q ; are the L and U factors of V'
with the partial pivoting P;. This partial pivoting is then
applied to the corresponding part of the submatrices; i.e.,

Ajtiin,j+1 = PjA(j-i-l)inv(j'f‘l)mPJT
and
Li+1yn,1:5 = PiL+1ym,1:5
Finally, from the (j + 1, j)-th block of H = TLT, we have

T

a1 = Hipa LT

Unfortunately, the above procedure is not stable in prac-
tice because the symmetric T} ; is computed through a
sequence of unsymmetric expressions . To recover the
symmetry, we substitute H; ; of (9) into @]) and obtain

j—1
g E LjrHy,;

— L“T” 1L“ 1, an

L;;T; ;L7 =A

Furthermore, replacing Hy, ; of (II) with that of (8) gives
us

L;;Ti;L7,=A

j—1
i > LW
k=1
—1
— Y WikLj (12
k=1

where Wiy, = Uj i + 5Vik—1, Vig = LjpTh and Uy, =
L; xTk k—1. Then, from the (j,)-th block of H = TLT,
we have
T
Hj; =T;j,Lj ;.

Figure [I] shows the pseudocode of this blocked algorithm.
We have investigated two approaches to update the diagonal
block T} ; (see Figure . The second approach considers the
symmetry while updating the diagonal block, but requires
extra jnj flops. Figure [3| shows that these two approaches
obtain similar stability on random matrices. For the rest of
the paper, we focus on the first approach.

In Figure [3] the residue norms increase slightly with the
increase in the block size n;. This agrees with the error
bound in [1] that is propotional to both the block size and
the number of blocks.

IV. IMPLEMENTATION

We now describe our implementation of this blocked left-
looking Aasen’s algorithm on multicores. This is done within
the framework of PLASMA using a runtime system QUARK
to dynamically schedule our computational tasks.

A. Tiled implementation

As mentioned in Section [, PLASMA is based on tiled
algorithms that breaks the algorithm into fine-grained com-
putational tasks that operate on small square tiles. Figure [
shows the pseudocode of our tiled Aasen’s algorithm, where
most of the computational tasks are performed using BLAS-
3 routines. The only exceptions are the LU panel factoriza-
tion (Line 32) and the application of the pivots (Lines 33
through 35), which we will discuss in more details in
Sections and respectively.

In the above tiled algorithm, the dependencies among the
computational tasks can be represented as a Directed Acyclic
Graph (DAG), where each node represents a computational
task and edges between the nodes represent the dependencies
among them. Figure [5] shows an example of DAG for our
blocked Aasen’s algorithm. At run time, the runtime system
QUARK uses this DAG to schedule the tasks as soon as all
of their dependencies are resolved. This not only allows us
to exploit the fine-grained parallelism of the algorithm, but
in many cases, this also results in out-of-order execution of
tasks, scheduling the independent tasks from the different
stages of factorization at the same time (e.g., computation
of T; j and L(j11).n,511)- As a result, the idle time of cores

1: for j =1tondo

2: // Compute off-diagonal blocks of H. ;

33 for/=1toJ—1do

4: GEMM(‘N’, LT/, 1-0aTi,iaLi,iaO-O7Hi,j)

5: GEMM(‘N’,‘T’,LO,TZ'_’_L“Liﬂj_;'_l, 1.O,Hi7j)
6: if 7 > 1 then

7: GEMM(‘N/?‘TI,1.0,117;,1’1',.[@"1',17l.O,HZ'J)
8: end if

9: end for

10: // Compute (j,j)-th block of T

11: LACPY(A;;, T} ;)

122 fori=1toj—1do

13: GEMM(‘N’,*N’,—-1.0,L;,, H; ;,1.0,Tj ;)

14: end for

15: if j > 1 then

16: GEMM(‘N’,‘N’,l.O,ijj_l,Lj7j_1,0.O,Wj)
17: GEMM(‘N’,‘N/,—1.0,Lj’j,Wj7j,1.0,Tj7j)

