Cluster Comput (2009) 12: 101-122
DOI 10.1007/s10586-009-0080-4

Paravirtualization effect on single- and multi-threaded
memory-intensive linear algebra software

Lamia Youseff - Keith Seymour - Haihang You -
Dmitrii Zagorodnov - Jack Dongarra - Rich Wolski

Received: 30 December 2008 / Accepted: 6 January 2009 / Published online: 24 January 2009

© Springer Science+Business Media, LLC 2009

Abstract Previous studies have revealed that paravirtual-
ization imposes minimal performance overhead on High
Performance Computing (HPC) workloads, while exposing
numerous benefits for this field. In this study, we are inves-
tigating the impact of paravirtualization on the performance
of automatically-tuned software systems. We compare peak
performance, performance degradation in constrained mem-
ory situations, performance degradation in multi-threaded
applications, and inter-VM shared memory performance.
For comparison purposes, we examine the proficiency of
ATLAS, a quintessential example of an autotuning software
system, in tuning the BLAS library routines for paravirtu-
alized systems. Our results show that the combination of
ATLAS and Xen paravirtualization delivers native execution

This work is sponsored in part by NSF grants (ST-HEC-0444412
and CCF-0331645).

L. Youseff (B<) - D. Zagorodnov - R. Wolski

Dept. of Computer Science, University of California,
Santa Barbara, USA

e-mail: lyouseff@cs.ucsb.edu

D. Zagorodnov
e-mail: dmitrii @cs.ucsb.edu

R. Wolski
e-mail: rich@cs.ucsb.edu

K. Seymour - H. You - J. Dongarra
Dept. of Electrical Engineering and Computer Science, University
of Tennessee, Knoxville, USA

K. Seymour
e-mail: seymour @eecs.utk.edu

H. You
e-mail: you@eecs.utk.edu

J. Dongarra
e-mail: dongarra@eecs.utk.edu

performance and nearly identical memory hierarchy perfor-
mance profiles in both single and multi-threaded scenarios.
Furthermore, we show that it is possible to achieve mem-
ory sharing among OS instances at native speeds. These re-
sults expose new benefits to memory-intensive applications
arising from the ability to slim down the guest OS without
influencing the system performance. In addition, our find-
ings support a novel and very attractive deployment scenario
for computational science and engineering codes on virtual
clusters and computational clouds.

Keywords Virtual machine monitors - Paravirtualization -
AutoTuning - BLAS - High performance - Linear algebra -
Cloud computing

1 Introduction

Virtualization has historically offered numerous benefits for
high performance computing. It was, however ignored in
computationally intensive settings as a result of its potential
for performance retardation. A recent approach to virtual-
ization, dubbed paravirtualization has emerged as a possible
alternative. Originally developed to help consolidate servers
in commercial settings, this OS-based approach to virtual-
ization has grown rapidly in popularity. To provide the great-
est flexibility, portability, and instrumentation possibilities,
it comprises both software and hardware techniques. Origi-
nally explored by Denali [28] and Xen [6] in 2003, this tech-
nique in which the guest and the host OSs are both strate-
gically modified to provide optimized performance is used
today in several virtualization systems.

To this end, several studies [20, 29, 30] have mea-
sured the performance ramifications of running general HPC

@ Springer

mailto:lyouseff@cs.ucsb.edu
mailto:dmitrii@cs.ucsb.edu
mailto:rich@cs.ucsb.edu
mailto:seymour@eecs.utk.edu
mailto:you@eecs.utk.edu
mailto:dongarra@eecs.utk.edu

102

Cluster Comput (2009) 12: 101-122

benchmarks on paravirtualized systems and they report near-
native performance for different HPC workloads. At the
same time, other studies have focused on the flexibility and
functionality benefits of using modern virtualization tech-
niques. For example, OS-level check-pointing [21], fault-
tolerance and load balancing [9] are very attractive possibili-
ties in HPC environments. In addition, other researchers [22,
25] have looked into dynamic adaptation of the guest OS for
performance and application-customized guest OSs for sci-
entific parallel codes [5, 16, 31].

Although previous studies of paravirtualization have
addressed the general-case performance characteristics of
HPC benchmarks, they lacked the investigation of the per-
formance boundary and performance consequences under
scarce memory conditions. This has a remarkable impor-
tance in HPC, because of the performance sensitivity of
memory-intensive codes and autotuning Linear Algebra
(LA) packages to the memory characteristics. In this vein,
we provide a detailed study of the impact of the paravirtual-
ized execution on LA codes that use autotuning software for
portable performance. We focus on several areas in which
paravirtualization may have potentially deleterious effects:
VM interference with raw single-thread performance, inter-
ference between VMs in multi-threaded performance, and
VM interference in shared memory communication effi-
ciency.

Autotuning has become an important technology for
“core” libraries that are performance-critical since these sys-
tems often require complex and otherwise labor-intensive
configuration to achieve maximal performance levels. Thus,
our goals are two fold. First, we wish to understand how au-
totuning is affected by paravirtualization. For example, we
wish to know whether the autotuning software can “sense”
the presence of paravirtualization during the tuning process.
Secondly we wish to explore the potential impact paravir-
tualization may have on highly tuned numerical software.
While it may be that a vanilla installation is unaffected as
has been shown in previous studies [30], in this work we in-
vestigate the effects of paravirtualization on the performance
boundary.

In particular, we study the efficacy of Automatically
Tuned Linear Algebra Software (ATLAS) in detecting sys-
tem configurations for paravirtualized systems. We then
use DGEMM matrix-matrix multiplication as a memory-
intensive code to measure performance in Mflops for double
precision arithmetic and compare the performance of several
OS kernels with varying main memory allocations. With this
in mind, we investigate the different attributes of the mem-
ory hierarchy of the paravirtualized system.

The main contribution of this paper is an exposition of
how paravirtualization (as implemented by Xen) impacts
the performance of LA codes, particularly with respect to
its use of the memory hierarchy. Also, with the increasing

@ Springer

prevalence of multi-core architectures, the issues of mem-
ory contention as well as efficient communication and syn-
chronization between cores will be crucial to large-scale ap-
plication performance. Thus, we have studied whether run-
ning highly tuned LA code in different VMs causes more
performance perturbation than multiple threads within a sin-
gle VM. Finally, as the ever increasing number of cores per
chip makes evident the need for low-overhead communica-
tion, we study the efficiency of using shared memory be-
tween VM instances on different cores. Our findings com-
plete along with our previous studies [29, 30], the investiga-
tion of the feasibility of utilizing clusters of virtual machines
to execute scientific codes, without sacrificing performance.
Our research, therefore advocates the huge potential of de-
ploying scientific codes on virtual clusters and computing
clouds. In turn, this presents new and very attractive deploy-
ment scenarios for computational sciences and engineering
codes. The novel deployment scenarios are not the only ap-
pealing implication of our research, but the saving on the
computing expenditure can be another very desirable advan-
tage. As the cost of virtual clusters comprises a fraction of
computing hardware acquisition and maintenance costs, our
results have the potential to influence the total cost of the
inquiry process in the computational sciences and engineer-
ing.

The paper is structured as follows. We present a short sur-
vey on paravirtualization in the next section, as well as the
terminology we will use. We detail our experimental settings
in the following section. Section 4 presents the impact of
paravirtualization on ATLAS system detection and the per-
formance of the generated and hand-tuned routines. Next,
Sect. 5 investigates the effect of the paravirtualization on
the memory hierarchy of the system, by describing its im-
pact on a memory intensive dense matrix-matrix multiplica-
tion performance and characterizing its RSS (Resident Set
Size), swap and TLB activity. Section 6 continues the exam-
ination of matrix multiplication to determine whether par-
avirtualization has a negative effect on the performance of
multiple simultaneous instances. Section 7 discusses the im-
pact of paravirtualization on shared memory performance.
Finally, we discuss the implications of our work in Sect. 8
and present our conclusions in Sect. 9.

2 Background

Historically, virtualization has been a technique for provid-
ing secure and flexible hosting of user and system programs
spanning several trust levels. In an Internet computing set-
ting, this hosting capability has relied on language seman-
tics (e.g. Java) to permit the importation of untrusted code
for execution by a software virtual machine. While the ap-
proach has been successful, incompatibilities between the

Cluster Comput (2009) 12: 101-122

103

Applications Applications Applications

0s Guest OS [Guest OS]
)

L (Host OS (Xen VMM)

Hardware

Hardware

\ \

Fig.1 The two software stacks in our experimentation settings. (i) The
stack on the left is the traditional (native) software stack. (ii) The stack
on the right shows the virtualized software stack

virtual machine mandated by the language and the typi-
cal organization of actual computational resources (proces-
sors, memory, I[/O subsystems, etc.) imposes a performance
penalty on virtualized program execution. Many powerful
and elegant optimization techniques have been developed
to minimize this penalty, but at present language virtual-
ized systems still do not achieve native execution speeds for
numerically-intensive applications.

