
Parallel Two-Sided Matrix Reduction to Band
Bidiagonal Form on Multicore Architectures

Hatem Ltaief, Member, IEEE, Jakub Kurzak, Member, IEEE, and Jack Dongarra, Fellow, IEEE

Abstract—The objective of this paper is to extend, in the context of multicore architectures, the concepts of tile algorithms [Buttari

et al., 2007] for Cholesky, LU, and QR factorizations to the family of two-sided factorizations. In particular, the bidiagonal reduction of a

general, dense matrix is very often used as a preprocessing step for calculating the Singular Value Decomposition. Furthermore, in the

Top500 list of June 2008, 98 percent of the fastest parallel systems in the world were based on multicores. This confronts the scientific

software community with both a daunting challenge and a unique opportunity. The challenge arises from the disturbing mismatch

between the design of systems based on this new chip architecture—hundreds of thousands of nodes, a million or more cores,

reduced bandwidth and memory available to cores—and the components of the traditional software stack, such as numerical libraries,

on which scientific applications have relied for their accuracy and performance. The many-core trend has even more exacerbated the

problem, and it becomes critical to efficiently integrate existing or new numerical linear algebra algorithms suitable for such hardware.

By exploiting the concept of tile algorithms in the multicore environment (i.e., high level of parallelism with fine granularity and high-

performance data representation combined with a dynamic data-driven execution), the band bidiagonal reduction presented here

achieves 94 Gflop/s on a 12;000� 12;000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms

approach for the bidiagonal reduction is that the full reduction cannot be obtained in one stage. Other methods have to be considered

to further reduce the band matrix to the required form.

Index Terms—Bidiagonal reduction, singular value decomposition, tile algorithms, multicores.

Ç

1 INTRODUCTION

THE objective of this paper is to extend, in the context of

multicore architectures, the concepts of tile algorithms

by Buttari et al. [7] for Cholesky, LU; and QR factoriza-
tions to the family of two-sided factorizations, i.e.,

Hessenberg reduction, Tridiagonalization, and Bidiagona-

lization. In particular, the Bidiagonal Reduction (BRD) of a

general, dense matrix is very often used as a preprocessing

step for calculating the Singular Value Decomposition

(SVD) [14], [28]:

A ¼ X � Y T ;

A 2 IRm�n; X 2 IRm�m; � 2 IRm�n; Y 2 IRn�n:

The necessity of calculating SVDs emerges from various

computational science disciplines, e.g., in statistics, where it

is related to principal component analysis; in signal

processing and pattern recognition; and also in numerical

weather prediction [10]. The basic idea is to transform the

dense matrix A to an upper bidiagonal form B by applying

successive distinct transformations from the left (U) as well

as from the right (V) as follows:

B ¼ UT A V ;

B 2 IRn�n; U 2 IRn�n; A 2 IRn�n; V 2 IRn�n:

The most commonly used algorithm to perform this two-
sided reduction is the Golub-Kahan bidiagonalization [15].
Although this algorithm works for any matrix size, it adds
extra floating-point operations for rectangular matrices, and
thus, faster methods such as the Lawson-Hanson-Chan
bidiagonalization are preferred [8]. Here, only square
matrices are considered, and performance result compar-
isons of different bidiagonalization algorithms for rectan-
gular matrices will appear in a companion paper.

Also, we only look at the first stage of BRD, which goes
from the original dense matrix A to a band bidiagonal
matrix Bb, with b being the number of upper diagonals. The
second stage, which annihilates those additional b upper
diagonals, has been studied especially by Lang [21] and is
not examined in this paper. This two-stage transformation
process is also explained by Grosser and Lang [16].
Although expensive, orthogonal transformations are ac-
cepted techniques and commonly used for this reduction
because they guarantee stability, as opposed to Gaussian
Elimination [28]. The two common transformations are
based on Householder reflectors and Givens rotations.
Previous work by the authors [22] demonstrates the
effectiveness of Householder reflectors over Givens rota-
tions. Therefore, the two-sided band BRD presented in this
paper is achieved by using Householder reflectors.

Furthermore, in the Top500 list of June 2008 [1],
98 percent of the fastest parallel systems in the world were
based on multicores. This confronts the scientific software
community with both a daunting challenge and a unique
opportunity. The challenge arises from the disturbing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010 417

. The authors are with the Innovative Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Tennessee,
Suite 413 Claxton, 1122 Volunteer Blvd, Knoxville, TN 37996-3450.
E-mail: {ltaief, kurzak, dongarra}@eecs.utk.edu.