18: end if

19: SYGST(TLJ‘,L]‘J)
20: // Compute (3§, j)-th block of H

21: GEMM(‘N’,‘T/,1.0,Tj7j,Lj7j,O.O,Hj7j)

22: if 5 < n then

23: // Extract j-th block column of L

24: for i =7+ 1tondo

25: LACPY(A; j, Li j+1)

26: end for

27: for k=1to j do

28: fori=j+1tondo

29: GEMM(‘N’,‘N’,—1.0,Li’k,Hk’j,1.0,Lk’j+1)
30: end for

31 end for

32: [L(jr1yim,j+1s Hjjv1s Pi] = LU(L(j 11y 541)
33: // Apply pivots to other part of matrices

34: Lj+1ym,1:5 = PiL(j41)in,1:

35: AG+1ym,G+im = PjAganm,r1ym Py

36: // Extract (j + 1, j)-th block of T

37: GEMM(‘N',*N’,1.0, Hj 41, L; 0.0, Tj11,5)
38: end if

39: end for

Figure 4. Tiled implementation of blocked left-looking Aasen’s algorithm.

can be reduced, allowing us to utilize a large number of
cores.

B. Parallel reduction

At the j-th step of the left-looking algorithm, the j-
th block column Aj., ; is updated with the previously-
factorized block columns (Lines 11 through 18 and Lines 24
through 31 of Figure [)). There is a limited parallelism
because multiple updates cannot be accumulated onto the
same block at the same time (e.g., Tj; = A;; —
Ljq1.j-1)H1.(j—1),;)- Furthermore, as j increases, each
block must be updated with more previous block columns,

Figure 5. DAG of blocked Aasen’s algorithm with n = 750 and n, = 50.
(need to fix or remove this DAG)

while the number of blocks in the current block column
decreases. Hence, it is critical that we exploit as much
parallelism as possible when updating each block.

Updating a single block with multiple blocks can be
considered as a reduction operation, and to exploit the
parallelism, we can apply a parallel reduction algorithm.
Specifically, we first use separate workspace to accumulate
sets of independent updates to a block, and then use binary
reduction to accumulate them into the first block of the
workspace. Finally, the accumulated update is added to
the corresponding destination block. Figure [6] shows the
pseudocode of our left-looking update algorithm. This not
only exploits the parallelism to accumulate the independent
updates onto a single block, but it also allows us to start
computing the updates before the destination block is ready.
Specifically, while applying the pivots to A;., ;, idle cores
can accumulate the updates in the workspace.

The accumulation of two updates using GEADD requires
only O(n?) flops in comparison to O(n;) flops needed for
computing the update with GEMM. Since scheduling these
relatively small accumulation tasks can add significant over-
head to the runtime system, we group a set of accumulation
tasks into a single task. Also this parallel reduction is
invoked only when the number of tiles in the block column
is less than the number of available cores. Hence, round-
off errores leads to slightly different factors on different
numbers of cores.

C. Parallel panel factorization

When a recursive LU is used for the panel factorization,
all the blocks in the panel must be updated before the panel

1: m; = min(j, n—”}j) // workspace per block
2: for k=1to j do

33 fori=k+1tondo

4: c=mod(k,m;) +1

5: if & < m; then

6: 5 =0.0

7: else

8: 68=1.0

9: end if

10: GEMM(‘N’,*N’,—1.0, L; ., Hy ;, B, W)
11: end for

12: end for

13: // Binary reduction of workspace into Aj.y, ;

Figure 6. Left-looking update with a binary-tree reduction, where m is
the number of ny-by-n; workspaces.

factorization can start. Furthermore, even with the parallel
reduction described in Section the updates on the
next panel cannot be started until the current symmetric
pivoting is applied to the previous columns of L. Hence,
there is no other tasks that can be scheduled during the
panel factorization. The trace in Figure [7(a)| shows that there
is synchronization before and after the panel factorization,
and that when the panel has only a small number of tiles,
some cores are left idle.