A recent approach to virtualization, dubbed paravirtual-
ization has emerged as a possible alternative. Paravirtual-
ization is a software virtualization technique which allows
the virtual machines to achieve near native performance. In
paravirtualized systems, for example Xen [6], the system
software stack is augmented, as illustrated in Fig. 1. The
stack on the left shows the traditional OS deployment stack,
while the right stack portrays the paravirtualized deploy-
ment stack. In the latter, the hypervisor' occupies a small
part of the main memory, and acts as a moderator layer be-
tween the hardware and the guest OS kernels. On top of the
hypervisor, two types of guest OSs are run. The first type is
regarded as a privileged services guest OS, which provides
OS services to the other less-privileged OS and has more di-
rect access to memory, devices, and the hardware in general.
There must be at least one privileged virtual machine per
physical machine. The other kind of guest OS is a less priv-
ileged OS kernel, which uses paravirtualized device drivers
and has moderated access to the hardware. The privileged
guest OS is responsible for running virtualization software
tools that manage, start, monitor and even migrate the other
less-privileged domains.

In order to measure the performance impact of paravir-
tualization on autotuning software, we used Automatically
Tuned Linear Algebra Software (ATLAS) [10, 27]. ATLAS
focuses on applying empirical search techniques to provide
highly tunable performance for linear algebra libraries. It
empirically explores the search spaces for the values of the

I'The hypervisor is a small piece of software that runs directly on the
hardware and acts as a slim layer between the guest OSs and the hard-
ware. It is also referred to as virtual machine monitor (VMM). Ac-
cordingly, the OS kernels that run on the hypervisor are termed virtual
machines, or guest OSs.

different parameters for Basic Linear Algebra Subprograms
(BLAS) [8, 11, 18] and Linear Algebra Package (LAPACK)
[3] routines for matrix operations. Those kinds of matrix
kernels are among the most widely studied and optimized
routines in computational science due to their influence on
the overall performance of many applications. Traditionally,
developers either carefully optimized these algorithms by
hand or they relied on compiler optimizations to improve
the performance. Hand-tuning requires a lot of expertise and
quite a bit of effort from the developer. Even if the hand-
tuning is successful, it is not often portable to other archi-
tectures, so the developer has to repeat the process multi-
ple times to support a useful set of platforms. On the other
hand, using compiler optimizations requires almost no ef-
fort from the developer, but may only give modest results,
especially compared to the theoretical peak performance of
the machine. Many compiler optimization techniques such
as loop blocking, loop unrolling, loop permutation, fusion
and distribution have been developed to transform programs
written in high-level languages to run efficiently on modern
architectures [1, 23]. Commonly referred to as model-driven
optimization, most compilers select the optimization para-
meters such as block size, unrolling factor, and loop order
with analytical models. The models may be based on real
architectural attributes or other heuristics, but compilers are
burdened with the task of handling a wide variety of code,
so the built-in optimizers usually cannot compete with ex-
perienced hand-tuners. In contrast, empirical optimization
techniques generate a large number of code variants for a
particular algorithm (e.g. matrix multiplication) using dif-
ferent optimization parameter values or different code trans-
formations. All these candidates run on the target machine
and the one that gives the best performance is picked. Using
this empirical optimization approach, projects like ATLAS,
PHIPAC [7], OSKI [26], and FFTW [13] can successfully
generate highly optimized libraries for dense and sparse lin-
ear algebra kernels and FFT respectively. This empirical ap-
proach has been recognized as an alternative approach to tra-
ditional compiler optimizations and machine specific hand-
tuning of linear algebra libraries, since it normally gener-
ates faster libraries than the other approaches and can adapt
to many different machine architectures. In a recent report
from Berkeley on the future of parallel computing [4], soft-
ware autotuners were regarded as a way to enable efficient
optimizations and should become more adopted in translat-
ing parallel programs and code generation. Towards this end,
we expect autotuners will be more embraced in the near fu-
ture, and will run on virtualized machines such as the com-
puting clouds. Hence, we are investigating in this paper the
impact of paravirtualization on the operation of autotuners.
With this in mind, we used the performance and the para-
meter values of the autotuned BLAS library as an indication
of the efficiency of the autotuning process in paravirtualized

@ Springer

104

Cluster Comput (2009) 12: 101-122

Table 1 Mathematical notations for the routines in BLAS and LAPACK libraries

Routine Operation Description

GEmmNN C=aAB+ BC General Dense non-transpose non-transpose Matrix-Matrix Multiplication
GEmmNT C=aABT +8C General Dense non-transpose transpose Matrix-Matrix Multiplication
GEmmTN C=aATB+BC General Dense transpose non-transpose Matrix-Matrix Multiplication
GEmmTT C=aATBT +8C General Dense transpose transpose Matrix-Matrix Multiplication

GEmvN y=aAx + By General Vector-Matrix Multiplication

GEmvT y=aATx + By General Vector-Matrix transpose Multiplication

GER A=axyT +A General Rank one update

Table 2 Description of the parameters used in tuning the BLAS rou-
tines

Parameter Description

Np L1 Blocking factor

ma MULADD boolean flag to
indicate whether the MULADD
is done as one operation or not

la Latency between floating
point operations

nb Blocking factor used in

each specific routine

nu, mu and ku Unrolling factors for M, N, K

loops respectively

X unroll and Y unroll Unrolling factors for X, Y

loops respectively

environments. ATLAS is convenient to use for these exper-
iments because of its widespread use for generating tuned
LA libraries. In addition, the detected characteristics of the
system can be easily examined in the log files and compared
among the different OS kernel configurations. Also, since
ATLAS typically achieves 75-90% of peak performance in
the native configuration, it should give a good indication of
whether the various OS kernel configurations are capable of
high sustained floating point performance.

Notice that ATLAS essentially performs a “parameter-
sweep” search of the performance space so that it can iden-
tify the values of the specific parameters that yield the
best performance (among those tested). The resulting library
configuration typically achieves a better performance than a
generic installation. Because applications running near peak
machine speed can be more performance sensitive to ef-
fects introduced by their OS environment (e.g. OS noise),

@ Springer

we wish to examine the degree to which paravirtualization
interferes with an optimized installation. Notice also that
the set of parameters identified by ATLAS are conveniently
logged making it possible to use them to detect specific per-
formance differences between native and paravirtualized ex-
ecution. That is, by comparing ATLAS tuning logs for native
and virtualized optimization, we should be able to identify
immediately how paravirtualization is affecting the execu-
tion of optimized LAPACK libraries.

To help understand some of the parameters and the sub-
routine names mentioned in this paper, we will briefly de-
scribe the BLAS and LAPACK naming convention (for full
details, see [3]). Subroutines are named XYYZZ or XYYZZZ,
where X indicates the data type (S for single precision, D for
double precision, etc.), YY indicates the matrix type (GE for
general, GB for banded, etc.), and the final ZZ or ZZZ in-
dicates the computation performed (MM for matrix-matrix
multiply, MV for matrix-vector multiply, etc.). Therefore,
DGEMM would be a double-precision general matrix-matrix
multiplication. In this matrix-matrix multiplication routine,
an M x K matrix A multiplies a K x N matrix B, result-
ing in the M x N matrix C. ATLAS finds the optimal value
for the best blocking and loop unrolling factors for on-chip
multiply using timings, i.e. it examines the search space by
trying different values for blocking and loop unrolling. In
Table 1, we outline the BLAS routines that ATLAS optimizes
and in Table 2, brief descriptions of the different parameters
for the routines are outlined.

3 Experimental settings

We ran our experiments on a Pentium D dual-core machine,
where each core is a 2.8-GHz Pentium with an 800-MHz
processor bus, 16 KB of L1 cache and 1024 KB L2 cache.
The machine memory system uses a 533-MHz bus with
1 GB of dual interleaved DDR2 SDRAM memory.