Manuscript received 6 Oct. 2008; revised 8 Apr. 2009; accepted 5 May 2009;
published online 11 May 2009.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-10-0404.
Digital Object Identifier no. 10.1109/TPDS.2009.79.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

mismatch between the design of systems based on this new
chip architecture—hundreds of thousands of nodes, a
million or more cores, reduced bandwidth and memory
available to cores—and the components of the traditional
software stack, such as numerical libraries, on which
scientific applications have relied for their accuracy and
performance. The many-core trend has even more exacer-
bated the problem, and it becomes critical to efficiently
integrate existing or new numerical linear algebra algo-
rithms suitable for such hardware. As discussed in [7], a
combination of several parameters is essential to match the
architecture associated with the cores:

1. fine granularity to reach a high level of parallelism
and to fit the cores’ small caches;

2. asynchronicity to prevent any global barriers;
3. block data layout (BDL), a high-performance data

representation to perform efficient memory access;
and

4. dynamic data-driven scheduler to ensure that any
enqueued task can immediately be processed as
soon as all their data dependencies are resolved.

While points 1 and 3 represent important items for one-
sided and two-sided transformations, points 2 and 4 are
even more critical for two-sided transformations because of
the tremendous amount of tasks generated by the right
transformation. This imposes on the scheduler even more
severe constraints due to the overlapping regions produced
by the left and right transformations. Indeed, as a
comparison, the algorithmic complexity for the QR factor-
ization is 4=3 n3, while it is 8=3 n3 for the BRD algorithm.
Besides, previous work done by Kurzak et al. [19], [20]
shows how the characteristics of tiled algorithms perfectly
match even the architectural features of modern multicore
processors such as the Cell Broadband Engine processor.

However, the main drawback of the tile algorithms
approach for the bidiagonal reduction is that the full
reduction cannot be obtained in one stage. Other methods
have to be considered to further reduce the band matrix to
the required form. A section in this paper will address the
origin of this issue.

The remainder of this paper is organized as follows:
Section 2 recalls the standard BRD algorithm. Section 3
gives a detailed overview of previous projects in this area.
Section 4 describes the implementation of the parallel tiled
BRD algorithm. Section 5 outlines the pros and cons of static
and dynamic scheduling. Section 6 presents the perfor-
mance results. Comparison tests are run on shared-memory
architectures against the state-of-the-art, high-performance
dense linear algebra software libraries, LAPACK [3], and
ScaLAPACK [9]. Finally, Section 7 summarizes the results
of this paper and presents the ongoing work.

2 THE STANDARD BIDIAGONAL REDUCTION

In this section, we review the original BRD algorithm of a
general, dense matrix.

2.1 The Sequential Algorithm

The standard BRD algorithm of A 2 IRn�n based on
Householder reflectors combines two factorization meth-
ods, i.e., QR (left reduction) and LQ (right reduction)
decompositions. The two phases are written as follows:

Algorithm 1. Bidiagonal Reduction with Householder
reflectors

1: for j ¼ 1 to n do

2: x ¼ Aj:n;j

3: uj ¼ signðx1Þ kxk2 e1 þ x

4: uj ¼ uj = kujk2

5: Aj:n;j:n ¼ Aj:n;j:n � 2 ujðu�jAj:n;j:nÞ
6: if j < n then

7: x ¼ Aj;jþ1:n

8: vj ¼ signðx1Þ kxk2 e1 þ x

9: vj ¼ vj = kvjk2

10: Aj:n;jþ1:n ¼ Aj:n;jþ1:n � 2ðAj:n;jþ1:nvjÞ v�j
11: end if

12 end for

Algorithm 1 takes as input a dense matrix A and gives as
output the upper bidiagonal decomposition. The reflectors
uj and vj can be stored in the lower and upper parts of A,
respectively, to save memory space and used later if
necessary. The bulk of the computation is located in line 5
and in line 10 in which the reflectors are applied to A from
the left and then from the right, respectively. Four flops are
needed to annihilate one element of the matrix, which
makes the total number of operations for such algorithms
8=3 n3 (the lower order terms are neglected). It is obvious
that Algorithm 1 is not efficient as is, especially because it is
based on matrix-vector Level-2 BLAS operations. Also, a
single entire column/row is reduced at a time, which
engenders a large stride access to memory. The main
contribution described in this paper is to transform this
algorithm to work on tiles instead to generate, as many as
possible, matrix-matrix Level-3 BLAS operations. First
introduced by Berry et al. in [5] for the reduction of a
nonsymmetric matrix to block upper Hessenberg form and
then revisited by Buttari et al. in [7], this idea considerably
improves data locality and cache reuse.