This synchronization can be avoided if we use a
communication-avoiding LU on the panel. In this algorithm,
as soon as all the updates are applied to a pair of tiles, we
can start the LU factorization of the pair. Unfortunately,
updating Aj., ; with L;., ; requires H;; (see Line 11
of Figure [I), whose computation is often on the critical
path of the algorithm. This can be seen in the trace in
Figure where the panel factorization cannot start until
the yellow blocks after the red block (updating A;.,, ; with
L ;) ﬁnishesﬂ Hence, in this left-looking algorithm, we
often cannot overlap all of the panel factorization tasks
with the tasks to update the panel. As a result, the total
factorization time is often slower using CALU than that
using the recursive LU (see Section [V). We are examining
if we can improve the performance of CALU in this left-
looking algorithm by reducing more than two tiles at each
step of tournament or by using a static scheduling scheme.

D. Parallel symmetric pivoting

To maintain the symmetry of the trailing submatrix,
pivoting must be applied symmetrically to both rows and
columns. Since only the lower triangular part of the sub-

SThese traces use a relatively small n for illustration. With a larger
n, GEMM becomes more dominant. As a result, the idle time during
the updates disappeares, but that for the panel factorization tends to stay.
For instance, with CALU, many of the panel factorization tasks can be
overlapped with updates, but not all. We assign four tiles on each cores
during the recursive LU.

4
[
]
{
— _1
Figure 8. Illustration of symmetric pivoting.

1. copy with pivots

2. copy back

[| [_-I__J

Figure 9. Implementation of parallel symmetric pivoting.

matrix is stored, this symmetric pivoting leads to irregu-
lar memory accesses and irregular task dependencies (see
Figure E[) On the other hand, in an LU factorization with
partial pivoting, only the rows within block columns are
swapped, leading to more regular dependencies. Moreover,
in the symmetric factorization, only the lower-triangular part
of the trailing submatrix is updated, and the cost of applying
pivots is more dominant in the total cost of the factorization.
Finally, as described in Section [V-C] in our left-looking
algorithm, the pivots must be applied before the updates can
be accumulated onto the next panel. Hence, the application
of the pivots can lay on the critical path, and must be
implemented as efficient as possible.

As illustrated in Figure 0] our symmetric pivoting consists
of two steps. The first step copies all the columns of the
trailing submatrix, which need to be swapped, into an n-by-
2ny, workspace. At the j-th step, this is done by generating
nﬂb — j tasks, each of which independently copies to the
workspace the columns in one of the nl,, —j block columns of

1 { LD
1L IR HERH R
RELIRC IE

(a) recursive LU

Il
LR
[H (1

(b) CALU

Figure 7.

Traces of our block-Aasen’s algorithm, where green, blue, orange, magenta, red, yellow, white, and black blocks represent recursive LU,

CALU, pivoting of L, pivoting of A, SYGST, GEMM, TRSM, and idle time, respectively (n = 2000 and n; = 200).

the submatrix. Notice that due to the symmetric storage, the
k-th block column consists of the blocks in the k-th block
row and those in the k-th block column (i.e., Ay ;. and
A(k41):n,k)- Then, in the second step, we generate another
set of nﬂb — j tasks, each of which copies the columns of
the workspace back to a block column of the submatrix
after the column pivoting is applied. While the columns
are copied into the workspace, we use a global permutation
array to apply the row pivoting to each column. This leads to
irregular accesses to the memory locations in the workspace.
As a result, the first step of copying the columns into the
workspace is often slower than the second step of copying
them back to the submatrix.

At each step of symmetric pivoting, each tile of the
submatrix is read by two tasks (i.e., at the j-th step, A; j is
read by the (i — j)-th and (k — j)-th tasks). It is possible for
each task to only access the tiles in a single block column
and copy all the required columns of the block column
to the workspace. In this way, each tile is read by only
one task, but the k-th task accesses k tiles, leading to a
workload imbalance among the tasks. This imbalance can
be reduced by generating finer-grained tasks, where each

task accesses only a fixed number of tiles in the block
column. However, this often adds a significant overhead to
the runtime system. Furthermore, this approach often does
not improve the memory access pattern because only the
rows and columns to be swapped are accessed, and hence the
accesses to these columns and rows of the tile are irregular.