In order to find the performance ramifications of paravir-
tualization, we compare the performance of three types of

Cluster Comput (2009) 12: 101-122

105

OS kernels. Furthermore, we test two configurations that dif-
fer in the main memory size allocated at boot time for each
OS kernel. The first kernel is a Fedora Core Linux 2.6.19
kernel, which we used as a base performance kernel, and
henceforth referred to as “native”. For this kernel, the de-
vice drivers, applications and BLAS libraries run directly in
the OS (without virtualization), which is the common soft-
ware stack used nowadays in HPC clusters.

On the other hand, the paravirtualized software stack is
different, as we described in the previous section. We used
Xen as our paravirtualizing software, with the hypervisor in
the first 32 MB of the main memory. Furthermore, in Xen
terminology, the privileged guest OS is dubbed Dom0 (for
Domain 0) while the less privileged guest OS is dubbed
DomU (for Domain Unprivileged). We adopt this terminol-
ogy for the rest of our paper. For each of the three OS ker-
nels (native, Dom0, DomU), we test the performance with
two main memory configurations: 256 MB and 756 MB.
The reason for changing the total memory assigned to the
systems was to test the performance of the system under
limited memory conditions and to generate near-boundary
memory cases for virtualized systems. We disabled the bal-
loon driver? in Xen domains in order to isolate the impact
of the balloon driver on memory performance and to build a
fair comparison between the different systems. In our exper-
imentation, we used Linux kernel 2.6.16 as the guest OS for
both dom0 and domU, patched with Xen 3.0.4. All the OS
kernels were built with SMP support.

We use ATLAS 3.7.35, the latest version available for au-
totuning the BLAS routines. We compare the performance
achieved using the ATLAS-generated code (with and without
SSE2 support). We also compare the performance achieved
by the DGEMM routine for different matrix sizes. In ad-
dition, threading was enabled in all ATLAS builds to allow
ATLAS to build parallel libraries.

4 Autotuning software systems

ATLAS is one of the earliest autotuning software systems for
performance optimization. We use ATLAS in our research as
a quintessential example of an autotuner for processors with
deep memory hierarchies and pipelined functional units. As
we described in Sect. 2, ATLAS uses an empirical search
methodology to optimize the different routines for BLAS
and LAPACK. This search process is composed of three key
phases. In the first phase, ATLAS focuses on detecting the
system characteristics. Through a probe process, ATLAS col-
lects information about cache size of the system, the floating

2The balloon driver in Xen allows the domains to grow and shrink
dynamically in their total main memory allocation, according to their
runtime memory workloads.

point unit (FPU), the number of registers, and other architec-
tural information. The second phase is concerned with deter-
mining the best values of parameters to be used in generating
the BLAS and LAPACK routines based on the detected sys-
tem characteristics and the results of the empirical search.
After tuning, ATLAS runs cache benchmarks to determine
the optimal value for CacheEdge, which represents the value
of the cache size for blocking the matrix multiplication rou-
tines. Finally, ATLAS uses all the information it gathered to
generate the optimized BLAS library. In the next three sub-
sections, we detail the performance of ATLAS in each of the
three phases respectively. For those results, we found that
the precision of the multiplication (i.e. single versus double)
does not impact the difference in performance between the
OS kernels. Therefore, we only detail the double precision
performance results.

4.1 System characteristics detection

In order for ATLAS to autotune the BLAS libraries, it starts
its operation by probing the system characteristics. Table 3
shows the output of ATLAS for each of these parameters.
The first row shows that ATLAS detected L1 cache to be of
size 16 KB for all the OS kernels. The second row illustrates
the number of registers detected in each of the systems, for
which ATLAS detected 7 registers for all three OS kernels.
The length of the floating point pipeline (in cycles) is pre-
sented in the third row, while the number of FPU registers is
presented in the fourth row.

Furthermore, Fig. 2 shows the floating point unit (FPU)
register-to-register performance (i.e., with no memory la-
tency) as measured by ATLAS. For each of these perfor-
mance numbers, we present an average of 20 runs with er-
ror bars reflecting the margin of error for a 95% confidence
level of the mean. In this figure, the Y-axis represents the
performance in Mflops. Therefore, we concluded from the
measurements that there is no significant performance dif-
ference between the OS kernels for FPU operation. Overall,
we concluded from these results that the paravirtualization
does not alter the system characterization, nor does it im-
pose any performance overhead in register-to-register per-
formance for floating point operations.

4.2 Cache blocking size configuration

Tuning the CacheEdge (i.e., cache blocking parameter) can
help increase performance and reduce the memory usage of
BLAS routines. In this phase, ATLAS attempts to determine
the optimal cache size for blocking the matrix-matrix mul-
tiplication routines. It first tests the blocking performance
using only L1 cache, then uses different values of L2 cache.

We compared the performance achieved by each OS ker-
nel for L1 cache and each value of L2 blocking. Figure 3

@ Springer

106

Cluster Comput (2009) 12: 101-122

Fig. 2 Performance of the
register-to-register FPU for 1000

FPU Register to Register Performance

double precision numbers; as '
detected by ATLAS for the OS
kernels
800
(2]
s
S 600
£
Q
o
c
[
£
S 400
jo)
o
200
Om

s K
%
z

e

R

e
s

ey
A
s

/
e

s

L
s
s

.

Table 3 System characterization as detected by ATLAS for the OS kernels

Native 256MB Native 756MB Dom0 256MB Dom0 756MB

Native_ SMP Dom0_SMP DomU_SMP
Parameter 256 MB 756 MB 256 MB 756 MB 255 MB 756 MB
L1 Cache Size 16 KB 16 KB 16 KB 16 KB 16 KB 16 KB
Sys Info nreg 7 7 7 7 7 7
FPU: Pipeline cycle 6 6 6 6 6 6
FPU: Registers num. 15 15 15 15 15 15

depicts the performance in Mflops of a double precision
matrix-matrix multiplication of dimension 2500 using only
L1 cache blocking, while Fig. 4 represents the performance
of using L2 blocking. All the numbers reported here are the
average of 20 runs. For the latter figure, the x-axis repre-
sents the size of L2 cache in KB used in blocking, while
the y-axis represents the corresponding performance. The
error bars reflect the margin of error for 95% confidence
level. Note that we extended the ATLAS subprogram which
does the CacheEdge measurements to evaluate the perfor-
mance beyond the physical L2 cache size in order to moni-
tor any difference. However, no performance difference was
detected between the native and paravirtualized kernels. Fig-
ure 5 shows a histogram of the final CacheEdge selected by
ATLAS for the 20 runs, after disregarding the runs where
ATLAS chose only L1 blocking. The reason ATLAS does not
choose the same CacheEdge size for L2 blocking every time
is that the code is sensitive to the slight performance differ-
ence for cache sizes between 512 KB and 2048 KB. There-
fore, a small variability in the performance impacts the cho-

@ Springer

sen CacheEdge but does not impact the overall performance
as Figs. 3 and 4 show. That is, a small difference in perfor-
mance will cause ATLAS to choose a different power of 2
for the cache block size (a relatively large change). The his-
togram in Fig. 5 reflects the variation of cache-block size
which ATLAS selected over different runs, but Figs. 3 and 4
show that this variation does not ultimately affect the overall
performance (note the small error bars in the figures).

In addition, Table 4 outlines the median values of the
CacheEdge selected. The reason we chose to report the me-
dian rather than the mean is that ATLAS chooses among dif-
ferent categorical values of L2, i.e., the median was more
representative of the optimal CacheEdge’s choice. From Ta-
ble 4 and Fig. 5, we gather that the selection of the optimal
CacheEdge performance is similar for all the OS kernels.
This shows that ATLAS finds minimal or no difference be-
tween the different OS kernels in choosing their optimal L2
blocking size.