The following section briefly comments on the previous
work done in BRD algorithms.

3 RELATED WORK

Yotov et al. [30] describes Cache-oblivious algorithms,
which allow applications to take advantage of the memory
hierarchy of modern microprocessors. These algorithms
are based on the divide-and-conquer paradigm each
division step creates subproblems of smaller size, and
when the working set of a subproblem fits in some level of
the memory hierarchy, the computations in that subpro-
blem can be executed without suffering capacity misses at
that level. In this way, divide-and-conquer algorithms
adapt automatically to all levels of the memory hierarchy;
in fact, for problems like matrix multiplication, matrix
transpose, and FFT, these recursive algorithms are optimal
to within constant factors for some theoretical models of
the memory hierarchy.

Grosser and Lang [16] describe an efficient parallel
reduction to bidiagonal form by splitting the standard
algorithm into two stages, i.e., dense to banded and banded to
bidiagonal, in the context of distributed memory systems.
The QR and LQ factorizations are done using a tree
approach, where multiple column/row blocks can be
reduced to triangular forms at the same time, which can
ameliorate the overall parallel performance. However, those

418 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

triangular blocks are then reduced without taking into
account their sparsity, which add some extra flops.

Ralha [25] proposed a new approach for the bidiagonal
reduction called one-sided bidiagonalization. The main
concept is to implicitly tridiagonalize the matrix ATA by
a one-sided orthogonal transformation of A, i.e.,
F ¼ A V . As a first step, the right orthogonal transfor-
mation V is computed as a product of Householder
reflectors. Then, the left orthogonal transformation U and
the bidiagonal matrix B are computed using a Gram-
Schmidt QR factorization of the matrix F . This procedure
has numerical stability issues and the matrix U might
loose its orthogonality properties.

Barlow et al. [4] and later, Bosner and Barlow [6], further
improved the stability of the one-sided bidiagonalization
technique by merging the two distinct steps to compute the
bidiagonal matrixB. The computation process of the left and
right orthogonal transformations is now interlaced. Within a
single reduction step, their algorithms simultaneously per-
form a block Gram-Schmidt QR factorization (using a
recurrence relation) and a postmultiplication of a block of
Householder reflectors chosen under a special criterion.

4 THE PARALLEL REDUCTION TO BAND

BIDIAGONAL FORM

In this section, we present the parallel implementation of
the band BRD algorithm based on Householder reflectors.

4.1 Descriptions of the Fast Elementary Operations

There are eight overall kernels implemented for the two
phases, four for each phase.

For phase 1 (left reduction), the first four kernels are
identical to the ones used by Buttari et al. [7] for the QR
factorization in which the reflectors are stored in column
major form. DGEQRT is used to do a QR-blocked factoriza-
tion using the WY technique for efficiently accumulating
the Householder reflectors [26]. The DLARFB kernel comes
from the LAPACK distribution and is used to apply a block
of Householder reflectors. DTSQRT performs a block QR
factorization of a matrix composed of two tiles, a triangular
tile on top of a dense square tile. DSSRFB updates the
matrix formed by coupling two square tiles and applying
the resulting DTSQRT transformations. Buttari et al. give a
detailed description of the different kernels [7].

For phase 2 (right reduction), the reflectors are now
stored in rows. DGELQT is used to do an LQ-blocked
factorization using the WY technique as well. DTSLQT
performs a block LQ factorization of a matrix composed of
two tiles, a triangular tile beside a dense square tile.
However, minor modifications are needed for the DLARFB
and DSSRFB kernels. These kernels now take into account
the row storage of the reflectors.

Moreover, since the right orthogonal transformations do
not destroy the zero structure and do not introduce fill-in
elements, the computed left and right reflectors can be
stored in the lower and upper annihilated parts of the
original matrix, for later use. Although the algorithm works
for rectangular matrices, for ease of presentation, only
square matrices are considered. Let NBT be the number of
tiles in each direction. Then, the tiled band BRD algorithm
with Householder reflectors appears as in Algorithm 2. It

basically performs a sequence of interleaved QR and LQ
factorizations at each step of the reduction.