Another approach is to let each task gather all the columns
to be swapped into a set of tiles in the workspace. This
approach provides much finer-grained parallelism than the
previous two approaches because as soon as these columns
are copied into the tiles, they can be copied back to the
submatrix and used to updated the next block column. On
the other hand, with the previous approaches, we must
wait for all the columns to be copied into the workspace
before copying back to the submatrix because we do not
know which tasks are writing into which columns of the
workspace. However, this new approach leads to an irregular
memory access to the block column of the trailing submatrix.
Furthermore, as we will describe in the next paragraph, the
runtime system can use idle cores during the symmetric piv-
oting to accumulate some updates for the next block column.
At the end, the first approach gave the best performance in

many cases, and we use that for our performance studies.

Since the previous block columns of L are needed for
the parallel reduction described in Section [V-B] the rows of
these block columns should be swapped as soon as possible.
Hence, we apply the pivoting to these block columns sepa-
rately from the application of the symmetric pivoting to the
trailing submatrix. This is done by letting each task swap the
rows in a previous block column of L. The pivoting of these
block columns are scheduled before the symmetric pivoting
of the trailing submatrix such that the parallel reduction can
start as soon as possible, and is executed on the idle cores
while the symmetric pivoting is being applied. In addition,
we assign a higher-priority to apply the symmetric pivoting
to the next block column of A since that block column is
needed at the next step, while the other block columns are
not needed until the proceeding steps.

E. Storage requirement

Since the first block column of L is the first n; columns
of the identity matrix, they do not have to be stored. Hence,
we store the (7 + 1)-th block column of L in the j-th block
column of A. Recall that at the j-th step, we compute the
(j + 1)-th block column of L from the j-th block column
of A. Hence, A. ;1 is needed at the (j + 1)-th step, and
we cannot overwrite A. ;1,1 with L. ;1 at the j-th step. If
the diagonal tiles of 7" are stored in those of A, then only
additional memory required to return L and 7' are those
to store the off-diagonal tiles of T' (i.e., (n — 1)ny-by-ny
storage).

Since only the j-th block column of H is needed at the
j-th step, we reuse an n-by-n; workspace to store Hj., ;
at each step. In addition, we require 2n;,-by-n workspace
for the symmetric pivoting, and cny-by-n workspace for the
parallel reduction operation, where c is a user-specified small
constant (in our experiments, we used ¢ = 2). It is possible
to use the same workspace for the symmetric pivoting and
for the parallel reduction. Since only a small number of
tasks from these two different stages of the algorithm can
be overlapped, the performance gain obtained using two
different workspace for these two stages is often small.

FE. Banded solver

Once the matrix is reduced to a banded form, we used the
general banded solver GBSV of threaded MKL to solved this
banded system. To improve the performance of the solver,
we are exploring a few other options (e.g., [19]) to solve
this banded system.

V. PERFORMANCE STUDIES

We now analyse the performance of our blocked Aasen’s
algorithm on up to eight 6-core 2.8MHz AMD Opteron
processors. Our code was compiled with gee compiler and
-02 optimization flag, and was linked with the version
2011.1.107 MKL library. All the experiments are in real
double precision.

[Name |

Random | a;; =2 X rand(n,n)
Sparse(t) | a;; =2 x rand(n,n), 75 =t
Fiedler a;; =1—]
_ 1
RIS Qi 5 = 2(n—i—j+1.5)

Figure 13. Test matrices.

A. Numerical stability

Figures [10] — [I2] compare the computed residue norms of
our blocked Aasen’s algorithm with those of the LDL” fac-
torization of LAPACK using the Bunch-Kauffman algorithm
and with that of PLASMA using RBT. For RBT, we used the
default transformation depth of two. The figure clearly shows
that the residue norm of the Aasen’s algorithm increases with
the increase in the value of the block size n;. However, the
residue norm of the Aasen’s algorithm with n, = 200 was
competitive with or significantly smaller than those of RBT.
Furthermore, the factorization with RBT failed for RIS and
Sparse matrix with ¢ = 0.2. For the Sparse matrix, RBT
will be successful if the transformation depth is increased to
make the transformed matrix sufficiently dense. With RBT
the oscillations of the residue norms are expected, but a few
iterations of iterative refinement can smooth out the residue
norms.