Cluster Comput (2009) 12: 101-122

107

Fig. 3 Performance of the
2500d matrix-matrix

Cache Edge Performance using L1 Cache blocking

O\

PR

Native.756M Dom0.256M

Dom0.756M DomU.256M DomU.756M

Cache Edge measurements for different L2 Cache blocking values

Native 256MB ---x--- -
Native 756MB ------
DomO0 256MB &
Dom0 756MB - -=-—

quU 756MBI P 3

A 5000 ;
multiplication for L1 cache
blocking S
RS
RO
SREEIK,
A X DK X
- YOOI
4000 SO
><><(X>><)({x
KON MOX X
ﬁ«:»f xf«:»f %
Oyt
NN
@ LK
& S
g 3000 |- TN
XK A
c DIV
P LRGSR
S DT
5] SO
£ Oatetetete
= O
o - AR A XA K
5 200 eevteted
KN LK X X
e SO
DR X XK
SRR,
WX DR XA
SO
DR KX K
ROSIEe 9208
RS
1000 e
KN MR N X
SOREERNK
SIS
o L LSy
Native.256M
Fig. 4 Performance of the
2500d matrix-matrix 5000
. . . T T
multiplication for L2 cache
blocking
4000
12}
Q.
£ 3000
=
£
(0]
o
C
©
£
S 2000
=
[0
o
1000
0 1 1
32 64 128

4.3 Routines generation and tuning

In order for ATLAS to obtain the best performance from the
system, it runs different routines and measures their per-
formance to choose the most efficient optimization for the
BLAS library customization. Some of the computational ker-
nels that come with ATLAS are hand-written assembly rou-
tines, while others are autogenerated based on the output of

256 512 1024 2048
L2 Cache Edge size in KB

4096 8192 16384

the system probe phase. In many cases and especially for the
popular architectures, the hand-written computational ker-
nels perform much better than the generated routines, since
the former kernels make use of specific special architectural
features that ATLAS code generator does not currently sup-
port. In this section, we compare the performance of the
ATLAS generated codes and the hand-written codes for the
different OS kernels.

@ Springer

108

Cluster Comput (2009) 12: 101-122

Fig. 5 Histogram of the
CacheEdge selected by ATLAS

Histogram of the Cache Edge elected by ATLAS

1 O T T T T T T T T
Native 256MB ——
Native 756MB ---x---
[n] Dom0 256MB ------
2! Dom0 756MB &
j DomU 256MB ---m-—
8| ». DomU756MB --o-- -
6 _
>
o
C
[}
>
[on
o
[T
4+ 4
2+ 4
o - - . PR |
16 32 64 128 256 512 1024 2048 4096 8192 16384
Cache Edge value in KB
Fig. 6 Performance in Mflops Performance of the handtuned SSE2 code versus the automatically generated code
of double precision 6000 | |
matrix-matrix multiplication for Native 256MB ExXx
the OS kernels, using the ’\S%tr'xg ;ggmg
handwritten, and autogenerated Dom0 756MB
routines 5000 | Bomtd %ggmg
om
» 4000 F 4
o
kel
=
£
8 3000 | -
C
£
5 o
& 2000 | S8 -
58
3RS
9000
- 8
1000 ::::: 4
N RS
N XX
i 0% NN .

We found that, for all the routines, ATLAS selected the
handwritten versions as they performed about 4 x faster than
the generated code for single precision and 2x faster for
double precision. Figure 6 shows the performance achieved
by the handwritten routines in comparison to the perfor-
mance of the generated routines for the different OS kernels
for double precision. The reason behind the better perfor-
mance of the hand-written code is its use of the SSE2 assem-

@ Springer

dSSE2_code

dGenerated_code

bly instructions, which run on the SSE2 unit in the Pentium
CPUs. SSE is an extension to the streaming SIMD (single
instruction, multiple data), which is a recent addition to the
Pentium processors to support floating point operations and
is backed with an extra set of instructions for SIMD on x86.
The handwritten code, which includes the SSE2 (i.e., second
version of SSE) assembly instructions, made use of this ex-
tra processing power. SSE2 allows the processor to perform

Cluster Comput (2009) 12: 101-122

109

Table 4 Median of the CacheEdge selected by ATLAS for the OS ker-
nels

OS kernels Selected CacheEdge
Native 256 MB 1024 KB
Native 756 MB 1536 KB
Dom0 256 MB 1152 KB
Dom0 756 MB 1536 KB
DomU 256 MB 1536 KB
DomU 756 MB 1024 KB

Table 5 ATLAS automatically chose the same values for each tuning
parameter, irrespective of the underlying OS kernel or its main memory
allocation

Routine Parameter Value
Np 36

GEmmNN & ma

GEmmNT & lat 6

GEmmTN & nb 48

GEmmTT mu 6
nu
ku 48

GEMVN Xunroll 32
Yunroll

GEMVT Xunroll 2
Yunroll 16

GER mu 16
nu 1

two and four times the number of floating point operations
per cycle in double precision and single precision, respec-
tively.

In order to understand the difference in the performance
of the autogenerated codes, we examined the values of the
parameters used by ATLAS to generate the distinct routines,
as well as the performance of these routines. For complete-
ness, Table 5 illustrates the values for the different parame-
ters that ATLAS selected to optimize the computational rou-
tines. Each of these factors is optimized for each of the com-
putational routines (shown in the first column in the table)
in BLAS and LAPACK libraries. The routine names are de-
scribed in Sect. 2, and the average performance over 20 runs
is shown in Fig. 7.

After ATLAS has picked the optimal values for the tun-
ing parameters, it generates the computational routines for
the BLAS libraries using those values. We investigated the
performance of the generated routines using the tuned para-
meters. Figure 7 represents the performance of the generated
routines for the different kernels, in double precision. In this
figure, the Y -axis represents the performance in Mflops. We
noticed again that there was no significant difference in the

values of the tuned parameters or the performance of the
autogenerated routines between the different OS kernels. In
conclusion, we detected no difference between ATLAS sys-
tem detection, and auto-tuning between the native and par-
avirtualized OS kernels.

5 Memory intensive applications

In the second set of experiments, we are investigating the
impact of paravirtualization on the different levels of the
memory hierarchy. Towards this end, we explore the par-
avirtualized memory hierarchy behavior using a memory-
intensive application. For that, we use double-precision ma-
trix multiplication code that uses the BLAS level-3 libraries
as a driver code for our experiments. This driver code is
characterized by a growing memory consumption of up to
350 MB. We describe our DGEMM driver code in the next
subsection, and the memory hierarchy performance in the
subsequent subsections.

5.1 DGEMM driver description and performance

Among the other BLAS library routines, ATLAS tunes the
DGEMM routine to efficiently execute double precision
matrix-matrix multiplication at optimal performance. We
generated a driver code that uses the ATLAS-optimized
DGEMM routine for square matrix sizes ranging from 100
to 4000 and we recorded the time and performance in Mflops
attained for each matrix size. The general pseudocode of the
driver is outlined below.

for Dimension 100 to 4000,
for runs 1 to n, step 1
malloc matrices A, B, C;
randomize values in A, B, C;
tl = time;
call dgemm (A, B, C,
t = time - tl ;
free A, B, C;
calculate the MFLOPS of runs;

step 100

alpha, beta);

For each matrix dimension, we rerun the same driver
code at least 5 times. In addition, we ensured that the OS
kernel is not penalizing our driver code because of its in-
creasing memory or computational requirements, by forking
a different process for each run for each matrix dimension.
As outlined in the DGEMM driver pseudocode, the driver
code creates 3 matrices, and fills them with random num-
bers, causing the page table entries for this newly allocated
memory to be populated and avoiding having Linux use
the lazy memory allocation scheme.> We measure the time

3Recent Linux kernels use an optimization scheme dubbed lazy-
malloc, which delays the actual allocation of the memory requested
by the process until its actual use.

@ Springer

110

Cluster Comput (2009) 12: 101-122

Fig. 7 Performance of the
ATLAS-generated BLAS routines
based on the tuned parameters
for double precision

2500

Performance of the BLAS Double Precision Routines

Native 256MB
Native 756MB :

2000

1500

1000

Performance in Mflops

500

Dom0 256MB
Dom0 756MB
DomU 256MB :
DomU 756MB ¢

RS
A -

7
AN AN

o

O

%

5
s

Lo
A

g
Ll

Egney

s

dmmNN

needed by the DGEMM code to calculate the multiplication
output, and free the allocated memory afterward. Therefore,
the memory requirement by the driver code process for a
specific matrix dimension x is 3x2. Consequently, the data-
section memory requirement of the driver code ranges from
237 KB to 366 MB for matrix dimension from 100 to 4000,
respectively.

We show the results of our experiments in Fig. 8, which
consists of 6 subfigures, one for each of the OS kernel con-
figurations. The upper row of subfigures represents the per-
formance curves of the native, Dom0Q and DomU Xkernels
configured with 256 MB main memory, while the lower row
of subfigures represents the performance curves of the same
kernels, but with 756 MB main memory. Each of the six
subfigures plots the performance in Mflops on the Y-axis
as a function of the matrix dimension on the X-axis. The
curves show the average Mflops attained by the driver code
at each matrix dimension, while the error bars demonstrate
the minimum and the maximum Mflops attainable through
the execution of several runs of the driver code.