Algorithm 2. Tiled Band BRD Algorithm with Householder

reflectors.

1: for i ¼ 1; 2 to NBT do

2: {QR Factorization}

3: DGEQRTði; i; iÞ
4: for j ¼ iþ 1 to NBT do

5: DLARFBð’’L’’; i; i ; jÞ
6: end for

7: for k ¼ iþ 1 to NBT do

8: DTSQRTði; k; iÞ
9: for j ¼ iþ 1 to NBT do

10: DSSRFBð’’L’’; i; k; jÞ
11: end for

12: end for

13: if i < NBT then

14: {LQ Factorization}
15: DGELQTði; i; iþ 1Þ
16: for j ¼ iþ 1 to NBT do

17: DLARFBð’’R’’; i; j; iþ 1Þ
18: end for

19: for k ¼ iþ 2 to NBT do

20: DTSLQTði; i; kÞ
21: for j ¼ iþ 1 to NBT do

22: DSSRFBð’’R’’; i; j; kÞ
23: end for

24: end for

25: end if

26: end for

The characters “L” and “R” stand for the Left and Right
updates. In each kernel call, the triplets (i, ii, iii) specify the tile
location in the original matrix, as in Fig. 1: i) corresponds to
the reduction step in the general algorithm, ii gives the row
index, and iii) represents the column index. For example, in
Fig. 1a, the black tile is the input dependency at the current
step, the white tiles are the zeroed tiles, the bright gray tiles
are those which need to be processed, and finally, the dark
gray tile corresponds to DTSQRT(1,4,1). In Fig. 1b, the striped
tile represents the final data tile and the dark gray tile is
DTSLQT(1,1,4). In Fig. 1c, the reduction is at step 3, where the
dark gray tiles represent DSSRFB(“L,” 3,4,4). In Fig. 1d, the
dark gray tiles represent DSSRFB(“R,” 3,4,5).

These kernels are very rich in matrix-matrix operations.
By working on small tiles with BDL, the elements are stored
contiguous in memory, and thus, the access pattern to
memory is more regular, which makes these kernels high
performing. It appears necessary then to efficiently sche-
dule the kernels to get high performance in parallel.

The next section describes the number of operations
needed to apply this reduction.

4.2 Algorithmic Complexity

The algorithmic complexity for the band BRD is split into two
phases: QR factorization and a band LQ factorization. The
total number of flops is then 8=3n3 þ 2n2 � 4n2b (the lower
order terms are ignored) with b being the tile size (equivalent
to the bandwidth of the matrix). Compared to the full BRD
reduction complexity, i.e., 8=3n3 þ 2n2, the band BRD

LTAIEF ET AL.: PARALLEL TWO-SIDED MATRIX REDUCTION TO BAND BIDIAGONAL FORM ON MULTICORE ARCHITECTURES 419

algorithm is doing Oðn2bÞ less flops, which is a negligible
expense of the overall BRD algorithm cost provided n� b.

Furthermore, by using updating factorization techniques
as suggested in [14], [27], the kernels for both implementa-
tions can be applied to tiles of the original matrix. Using
updating techniques to tile, the algorithms were first
proposed by Yip [29] for LU to improve the efficiency of
out-of-core solvers, and were recently reintroduced in [17],
[23] for LU and QR, once more in the out-of-core context.
The cost of these updating techniques is an increase in the
operation count for the whole BRD reduction. However, as
suggested in [11], [12], [13], by setting up inner blocking
within the tiles during the panel factorizations and the
trailing submatrix update, DGEQRT-DGELQT-DTSQRT-
DTSLQT kernels and DLARFB-DSSRFB kernels, respec-
tively, those extra flops become negligible provided s � b,
with s being the inner blocking size (see Buttari et al. [7] for
further information). This blocking approach has been also
described in [17], [24].

However, it is noteworthy to mention the high cost of
reducing the band bidiagonal matrix to the full bidiagonal
matrix. Indeed, using technics such as bulge chasing to
reduce the band matrix is very expensive and may drama-
tically slow down the overall algorithms. Another approach
would be to apply the Divide-and-Conquer (SVD) on the
band matrix but this strategy is still under investigation.

The next section explains the limitation origins of the tile
algorithms concept for two-sided transformations, i.e., the
reduction achieved only to band form.