Figures [I0] — [II] show the residue norms when a
communication-avoiding LU is used in our block Aasen’s
algorithm. We found that the factorization can become
unstable using a large block size (e.g., RIS and Fiedler).
We are examining if this instability can be avoided using an
LU factorization with panel rank revealing pivoting [20].

B. PFarallel scalability

Figure [[4] compares the parallel performance of the
Aasen’s algorithm with those of RBT and recursive LU of
PLASMA. We computed Gflop/s as the number of flops
required by the LDL” factorization of LAPACK (i.e., 1n®+
%n2 flops) over the time in second required by the algorithm
to compute the factorization. As discussed in Section |II} in
term of factorization time, RBT obtains a Gflop/s that is
close to that of Cholesky factorization, and provides our
practical upper-bound on the achievable Gflop/s. We see that
on a medium number of cores, the Aasen’s algorithm stays
close to RBT, but due to the combination of its left-looking
formulation and use of the recursive LU on the panel, it does
not scale as well as the right-looking algorithms. On 6 and
48 cores, respectively, the Aasen’s algorithm with recursive
LU obtained about 83% and 73% of Gflop/s of RBT, while
it obtained speedups of about 1.6 and 1.4 over the recursive
LU. Notice that RBT obtains the speedups of about 2.0 over
the recursive LU, which is our practical upper bound.

Figure shows the Gflop/s of the various factorization
algorithms with different matrix dimensions on 24 and 48

Random matrix Random matrix

—5-RBT —gAasen(n =10)
Aasen(n =10
el #A (b_SO) i 107 || —o—Aasen(n =50) 1
8 asen(n, =50) A \ Aasen(n,=100) X
= | - Aasen(n,=100) = 5] Aasen(n =200)
X o9 Aasen(n,_=200) R b
< 107 v b 1 < 10" b |5 LAPACK 1
g ——LAPACK I3
s 4 s
(] [}
=) =)
S bl
[%] w
(] Q
o« i
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension Matrix dimension
(a) recursive LU (b) CALU
Figure 10. Solution accuracy of blocked left-looking Aasen’s algorithm on Random matrix.
RIS matrix RIS matrix
107 ‘ ‘ ‘ ‘ ‘ ‘ :
%Aasen(nbﬂ 0)
Aasen(n_=50)
107+ ® ool
. Aasen(n =100)
8 8 Aasen(n=200
oy 3 7L -~ (n;=200)
% % ——LAPACK
= <
3 £ -0
§ é 10 Y L
[} () e\
=] =] S e ——
o ° _11 A -
& ——LAPACK g 10T)
T o 3/9—9/9”/’(
107]
10_147 E W
L L L L L L L 10_15 L L L L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension Matrix dimension
(a) recursive LU (b) CALU
Figure 11. Solution accuracy of blocked left-looking Aasen’s algorithm on RIS matrix (default RBT failed).
Fidler matrix Sparse matrix
-7 -7
10 : : ! ! . ! ! . 10 . . ! ! ! . .
-8-RBT, t=0.5
2 -8-RBT, t=0.4 . SorEsl LR
o || 2 RBT,t=03 s BNy
107 §—o—Aasen, t=0.5 |7 8 T it 9
3 3 —©—Aasen, t=0.4 P RN G
K 0 ~&-Aasen, t=0.3 |7 - -
< 10° £ g [|-eAasen t=02 -
= = 107§ ——LAPACK, t=0.2 3
€ = -
5] 5]
= c
© ——LAPACK s
% %Aasen(nb=10) % 10
2 —Aasen(n, =50) 2
107 s Aasen(n =100) 1 ,
1
- 107k J
%Aasen(nbioo)
—8-RBT
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension Matrix dimension

Figure 12. Solution accuracy of blocked left-looking Aasen’s algorithm using recursive LU on Fidler and Sparse matrices (default RBT failed on Sparse
t =0.2).