For all kernel configurations in the 6 subfigures, the per-
formance increases until it exceeds 4 Gflops at matrix di-
mension of 700, which corresponds to having DGEMM
driver process memory size of 11.21 MB. The reason be-
hind the increasing Mflops between matrix dimensions of
100 to 700 is the resolution of the timing. The total execu-
tion time of the DGEMM process is short for small size ma-
trices, which takes less than 0.25 seconds, and therefore the
problem size is not large enough to achieve the peak Mflops
of the machine. Nevertheless, the growing curve was similar
for all of the OS kernel configurations up to matrix dimen-

@ Springer

dmmNT

-dgemv dg

sion 700, whether their total main memory was 256 MB or
756 MB. The performance of the driver code, afterward sta-
bilizes up to dimension of 3100 for all kernels equally.

Although the main memory size did not impact the
Mflops achieved by the DGEMM driver code up to matrix
dimension of 3100, its impact was clearly encountered by
larger matrices running on limited main-memory OS ker-
nels. For the three OS kernels with the main memory alloca-
tion of 756 MB (lower row of figures), the performance at-
tainable by the driver code stabilized for matrix dimensions
larger than 800. On the other hand, the three other OS ker-
nels with main-memory allocation of 256 MB experienced
performance degradation when the DGEMM driver mem-
ory requirement exceeded a certain threshold. This thresh-
old was the matrix dimension of 3100 for all of the kernels,
which corresponds to the matrices memory size of 219 MB.
The cause of this performance degradation is the memory
swapping of the driver memory, as we show in the next
subsection. Because the total main memory is limited to
256 MB in these three OS configurations, the OS kernel
starts to swap out the DGEMM driver data as its size in-
creases, and as physical memory becomes constrained. The
OS kernels with 756 MB do not experience the same perfor-
mance degradation, since their main memory allocations are
much larger than the DGEMM memory consumption.

In order to thoroughly understand the memory consump-
tion in each OS kernel configuration and its impact on the
DGEMM driver process, we had to study it in the context of
other entities using the memory, including the data and code
sections of the OS kernels.

111

101-122

Cluster Comput (2009) 12

uoisuawIq XUIeW

000€ 0ose 0002 00SH 000}

. -
*a.‘**i.w*\ni*ﬁ,i**,#\mi‘W* o K

wF

GIN9S. NWIOQ UO BOUBWLOHAd 8P0D JoAuq Wwabg

uojsuewIq Xurep

000€ 00Se 0002 005+ 0004

x,
g WK

*
- SV S I
Ry WK Koy K AR KK

AIN9SZ NWOQ UO 8oUBWLIOLA 8pod JeAuQ wwebq

000+

0002

000e

0001

0005

000+

0002

000e

000

0005

ol Ul eouBwIOpag

sdoy Ul souBwIOay

qIN 9S. M S[uIY oy} 10§ douewniofrad o) syuasaidar samSy Jo Mo Lamo]) S[IYM
‘Krowow g\ 967 YIm S[ouIy o) 10j douewrio)rad oy sAeniod sam3y Jo mod addn dy], *SUOISUSWIP XLIBW 3} JO UONOUNJ B SB 9p0J IOAUP INJNAOJ U 1o sdogiA ur ooueurtoyrad oyl § Siq

uoisuawWIq XLIeN

000% oose 000€ 00s2 0002 00SH 000}

-
e
KKK K g K g KT g KKK *

GINGSZ 0LIOQ UO B0UBWIIOMa 8p00 JoAIQ WisB

uoisuawIq XUIeW

000 00se 000€ 0052 0002 005+ 0004

,T
| e

dIN9SZ OWOQ UO 80UBULIONSd 80D JBALQ wwebq

000+

0002

000e

000

000S

0001

0002

000€e

000

000S

sdoyy ul eduBwLIONEd

sdoyy ul eouBWIONEd

uoisusWIq XU

000 00se 0ooe 00Se 0002 00S1 000} 00S

000% 00s€e

*
s g WK K MK e

GINGSL OATEN UO 80UBLLIOYBd 8pO0 JOAU] WisB

uoisuswiq XieN

000e 00se 0002 0051 0004 00§

g MK K e K we -

EIN9SZ SAIEN UO S0UBLLIOLSd 8POD Jaaud wwebg

000+

0002

000€

000%

0005

000+

0002

000

000%

0005

sdoj Ul eouBwIOpa

sdoyy Ul eouBWIONEd

pringer

Qs

112

Cluster Comput (2009) 12: 101-122

Fig. 9 Memory consumption of
the OS kernels with different 8

OS Kernel Memory Consumption

memory configurations

T T T
kernel data KxXx=

Memory in MB
N
T

N
oL— Db~ N

!
|
hl
!
|
|
|
|

5.2 Kernel memory and DGEMM resident set size

The first portion of memory we investigated was the kernel
memory. Figure 9 is a stack bar graph of the kernel memory
components and how much space they occupy in the phys-
ical RAM. The kernel memory is consumed by two main
components: the kernel code, and the kernel data. DomU has
the smallest kernel code size of the three OS kernels, which
is a byproduct of the exclusion of all the hardware driver
codes from the unprivileged domain. Xen has implemented
a split driver architecture, where it splits the driver interface
into two separate portions with a well-defined API between
them. Dom0 contains all of the physical drivers to the hard-
ware, as well as the back-end of the split driver codes, while
domUs contain only the front-end drivers, which are much
smaller in code size, and much simpler in interfaces. As a re-
sult of this split design, DomU has the smallest kernel code
size, while Dom0 has the largest.

The second component of the kernel memory is the ker-
nel data, which is the amount of memory statically reserved
for the kernel data structures. For the native kernel and
Dom0, they both have almost the same size of data in mem-
ory (1.05 MB), while the DomU kernel has half much this
data memory (0.52 MB). The reason behind that is also the
split structure architecture. Since the interface between the
back-end and front-end drivers is simpler, DomU is keep-
ing much simpler data structures for the physical drivers’
interface, which in turn minimized the amount of memory
needed for the kernel data.

Given the amount of memory allocated to the kernel
space, the rest of the memory is available to the user

@ Springer

Native.256M Native.756M

Dom0.256M Dom0.756M

processes, including our DGEMM driver code. Since we run
our DGEMM driver at run-level one to avoid any unneces-
sary noise in the system, the only active processes at any
one time were the DGEMM driver, the init process, the udev
daemon and the shell. The udev daemon is a user daemon to
serialize the events for device handling, and consumes 868
KB of the physical memory. init is the parent process of all
user processes in the system, and consumes 648 KB of the
physical memory. The shell consumes 1420 KB of the phys-
ical memory. Therefore, as the init process, udevd and shell
consumes collectively 2.8 MB, the rest of the memory is
available for our DGEMM driver code to use.

To monitor the memory consumption of the DGEMM
driver in physical memory, we tracked its Resident Set Size
(RSS). The RSS reflects the number of pages the process has
in real memory, minus 3 pages for administrative purposes.
RSS only includes the pages that count towards text, data,
or stack space of the process. This does not include pages
that have not been demand-loaded in, or which are swapped
out. The RSS growth of the DGEMM driver code is shown
in Fig. 10. In this figure, the Y-axis represents the resident
set size in KB as a function of the matrix size on the X-axis
for different OS kernels. From this figure, we were able to
characterize the memory pressure the DGEMM driver code
is placing on the different OS kernels. The three 756 MB
kernels have a growing RSS as the driver memory demand
grows. On the other hand, the RSS growth of the 256 MB
kernels ceases at matrix dimension 3100, both for the na-
tive kernel and the paravirtualized kernels. This effect is
caused by the limited main memory allocated to the kernels,
in which case the OS kernel would start swapping out por-

Cluster Comput (2009) 12: 101-122

113

Fig. 10 The number of pages
the DGEMM driver has in real

Resident Set Size of the Dgemm Driver Code

400000 T T
memory Native 256MB —+—
Native 756MB ---*---
Dom0 256MB ---=—
350000 - Dom0 756MB ----e- -
DomU 256MB ----4---
DomU 756MB ---v---
300000 [
250000 [
200000 [

Resident Set size in Kilobytes

A

Native, Dom0)
and DomU 756MB
OS-kernels

-
o

Native, Dom0
and DomU 256MB

OS-kernels
150000 R
100000 R
50000 B
O 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

tions of the process address space in order to keep a minimal
amount of memory space available for the other processes as
well as the kernel.