4.3 Limitations of Tile Algorithms Approach for
Two-Sided Transformations

The concept of tile algorithms is very suitable for one-sided
methods (i.e., Cholesky, LU, QR, and LQ). Indeed, the
transformations are only applied to the matrix from one

side. With the two-sided methods, the right transformation
needs to preserve the reduction achieved by the left
transformation. In other words, the right transformation
should not destroy the zeroed structure by creating fill-in
elements. That is why, the only way to keep intact the
obtained structure is to perform a shift of a tile in
the adequate direction. For the BRD, we decided to shift
one tile right from the top-left corner of the matrix. The final
matrix shape is an upper block bidiagonal structure. We
could have also performed the shift one tile bottom from the
top-left corner of the matrix and the final structure of the
matrix would be lower block bidiagonal.

In the following part, we present a comparison of two
approaches for tile scheduling, i.e., a static and a dynamic
data-driven execution scheduler that ensures that the small
kernels (or tasks) generated by Algorithm 2 are processed as
soon as their respective dependencies are satisfied.

5 STATIC SCHEDULING VERSUS DYNAMIC

SCHEDULING

Two types of schedulers were used, a dynamic one, where
scheduling decisions are made at runtime, and a static one,
where the schedule is predetermined.

The dynamic scheduling scheme similar to [7] has been
extended for the two-sided orthogonal transformations. A
Directed Acyclic Graph (DAG) is used to represent the data
flow between the nodes/kernels. While the DAG is quite easy
to draw for a small number of tiles, it becomes very complex
when the number of tiles increases and it is even more difficult
to process than the one created by the one-sided orthogonal
transformations. Indeed, the right updates impose severe
constraints on the scheduler by filling up the DAG with
multiple additional edges. The dynamic scheduler maintains
a central progress table, which is accessed in the critical
section of the code and protected with mutual exclusion
primitives (POSIX mutexes in this case). Each thread scans the
table to fetch one task at a time for execution. As long as there
are tasks with all dependencies satisfied, the scheduler will
provide them to the requesting threads and will allow an out-
of-order execution. The scheduler does not attempt to exploit
data reuse between tasks. The centralized nature of the
scheduler is inherently nonscalable with the number of
threads. Also, the need for scanning potentially large table
window, in order to find work, is inherently nonscalable with
the problem size. However, this organization does not cause
performance problems for the numbers of threads, problem
sizes, and task granularities investigated in this paper.

The static scheduler used here is a derivative of the
scheduler used successfully in the past to schedule Cholesky
and QR factorizations on the Cell processor [18], [20]. The
static scheduler imposes a linear order on all the tasks in the
factorization. Each thread traverses the tasks space in this
order picking a predetermined subset of tasks for execution.
In the phase of applying transformations from the right, each
thread processes one block-column of the matrix; In the phase
of applying transformations from the left, each thread
processes one block-row of the matrix (Fig. 2). A dependency
check is performed before executing each task. If dependen-
cies are not satisfied, the thread stalls until they are
(implemented by busy waiting). Dependencies are tracked
by a progress table, which contains global progress informa-
tion and is replicated on all threads. Each thread calculates the

420 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Fig. 1. BRD algorithm applied on a tiled matrix with NBT ¼ 5. (a) BRD:
left reduction step 1. (b) BRD: right reduction step 1. (c) BRD: left
reduction step 3. (d) BRD: right reduction step 3.

task traversal locally and checks dependencies by polling the
local copy of the progress table. Due to its decentralized
nature, the mechanism is much more scalable and of virtually
no overhead. Also, processing of tiles along columns and
rows provides for greater data reuse between tasks to which
the authors attribute the main performance advantage of the
static scheduler. Since the dynamic scheduler is more
aggressive in fetching of tasks, it completes each step of the
factorization faster. The static scheduler, on the other hand,
takes longer to complete a given step of the factorization, but
successfully overlaps consecutive steps achieving the pipe-
lining effect, what leads to very good overall performance
(Fig. 3).

In the next section, we present the experimental results
comparing our band BRD implementations with the two
schedulers against the state-of-the-art libraries, i.e., LAPACK
[3], ScaLAPACK [9], and MKL version 10 [2].

6 EXPERIMENTAL RESULTS

The experiments have been achieved on two different
platforms: a quad-socket dual-core Intel Itanium 2 1.6 GHz
(8 total cores) with 16 GB of memory, and a quad-socket quad-
core Intel Tigerton 2.4 GHz (16 total cores) with 32 GB of
memory. Hand tuning based on empirical data has been
performed for large problems to determine the optimal tile
size b ¼ 200 and inner blocking size s ¼ 40 for the tiled band
BRD algorithm. The block sizes for LAPACK and ScaLA-
PACK have also been hand tuned to get a fair comparison,

b ¼ 32 and b ¼ 64, respectively. The authors understand
that it may not be a fair comparison to do against those latter
libraries, since the reduction is completely achieved in that
case. The purpose of showing such performance curves is
only to give a rough idea in term of elapsed time and
performance, of the whole reduction process.