nb=250, 24 threads

250

—=—-RVT

—6— Aasen-rec
—o—Aasen-CA
200 LU-rec
——LAPACK

il
150N
Ji;
100} W
50W

18000 15000 20000 25000 30000 35000 40000 45000
Matrix size, n

Gflop/s

Figure 15.

n,=250

10000 15000 20000 25000 30000 35000 40000 45000
Matrix size, n

N=45000, n, =250
250

—=—RBT
—6—Aasen-rec
——Aasen-CA
2007 LU-rec

—— | APACK

150F

0
a
K]
G

100~

50

0 6 12 24 48
Number of cores
Figure 14. Parallel performance comparison on Random matrix.

cores. Again, due to the limited parallelism in the left-
looking formulation, our implementation cannot obtain the
parallel efficiency of the other right-looking algorithms.
However, as the matrix dimension increases, our implemen-

nb=250, 48 threads

250

2001

Gflop/s

—=-RBT
50 M —6—Aasen-rec||
——Aasen-CA
LU-rec
——LAPACK

18000 15000 20000 25000 30000 35000 40000 45000
Matrix size, n

Performance comparisons on Random matrix.

tation could exploit the increasing amount the parallelism.
By comparing against the Gflop/s of LAPACK, we clearly
see that both recursive LU and RBT implementations of
PLASMA obtain excelent parallel performance. For all the
cases, the block Aasen’s algorithm was significantly faster
than MKL obtaining speedups of up to 2.1 and 2.8 on 24
and 48 cores, respectively.

VI. CONCLUSION

We analyzed the parallel performance of a blocked left-
looking Aasen’s algorithm on multicore architectures. This
is not only the first implementation of the algorithm, but it
is also the first implementation of a left-looking algorithm
in PLASMA. The numerical results have shown that in
comparison to the Bunch-Kauffman algorithm of LAPACK,
our implementation loses only one or two digits in the
computed residue norms. Furthermore, it is more robust than
a randomization approach, being able to solve a wider range
of problems. On 48 AMD Opteron processors, it obtained
the speedup of 1.4 over the state-of-the-art recursive LU
algorithm, while it obtained the speedup of 2.8 over the
LDL factorization of MKL. These results demonstrate that
this algorithm has the potential of becoming the first scalable
algorithm that can take advantage of the symmetry and has a
provable stability for solving symmetric indefinite problems.

We are currently studying the cause of the increasing
numerical instability with respect to the increase in the block
size, and also examining the numerical behavior of the block
Aasen’s algorithm combined with communication-avoiding
algorithms. During our numerical experiments, we have
encountered test matrices, where the numerical property of
the blocked Aasen’s algorithm using CALU was not as good
as that using recursive LU. This might be related to the
fact that these test matrices lead to small pivots during the
LU factorization of off-diagonal blocks. We will investigate
if we could take advantage of this numerical low-rank

properties by a mean similar to hierarchically semiseparatble
factorization (e.g., [21]]). Finally, we will explore more
scalable banded solver to improve the performance of the
solver.

ACKNOWLEDGMENTS

This research was supported in part by NSF CCF-
1117062 and CNS-0905188, and Microsoft Corporation
Research Project Description “Exploring Novel Approaches
for Achieving Scalable Performance on Emerging Hybrid
and Multi-Core Architectures for Linear Algebra Algorithms
and Software.” We are grateful to all the researchers at the
Innovative Computing Laboratory (ICL) of the University of
Tennessee, Knoxville for helpful discussions.

REFERENCES

[1] A. Druinsky, I. Peled, S. Toledo, G. Ballard, J. Demmel,
O. Schwartz, A communication avoiding symmetric indefinite
factorization, presented at the SIAM conference on parallel
processing for scientific computing, manuscript in preparation
(2012).

[2] J. Aasen, On the reduction of a symmetric matrix to tridiag-
onal form, BIT 11 (1971) 233-242.

[3] M. Rozloznik, G. Shklarski, S. Toledo, Partitioned triangular
tridiagonalization, ACM Trans. Math. Softw. 37 (2011) —.