5.3 Swap disk activity

In addition to the RSS, we investigated the swap disk ac-
tivity in order to characterize its impact on the attainable
performance. Towards this end, we monitored the swap disk
activity and recorded the number of major and minor faults
for each process in order to depict the MMU activity and the
memory replacement policy between the native system and
the paravirtualized system policies.

As Fig. 10 has shown, the amount of physical memory for
the matrix data is limited for the OS kernels with 256 MB
memory allocation, thus the OS kernel would start swap-
ping out portion of the process address space. We moni-
tored the swap disk activity using the Linux free command,
which is portrayed by Fig. 11. It is important to note that the
swap disk activity here is reflecting all kernel swap activity
and not just the DGEMM driver code alone. For the three
756 MB OS kernels, there was no swap activity. This is ex-
pected since the 756 MB kernels had extended memory and
have no need to swap the driver process out of memory. On
the other hand, the 256 MB kernels have a different swap-
ping activity, where they start swapping at matrix dimension
of 3100 as illustrated in Fig. 11. Naturally, this is explained
by the limited memory size allocated for those OS kernels.
Therefore, Figs. 10 and 11 confirms that the performance
drop in the DGEMM driver code for 256 MB kernels was
caused by the swapping activity of the kernels.

Matrix Dimension

In addition, we evaluated the MMU policy replacement
for the kernels by studying the number of the major and mi-
nor faults as a function of the matrix dimension. Figure 12
depicts the number of major page faults (on the Y-axis) as
a function of the matrix dimension (on the X-axis). Notice
that each page is 4096 bytes. We observe that all the 256 MB
kernels start swapping the DGEMM process address space
at matrix dimension 3100.

Likewise, measuring the minor page faults can illustrate
the behavior of the MMU and the replacement policy. A mi-
nor fault is a page that was marked for eviction by the re-
placement policy, but which was used by the user process
before it was actually evicted. Figure 13 reflects the number
of minor page faults in the system as a function of the matrix
dimension. Again, there was no significant difference in the
behavior of all the 756 MB kernels. There was no significant
difference between the behavior of all the 256 MB kernels.
However, we noticed a difference in the number of minor
page faults between the 256 MB kernels and the 756 MB
kernels. For the 256 MB kernels, the replacement policy is
more aggressive in evicting pages from the main memory
due to the memory pressure of the DGEMM process as the
memory becomes more scarce in the system. Therefore, we
noticed that the number of minor faults for the three 256 MB
kernels increased tremendously as the DGEMM driver grew
beyond matrix dimension of 3100, as a result of memory
scarcity. Yet, there was no significant difference between the
native and paravirtualized kernels in their MMU behavior,
both in the scarcity and abundance of memory.

@ Springer

114 Cluster Comput (2009) 12: 101-122

Fig. 11 The swap disk activity Swap Disk Activity for Each OS Kernel
shown as the number of 400000 : : : : : : :
swapped bytes Native 256MB —+—
Native 756MB ------
Dom0 256MB - : 1
350000 - Dom0 756MB ----e- - A
DomU 256MB ----4--- '
£ DomU 756MB ---v--- /
% 300000 | ¥ -
@ :
£
(%] 7
2 250000 Native, Dom0 -
& and DomU 256MB
3 OS-kernels ’
& 200000 | / .
=
%]
b :
% 150000 - |
Qo
€
=}
c
< 100000 ' —
(] .
[;
/ Native, Dom0
/ and DomU 756MB |
50000 [~ ¥ OS-kemnels
0 \]
0 500 1000 1500 2000 2500 3000 3500 4000

Matrix Dimension

Fig. 12 The number of major Total Number of Major Faults in each OS Kernel
faglts caused by the DGEMM 250000 S | | | | | |
driver code Native 256MB —+—
Native 756MB --- - --
Dom0 256MB ---®--
Dom0 756MB ----e---
DomU 256MB ----4---
200000 + DomU 756MB ---v--- |
5
©
o
>
e}
2
E 150000 [1
)
©
S
k]
3 100000 .
£
=}
=
S Native, Dom0
P and DomU 256MB
50000 | OS-kernels A
Olswsabdsssninssessisnsnisnnsinnnns = dseas
0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Dimension
5.4 TLB activity and performance the only profiler ported to Xen to profile the hypervisor,

Dom0Q and DomU. We measured two hardware events: the
instruction 7LB misses (ITLB), and the data TLB misses
(DTLB). The data collected from the DGEMM driver is
shown in Figs. 14 and 15.

The final level in the memory hierarchy that we investigated
was the Translation Lookaside Buffer (7LB). We present
the TLB performance for the various OS kernels under dif-
ferent memory configurations in this subsection. We used
Oprofile [19], which is a low-overhead system-wide profiler The TLB size on the Pentium machines, which is the ar-
that uses hardware counters to collect system statistics. Al- chitecture we used in our experiments, is 64 entries for data
though there are several other similar profilers, Oprofile is TLB and 32 entries for instruction TLB. Given our memory

@ Springer

Cluster Comput (2009) 12: 101-122

115

Fig. 13 The number of minor
faults caused by the DGEMM

Total Number of Minor Faults in each OS Kernel

; 250000 - T T T T T T T
driver code Native 256MB —+—
Native 756MB ---*---
Dom0 256MB --m-
DomO0 756MB ----e---
DomU 256MB ----&---
200000 - DomU 756MB ---v--- Native, Dom0O B
) and DomU 256MB
& OS-kernels
o
>
e}
£
E 150000 [B
o
= §
E -
ks "
& 100000 [.
S
>
=
S
o .
= Native, Dom0
50000 and DomU 756MB
OS-kernels
0 i 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Dimension
Fig. 14. The number of Data DTLB misses for the Dgemm Driver code
TLB misses as measured by 5000 : : : : : : -
Oprofile Native 256MB —+— Jig
Native 756MB ---x--- XA i
Dom0 256MB - LA
Dom0 756MB & w i
@ DomU 256MB --=-- 1* 8
& 4000 - DomU 756MB - -o- - (i i
g
m
-
'_
o
£ 3000 | -
©
2
[$]
2
©
o
3
o 2000 | —
£
[
1]
ks
9]
Q
E 1000 | 4
z
O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

intensive DGEMM driver, the rate of growth of the data is
much faster than the size of the data TLB. This leads to hav-
ing the number of DTLB misses to grow as the DGEMM
process size grows, and the DTLB curve to follow a 3x2,
the same function for data growth for the DGEMM driver
data. Interestingly, There was no significant difference be-
tween the OS kernels based on their main memory alloca-
tion. In contrast with DTLB number of misses, the ITLB
misses for DGEMM driver code is minimal as shown in

Matrix Dimension

Fig. 15, which is due to the small size of code section of
the DGEMM driver. However, we noticed that ITLB misses
started to increase at matrix dimension 3100 for the OS ker-
nels with 256 MB. The ITLB misses start going up at the
same time the swapping activity starts going up. We believe
the extra swapping has resulted in more context switches be-
tween user code and system code and thus more instruction
TLB entries expired, which in turn affected the measured
ITLB activity for 256 MB OS kernels. However, there was

@ Springer

116

Cluster Comput (2009) 12: 101-122

Fig. 15 The number of Instr
TLB misses as measured by

ITLB misses for the Dgemm Driver code

5000 T T
Oprofile Native 256MB —+—
Native 756MB ---x---
DomO0 256MB ------
DomO0 756MB &
» DomU 256MB --=-
® 4000 DomU 756MB ---o -
k2]
€
m
-
[
8
S 3000 F
2
[$]
2
°
(]
[%]
<2
a L
g 2000
[
(2]
k]
9]
£
S 1000
b4
0
0 500

no difference in their TLB activity between the native and
paravirtualized kernels with the same memory allocation.

6 Multiple threads performance

In the previous set of experiments, we studied the perfor-
mance of a memory-intensive application and its influence
on the paravirtualized kernel under memory pressure. We
presented the performance difference between the native and
paravirtualized kernels with similar main-memory alloca-
tion. Our results illustrate that paravirtualization has no sig-
nificant impact on the performance of memory-intensive ap-
plications, even when memory becomes a scarce resource.
The next logical inquiry would question the performance
ramification of paravirtualization on multiple concurrent
DGEMM threads. In this respect, we are questioning the
performance difference between running several threads in
the same user space, and running each thread inside its
own isolated virtual machine. This is an important investi-
gation to tackle, since the latter model posses several bene-
fits like encapsulation and fault-isolation. Furthermore, this
model simplifies dynamic load balancing, as it enables OS-
migration which allows virtual machines to be allocated to
other physical nodes, transparently to the user process. For
those benefits, we believe that executing several DGEMM
threads in their separate VMs is an advantageous model.
Howeyver, the interference between the different VMs run-
ning memory-intensive processes might degrade the perfor-
mance harnessed by the DGEMM process. In addition, it is
expected that concurrent processes in different VMs would

@ Springer

1000

I

4000

1500 2000 3500

Matrix Dimension

2500 3000

encounter higher overhead, since the overhead of executing
separate OS kernels in VMs is higher than the overhead of
executing threads. For that, we designed another two exper-
iments to investigate the potential impact of the interference
on several concurrent DGEMM processes.