Fig. 4 shows the elapsed time in seconds for small and large
matrix sizes on the Itanium system with eight cores. The band
BRD algorithms based on Householder reflectors with static
scheduling are slightly better than with dynamic scheduling.
However, both implementations by far outperform the
others. Fig. 5a presents the parallel performance in Gflop/s
of the band BRD algorithm on the Itanium system. The
algorithm with dynamic scheduling runs at 82 percent of the
machine theoretical peak of the system and at 92 percent of
the DGEMM peak. Fig. 5b zooms in on the three other
implementations, and the parallel performance of the full
BRD with ScaLAPACK is significantly higher than the full
BRD of LAPACK and MKL for small matrix sizes. Also, the
performances are almost the same for larger matrix sizes.

The same experiments have been conducted on the Xeon
system with 16 cores. Fig. 6 shows the execution time in
seconds for small and large matrix sizes. Again, both band
BRD algorithms almost behave in the same manner and
outperform the other libraries. Fig. 7a presents the parallel
performance in Gflop/s of the band BRD algorithm. It
scales quite well while the matrix size increases, reaching
94 Gflop/s. It runs at 61 percent of the system theoretical
peak and 72 percent of the DGEMM peak. The zoom-in seen
in Fig. 7b highlights the weakness of the full BRD algorithm
of MKL, LAPACK, and ScaLAPACK. Note that the full BRD
of ScaLAPACK is twice as fast as than the full BRD of MKL
and LAPACK most likely due to the two-dimensional block
cyclic distribution.

LTAIEF ET AL.: PARALLEL TWO-SIDED MATRIX REDUCTION TO BAND BIDIAGONAL FORM ON MULTICORE ARCHITECTURES 421

Fig. 2. Task Partitioning with eight cores on a 5� 5 tile matrix.

Fig. 3. Scheduler tracing with six Intel Tigerton 2.4 GHz cores: top
dynamic—bottom static.

Fig. 4. Elapsed time in seconds for the band bidiagonal reduction on a

dual-socket quad-core Intel Itanium2 1.6 GHz with MKL BLAS V10.0.1.

(a) Small data size. (b) Large data size.

7 CONCLUSION AND FUTURE WORK

By exploiting the concepts of tile algorithms in the multicore
environment, i.e., high level of parallelism with fine
granularity and high-performance data representation
combined with a dynamic data-driven execution, the BRD

algorithm with Householder reflectors achieves 94 Gflop/s
on a 12;000� 12;000 matrix size with 16 Intel Tigerton
2.4 GHz processors. This algorithm performs most of the
operations in Level-3 BLAS. Although the algorithm
considerably surpasses in performance of the BRD algo-
rithm of MKL, LAPACK, and ScaLAPACK, its main
inefficiency comes from the implementation of the kernel
operations. The most performance critical, DSSRFB, kernel
only achieves roughly 61 percent of peak for the tile size
used (b ¼ 200) in the experiments. For comparison, a simple
call to the DGEMM routine easily crosses 85 percent of the
peak. Unlike DGEMM, however, DSSRFB is not a single call
to BLAS, but is composed of multiple calls to BLAS in a
loop (due to the inner blocking), hence, the inefficiency.
DSSRFB could easily achieve similar performance if
implemented as a monolithic code and heavily optimized.
Finally, this work can be extended to the BRD of any matrix
sizes (m;n) by using the appropriate method depending on
the ratio between both dimensions.

ACKNOWLEDGMENTS

The authors thank Alfredo Buttari for his insightful

comments, which greatly helped to improve the quality of

this paper. This work was supported in part by grants from

the US National Science Foundation (NSF) and the US

Department of Energy (DoE).

REFERENCES

[1] http://www.top500.org, 2009.
[2] http://www.intel.com/cd/software/products/asmo-na/eng/

307757.htm, 2009.

422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Fig. 6. Elapsed time in seconds for the band bidiagonal reduction on a
quad-socket quad-core Intel Xeon 2.4 GHz processor with MKL BLAS
V10.0.1. (a) Small data size. (b) Large data size.