[4] A. Castaldo, R. Whaley, Scaling LAPACK panel operations
using Parallel Cache Assignment, in: Proceedings of the 15th
AGM SIGPLAN symposium on Principle and practice of
parallel programming, 2010, pp. 223-232.

[5] F. Gustavson, Recursive leads to automatic variable blocking
for dense linear-algebra algorithms, IBM Journal of Research
and Development 41 (1997) 737-755.

[6] J. Dongarra, M. Faverge, H. Ltaief, P. Luszczek, Achieving
numerical accuracy and high performance using recursive tile
LU factorization, Tech. Rep. ICL-UT-11-08, University of
Tennesse, Compute Science department (2011).

[7]1 J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
Communication-optimal parallel and sequential QR and LU
factorizations, Tech. Rep. UCB/EECS-2008-89, EECS De-
partment, University of California, Berkeley (2008).

[8] J. Bunch, L. Kaufman, Some stable methods for calculating
inertia and solving symmetric linear systems, Mathematics of
Computation 31 (1977) 163-179.

[9] E. Anderson, J. Dongarra, Evaluating block algorithm variants
in LAPACK, in: Proceedings of the 4th Conference on
Parallel Processing for Scientific Computing, 1989, pp. 3-8.

[10] D. S. Parker, Random butterfly transformations with applica-
tions in computational linear algebra, Technical Report CSD-
950023, Computer Science Department, UCLA (1995).

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

D. Becker, M. Baboulin, J. Dongarra, Reducing the
amount of pivoting in symmetric indefinite systems, in:
R. Wyrzykowski et. al. (Ed.), 9th International Conference on
Parallel Processing and Applied Mathematics (PPAM 2011),
Vol. 7203 of Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, 2012, pp. 133-142.

M. Baboulin, D. Becker, J. Dongarra, A parallel tiled solver
for dense symmetric indefinite systems on multicore archi-
tectures, Proceedings of IPDPS 2012 (to appear)LAPACK
Working Note 261.

M. Baboulin, J. Dongarra, J. Herrmann, S. Tomov, Accel-
erating linear system solutions using randomization tech-
niques, ACM Transactions on Mathematical Software (to
appear)LAPACK Working Note 246.

P. E. Strazdins, A dense complex symmetric indefinite solver
for the Fujitsu AP3000, Technical Report TR-CS-99-01, The
Australian National University (1999).

N. I. M. Gould, J. A. Scott, Y. Hu, A numerical evaluation
of sparse solvers for symmetric systems, ACM Trans. Math.
Softw. 33 (2) (2007) 10:1-10:32.

P. Hénon, P. Ramet, J. Roman, On using an hybrid MPI-
Thread programming for the implementation of a parallel
sparse direct solver on a network of SMP nodes, In PPMA’05,
LNCS 3911 (2005) 1050-1057.

0. Schenk, K. Girtner, On fast factorization pivoting methods
for symmetric indefinite systems, Elec. Trans. Numer. Anal.
23 (2006) 158-179.

B. Parlett, J. Reid, On the solution of a system of linear
equations whose matrix is symmetric but not definite, BIT
10 (1970) 386-397.

L. Kaufman, The retraction algorithm for factoring banded
symmetric matrices, Numer. Linear Algebra Appl. 14 (2007)
237254.

A. Khabou, J. Demmel, L. Grigori, M. Gu, LU factorization
with panel rank revealing pivoting and its communication
avoiding version, submitted to SIAM J. Matrix Anal. Appl.

J. Xia, S. Chandrasekaram, M. Gu, X. Li, Fast algorithms for
hierarchically semiseparable matrices, Numer. Linear Algebra
Appl. 17 (2010) 953-976.

	Introduction
	Related works
	LAPACK – Bunch-Kauffman algorithm
	PLASMA – Random Butterfly Transformation

	Aasen's algorithms
	Right-looking Aasen's algorithm
	Left-looking Aasen's algorithm
	Blocked left-looking Aasen's algorithm

	Implementation
	Tiled implementation
	Parallel reduction
	Parallel panel factorization
	Parallel symmetric pivoting
	Storage requirement
	Banded solver

	Performance studies
	Numerical stability
	Parallel scalability

	Conclusion
	References