In order to evaluate the performance overhead of running
concurrent DGEMM processes in separate VMs, we com-
pare their performance with the same number of concur-
rent DGEMM processes running in the same VM. In order
to ensure a fair comparison, we allocate the sum of main-
memory of the separate VMs to the one VM running the
DGEMM processes. To simplify our experimentation, we
run our tests with two concurrent DGEMM processes. The
results of our experimentation are shown in Fig. 16. The sub-
figure on the left portrays the average Mflops of two concur-
rent DGEMM processes executing in the same VM, which
runs a SMP-enabled OS kernel with two CPUs, and 512 MB
memory allocated at startup. On the other hand, the subfig-
ure on the right portrays the average Mflops of two con-
current DGEMM processes running in two separate VMs
with 256 MB main-memory each. For each of the two VMs,
we ensured to allocate one physical CPU for each, in order
to isolate the effect of context-switching between physical
CPUs.

For both experiments, we observed that both performance
curves increase until they exceed 4 Gflops, when the per-
formance stabilizes for both curves equally. This essentially
mirrors the single process results shown in Sect. 5 for the
same amount of memory. Afterwards, we observe that the
right subfigure performance curve degrades much slower
with lower variance at matrix dimension 3100 than the left

117

Cluster Comput (2009) 12: 101-122

N 9ST UM JATA YOED ‘SIATA 0M] Ut Suruunt sasse001d WNTO 0m1 Jo douewiofrad oy sjuasardar anSifgns jySis oy o[rym ‘AToWwawW A ZTS UM [oUISY B 10J Sassaoo1d
ININADJ om3) Jo 2oueuriojrad o3eroae ay) sAentod aunSigns 1fo] AU, *SUOISUWIP XLIFEW) JO UOTIOUNJ B SB SPEAIY) 9POJ JALIP ININHD(JURLINOU0d 0Mm) Jo sdogA ur souewioyrad ay], 97 “S1q

uojsuawiq XUen

000t 00S€ 000€ 00Se 0002 00St 0001} 00S 0
T T T T T T T 0
Fx
X/
kS
- ¥ -+ o000t
o -1 000¢
*
L /- oooe
¥
%
X
¥
L y X 4 ooor
\ ¥ -
w,***\x/*,***y*.*x\x,«m,***** *
1 1 1 1 1 1 1 Ooom

aIN9SZ NwoQ duo uo Buinoaxa yoes ‘sessaooid wwabq Juaiinduod oM} Jo douewWIONad abeIany

sdoy|\ ul soueWIOpd

uoisuswiq Xuyep
000% 00S€ 000€ 00Se 0002 00S+ 000t 00S

%\W**\w\x\

FEEN

*
*\

N N
Koy e Tk KX F oy

0001

000e¢

000€e

000%

dINZ LS NWOQ Uo $8s5990id WwdB(J JUSLINJUOD OM} JO SOUBWIONSY dbeIany

0009

sdoyN Ul eoueWIONad

pringer

Qs

118

Cluster Comput (2009) 12: 101-122

subfigure. Furthermore, the total achieved Mflops by the two
process in the same VM (i.e. left subfigure) are negatively
impacted.

We believe that this is a result of the memory and perfor-
mance isolation offered by virtualization. To explain, since
the two processes are sharing the same user-space memory,
they therefore are prone to the overhead of context switch-
ing. In addition, as the affinity of processes running in the
same VM is not fixed to specific CPUs, the OS kernel is
context-switching the processes to more than one CPU dur-
ing its execution time. This, in turn randomly prolongs the
overall execution time of the processes, which is reflected
by the high variance in data, as shown in the left subfig-
ure. On the other hand, we believe that the lower variance
in the separate VMs (i.e. right subfigure) is caused by the
fixed affinity of the CPUs of the VMs. To sum, these ex-
periments show that concurrent memory-intensive processes
in separate VMs can achieve at least similar, or even bet-
ter performance to threads sharing the same VM, due to the
performance isolation between VMs and ability to control
CPU affinity of virtual machines. Although these experi-
ments do not present a comprehensive examination of this
performance difference, it illustrates the potential perfor-
mance and functionality advantages of encapsulating con-
current memory-intensive processes in distinct VMs.

7 Inter VM communication

In this section, we will consider the performance impact of
para-virtualization on applications that communicate across
different virtual machine domains.

Current virtualization systems are specifically designed
to isolate processes running in different operating systems
from each other. With the possibility of over a hundred
cores within a single HPC machine, however, both flexi-
bility and scalability requirements make it necessary to be
able to support—within the same machine—multiple op-
erating systems that can be used simultaneously by a sin-
gle large-scale application. Such applications will consist of
“tasks” that exchange messages, but within which different
forms of parallelism based on shared memory (e.g., MIMD
or SIMD/vector) will be combined. To support such applica-
tions, we examined a memory-sharing mechanism for Xen-
based virtual machines and evaluated its performance with
micro-benchmarks.

The current approach to implementing memory isolation
in Xen is to partition the available physical memory among
hosted domains, guarding writes to page tables, but allow-
ing standard virtual memory address resolution in the ab-
sence of page faults. When a guest OS needs to update its
page tables, it must explicitly call Xen through a “hypercall”
so that Xen can check to ensure the memory being updated

@ Springer

belongs to that OS. To enable efficient communication be-
tween domains running on the same machine—e.g., when
they establish a network connection—Xen offers “grant ta-
bles,” which enable a guest OS to grant access to regions of
their own memory to other guests. We evaluated the imple-
mentation of page sharing, a implemented with grant tables,
so that individual memory pages can be shared among guest
OS:s.

We crafted three simple micro-benchmarks to measure
the efficiency of memory sharing:

e Raw: passes control back-and-forth between two domains
using a single shared binary variable. This benchmark
measures the raw speed of memory sharing.

e Sync: uses classic P/V semaphores implemented using
bakery algorithm [17] to enforce synchronized (and nec-
essarily alternating) access to a shared integer variable.
This benchmark demonstrates the performance of a more
realistic fine-grained synchronization scenario.

e TCP: uses a socket with alternating send () and recv ()
invocations in each thread. Our intent was to measure the
overhead of TCP connection management and Xen pro-
tection mechanisms.

We used our micro-benchmarks to measure the latency
of communication between two threads as follows. For each
benchmark run, the threads passed control back-and-forth
for 10° times. We then computed the mean duration of an
iteration (along with its standard deviation).

For each benchmark, we studied three cases. The first
is memory sharing between processes executing under na-
tive Linux, the second is memory sharing between Dom0
and DomU OSs, and the third is memory sharing between
two DomUs. In all cases we enable Linux processor affin-
ity to minimize cache and 7LB pollution effects. Finally, we
were concerned about the possibility that enabling support
for SMP threading in the host kernel might perturb the re-
sults. Thus we conducted the experiments both for the native
host without SMP support and with it enabled. Table 6 sum-
marizes the results. Each row of the table corresponds to
a benchmark, with Sync appearing twice (Syncy; involved
passing one thousand bytes from one thread to the other in-
stead of a single integer).

From the table, we can see that memory sharing via mod-
ified grant tables under Xen (first three rows) proceeds at na-
tive speeds. It may appear that, in fact, Xen is faster (the first
element in the first column is larger than the others). How-
ever, in this case, the memory sharing had to be between
user-level processes (since the kernel is not multi-threaded).
We included this test as a control of our measurement in-
frastructure as we would expect user-space to user-space
transfers to be more expensive. In all other cases shown
in the first three rows, however, the transfers are kernel-to-
kernel and the data indicates that the speeds are the same.