Fig. 7. Parallel performance of the band bidiagonal reduction on a quad-
socket quad-core Intel Xeon 2.4 GHz processor with MKL BLAS
V10.0.1. (a) Performance comparisons. (b) Zoom-in.

Fig. 5. Parallel performance of the band bidiagonal reduction on a dual-
socket quad-core Intel Itanium2 1.6 GHz processor with MKL BLAS
V10.0.1. (a) Performance comparisons. (b) Zoom-in.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, third ed. Soc. Industrial
and Applied Math., 1999.

[4] J.L. Barlow, N. Bosner, and Z. Drma�c, “A New Stable Bidiagonal
Reduction Algorithm,” Linear Algebra and Its Applications, vol. 397,
no. 1, pp. 35-84, Mar. 2005.

[5] M.W. Berry, J.J. Dongarra, and Y. Kim, “LAPACK Working Note
68: A Highly Parallel Algorithm for the Reduction of a Nonsym-
metric Matrix to Block Upper-Hessenberg Form,” Technical
Report UT-CS-94-221, Dept. of Computer Science, Univ. of
Tennessee, Feb. 1994.

[6] N. Bosner and J.L. Barlow, “Block and Parallel Versions of One-
Sided Bidiagonalization,” SIAM J. Matrix Analysis and Applications,
vol. 29, no. 3, pp. 927-953, 2007.

[7] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel Tiled
QR Factorization for Multicore Architectures,” Concurrency and
Computation, vol. 20, no. 13, pp. 1573-1590, 2008.

[8] T.F. Chan, “An Improved Algorithm for Computing the Singular
Value Decomposition,” ACM Trans. Math. Software, vol. 8, no. 1,
pp. 72-83, Mar. 1982.

[9] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A.
Petitet, K. Stanley, D. Walker, and R.C. Whaley, “ScaLAPACK, a
Portable Linear Algebra Library for Distributed Memory Compu-
ters-Design Issues and Performance,” Computer Physics Comm.,
vol. 97, nos. 1/2, pp. 1-15, 1996.

[10] D.M. Christopher, K. Eugenia, and M. Takemasa, “Estimating and
Correcting Global Weather Model Error,” Monthly Weather Rev.,
vol. 135, no. 2, pp. 281-299, 2007.

[11] E. Elmroth and F.G. Gustavson, “New Serial and Parallel Recursive
QR Factorization Algorithms for SMP Systems,” Proc. Fourth Int’l
Workshop Applied Parallel Computing, Large Scale Scientific and
Industrial Problems (PARA ’98), pp. 120-128, June 1998.

[12] E. Elmroth and F.G. Gustavson, “Applying Recursion to Serial
and Parallel QR Factorization Leads to Better Performance,” IBM
J. Research and Development, vol. 44, no. 4, pp. 605-624, 2000.

[13] E. Elmroth and F.G. Gustavson, “High-Performance Library
Software for QR Factorization,” Proc. Fifth Int’l Workshop, Applied
Parallel Computing, New Paradigms for HPC in Industry and
Academia (PARA ’00), pp. 53-63. June 2000, http://dx.doi.org/
10.1007/3-540-70734-4_9.

[14] G.H. Golub and C.F. Van Loan, Matrix Computation, John Hopkins
Studies in the Math. Sciences, third ed. Johns Hopkins Univ. Press,
1996.

[15] G.H. Golub and W. Kahan, “Calculating the Singular Values and
the Pseudo Inverse of a Matrix,” SIAM J. Numerical Analysis, vol. 2,
pp. 205-224, 1965.

[16] B. Grosser and B. Lang, “Efficient Parallel Reduction to Bidiagonal
Form,” Parallel Computing, vol. 25, no. 8, pp. 969-986, 1999.

[17] B.C. Gunter and R.A. van de Geijn, “Parallel Out-of-Core
Computation and Updating of the QR Factorization,” ACM Trans.
Math. Software, vol. 31, no. 1, pp. 60-78, Mar. 2005.

[18] J. Kurzak, A. Buttari, and J.J. Dongarra, “Solving Systems of
Linear Equation on the CELL Processor Using Cholesky Factor-
ization,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 9,
pp. 1175-1186, Sept. 2008.

[19] J. Kurzak, A. Buttari, and J.J. Dongarra, “Solving Systems of
Linear Equations on the CELL Processor Using Cholesky
Factorization,” IEEE Trans. Parallel and Distributed Systems,
vol. 19, no. 9, pp. 1-11, Sept. 2008.

[20] J. Kurzak and J.J. Dongarra, “QR Factorization for the CELL
Processor,” J. Scientific Programming, special issue on high
performance computing on CELL B.E. processors, pp. 1-12, 2008.

[21] B. Lang, “Parallel Reduction of Banded Matrices to Bidiagonal
Form,” Parallel Computing, vol. 22, no. 1, pp. 1-18, 1996.

[22] H. Ltaief, J. Kurzak, and J. Dongarra, “LAPACK Working Note 208:
Parallel Block Hessenberg Reduction Using Algorithms-by-Tiles
for Multicore Architectures Revisited,” Technical Report UT-CS-
08-624, Dept. of Computer Science, Univ. of Tennessee, Aug. 2008.

[23] E.S. Quintana-Ortı́ and R.A. van de Geijn, “Updating an LU
Factorization with Pivoting,” ACM Trans. Math. Software, vol. 35,
no. 2, July 2008.

[24] G. Quintana-Ortı́, E.S. Quintana-Ortı́, E. Chan, R.A. van de Geijn,
and F.G. Van Zee, “Scheduling of QR Factorization Algorithms on
SMP and Multi-Core Architectures,” Proc. Int’l Conf. Parallel,
Distributed and Network-Based Processing (PDP), pp. 301-310, 2008.

[25] R. Ralha, “One-Sided Reduction to Bidiagonal Form,” Linear
Algebra and Its Applications, vol. 358, pp. 219-238, Jan. 2003.

[26] R. Schreiber and C. Van Loan, “A Storage Efficient WY
Representation for Products of Householder Transformations,”
SIAM J. Scientific and Statistical Computing, vol. 10, pp. 53-57, 1989.

[27] G.W. Stewart, Matrix Algorithms Volume I: Matrix Decompositions.
SIAM, 1998.

[28] L.N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.
[29] E.L. Yip, “Fortran Subroutines for Out-of-Core Solutions of Large

Complex Linear Systems,” Technical Report CR-159142, NASA,
Nov. 1979.

[30] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson,
“An Experimental Comparison of Cache-Oblivious and Cache-
Conscious Programs,” Proc. 19th Ann. ACM Symp. Parallel
Algorithms and Architectures (SPAA ’07), pp. 93-104, 2007.

Hatem Ltaief received the first MSc degree
from the School of Engineering at the Uni-
versity of Claude Bernard Lyon I, France, and
the second MSc degree in applied mathematics
and the PhD degree in computer science from
the University of Houston. He is a research
associate in the Innovative Computing Labora-
tory in the Department of Electrical Engineering
and Computer Science at the University of
Tennessee, Knoxville. His research interests

include parallel algorithms, specifically in the area of numerical linear
algebra, and also parallel programming models and performance
optimization for parallel architectures spanning distributed and shared
memory systems, as well as next generation multicore and many-core
processors. He is a member of the IEEE.

Jakub Kurzak received the MSc degree in
electrical and computer engineering from Wroc-
law University of Technology, Poland, and the
PhD degree in computer science from the
University of Houston. He is a research associ-
ate in the Innovative Computing Laboratory in
the Department of Electrical Engineering and
Computer Science at the University of Tennes-
see, Knoxville. His research interests include
parallel algorithms, specifically in the area of

numerical linear algebra, and also parallel programming models and
performance optimization for parallel architectures spanning distributed
and shared memory systems, as well as next generation multicore and
many-core processors. He is a member of the IEEE.

Jack Dongarra received the bachelor of science
degree in mathematics from Chicago State
University in 1972, the master of science degree
in computer science from the Illinois Institute of
Technology in 1973, and the PhD degree in
applied mathematics from the University of New
Mexico in 1980. He worked at the Argonne
National Laboratory until 1989, becoming a
senior scientist. He now holds an appointment
as the university distinguished professor of

computer science in the Department of Electrical Engineering and
Computer Science at the University of Tennessee, has the position of a
distinguished research staff member in the Computer Science and
Mathematics Division at Oak Ridge National Laboratory (ORNL), turing
fellow in the Computer Science and Mathematics Schools at the
University of Manchester, and an adjunct professor in the Computer
Science Department at Rice University. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LTAIEF ET AL.: PARALLEL TWO-SIDED MATRIX REDUCTION TO BAND BIDIAGONAL FORM ON MULTICORE ARCHITECTURES 423