Cluster Comput (2009) 12: 101-122

119

Table 6 Latency of communication under Raw, Sync, and TCP micro-benchmarks. The units are microseconds, each number not in parentheses
is the average over 10 iterations of 25 runs and the parenthesized number is the standard deviation of the 25 runs

Native host OS w/o SMP host OS w/ SMP

Linux host-guest guest-guest host-host host-guest guest-guest
Raw 0.49 (0.03) 0.36 (0.007) 0.36 (0.005) 0.36 (0.009) 0.35 (0.005) 0.39 (0.03)
Sync 1.4 (0.02) 0.8 (0.01) 0.8 (0.02) 0.8 (0.01) 0.78 (0.03) 0.8 (0.02)
Sync 3.4(0.07) 3.3(0.05) 3.3(1.14) 2.8 (0.15) 3.1(0.2) 2.9(0.1)
CcP 52.6 (0.4) 56.7 (0.2) 80.9 (0.3) 38.4(0.3) 70.3 (0.4) 104.0 (0.5)

More rigorously, comparisons of the means using a #-test
for all but the first value in the first row provides no evidence
contradicting the assertion that the means are the same.

The values in the bottom two rows of the table allow us to
speculate on how shared-memory communication compares
to socket-based communication. While our Syncy, results
are comparable to bulk-data bandwidth measurements re-
ported in literature [32], the latency of fine-grained synchro-
nization is lower when using shared memory, as our TCP
experiment (in the last row of Table 6) illustrates. Message-
passing in shared memory is at least 50 faster than in a
socket.

These simple experiments indicate that it is possible
to achieve memory sharing among OS instances at na-
tive execution speeds for multi-core systems using para-
virtualization.

8 Discussion

In this paper, we have measured and analyzed the paravirtu-
alization impact on performance in several ways. First, we
examined its impact on autotuned LA routines as configured
by ATLAS. Then, we examined the performance degrada-
tion when running multiple DGEMM instances under single
and multiple VM scenarios. Finally, we looked at the perfor-
mance of memory sharing between OS instances.

As it is of particular importance to highly-tuned LA code,
we have focused on the different levels of the memory hi-
erarchy and compared the memory characteristics between
the native non-paravirtualized OS kernel and the paravir-
tualized kernels since paravirtualization affects the way in
which virtual memory is manipulated. Our results show that
there is no significant difference in performance between
native execution and paravirtualized execution even when
ATLAS tunes the performance of the libraries to near peak
speeds. These results are quite remarkable since paravir-
tualization could easily impact virtual memory system ac-
tivity (e.g. TLB miss rate) by introducing another level of
process scheduling and I/O indirection. Further, one might
expect these effects to manifest near the performance bound-
ary of high-tuned numerical programs. However, as the ma-
jor workload of the computational code uses non-privileged

instructions that run at the native speed of the processor, it
does not impact the overall tuning of the ATLAS routines.
Although under heavy memory usage, the Xen hypervisor
is frequently invoked to trap every page-table update, this
overhead did not invest itself in the overall attainable perfor-
mance by the DGEMM code.

Our results also demonstrated that the paravirtualiza-
tion did not affect the processor characteristics detected by
ATLAS. The kinds of characteristics that need to be detected
will depend on the particular application being tuned. In the
case of dense linear algebra, some of the important char-
acteristics are cache size, number of registers, functional
unit latencies, memory latency, etc. In some sense, the ex-
act value of a certain characteristic is not as important as its
effect on the performance of the generated code. For exam-
ple, while it is useful to know that a processor has a cache
size of 256 KB, the tuning system really wants to know how
much data it can typically fit in a matrix block before in-
curring too many cache misses. Thus, the detected values
can be viewed as good starting points or bounds for explo-
ration of the search space, but not sufficient by themselves to
generate the best code. Having the hardware detection cou-
pled with an empirical parameter search allows the system
to cope with any inaccuracies in the detection of the charac-
teristics.

We have additionally shown that peak performance was
not significantly degraded when running multiple instances
of DGEMM under two virtualization scenarios: single VM
with multiple threads and multiple VMs each with a single
thread. This is an encouraging result since it would allow
taking advantage of the potential benefits of isolating the
tasks in separate VMs without incurring a serious perfor-
mance penalty. As a practical illustration, data centers are
already partitioning their resources into separate VMs which
are assigned to different customers simultaneously.

In the previous scenario, the separate DGEMM instances
had no need to communicate with each other, but for large-
scale HPC applications, this will almost certainly be a neces-
sity. We have addressed this issue by examining the perfor-
mance of memory sharing between different OS instances,
showing that native execution speeds are possible. This is
a promising result for HPC application performance since

@ Springer

120

Cluster Comput (2009) 12: 101-122

most MPI implementations can use shared memory com-
munications between processes on the same machine, but
not necessarily across VMs. However, there is some recent
research demonstrating good results with an MPI implemen-
tation enabled with inter-VM shared memory [14].

Therefore, our results show that the combination of
ATLAS autotuning and Xen paravirtualization deliver na-
tive execution performance and nearly identical memory hi-
erarchy performance profiles. Given that the host OS does
not necessarily require a fully dedicated core, linear algebra
software can take full advantage of the computational power
of the physical hardware without being penalized for run-
ning in a paravirtualized environment. Furthermore, some
previous results from our research and others confirmed that
paravirtualization did not impact MPI communications per-
formance over popular network infrastructure, like Ethernet
and Infiniband [24]. This, in turn allows linear algebra rou-
tines to efficiently run in distributed virtual environments.

Our results expose a new potential benefit of paravirtual-
ization for numerically and memory intensive applications.
Having the performance of the DGEMM driver code depen-
dent on the amount of memory available at user space, slim-
ming and customization of the OS kernel to run as a virtual
machine can possibly deliver better performance than native
kernels, as a slimmed down kernel can be tuned to allow the
user space process to have more memory than running on a
native system (which is configured to run a full workload).
In addition, our results support the feasibility of deploying
linear algebra systems and memory intensive applications
on virtualized systems. Consequently, this would support
the practicality of utilizing virtual clusters [12] and cloud
computing as a computing environment for those applica-
tions. For example, in Amazon’s Elastic Cloud (EC2) [2]
and IBM’s Blue Cloud [15], the hosted kernels are specifi-
cally configured for numerical execution.

9 Conclusions

In this paper, we have examined the impact of paravirtual-
ization on several aspects of performance relevant to HPC
applications. We presented a comprehensive evaluation of
the memory hierarchy characteristics of the paravirtualized
kernels. We presented experimentation to show the impact
of paravirtualization on empirically autotuned codes for lin-
ear algebra software. We also studied the performance of a
memory-intensive application and its influence on the par-
avirtualized kernel under memory pressure. We presented
the performance difference between the native and paravir-
tualized kernels with similar main-memory allocation. Then
we investigated the performance degradation when running
multiple instances of the same memory-intensive applica-
tion under different VM scenarios. Finally, we examined the
cost of inter-VM communication via shared memory.

@ Springer

Our results illustrate that paravirtualization has no signif-
icant impact on the performance of memory-intensive appli-
cations, even when memory becomes a scarce resource. Par-
avirtualization, furthermore, does not alter the system image
and does not affect the ability of empirically tuned codes
to produce peak performance for linear algebra software.
Given the rise of the new paradigm of cloud computing, par-
avirtualization exposes new deployment scenarios for linear
algebra computational kernels and software.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Archi-
tectures. Morgan Kaufmann, Los Altos (2002)

2. Amazon: Amazon Elastic Compute Cloud (EC2). http://aws.
amazon.com/ec2 (2007)

3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands,
P, Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams,
S.W., Yelick, K.A.: The landscape of parallel computing re-
search: a view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec.
(2006)

5. Back, G., Nikolopoulos, D.S.: Application-specific customization
on many-core platforms: the VI-ASOS framework. In: Proceed-
ings of the Second Workshop on Software and Tools for Multi-
Core Systems, March 2007

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R.: Virtual machine monitors: Xen and the art
of virtualization. In: Symposium on Operating Systems Principles
(SOSP), 2003

7. Bilmes, J., Asanovic, K., Chin, C.-W., Demmel, J.: Optimiz-
ing matrix multiply using PHiPAC: a portable, high-performance,
ANSI C coding methodology. In: International Conference on Su-
percomputing, pp. 340-347, 1997

8. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling,
S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet,
A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of
Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math.
Softw. 28(2), 135-151 (2002)

9. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach,
C., Pratt, 1., Warfield, A.: Live migration of virtual machines. In:
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI °05), Boston, MA, USA, May 2005

10. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A.,
Vuduc, R., Whaley, C., Yelick, K.: Self-adapting linear algebra
algorithms and software. Proc. IEEE 93(2), 293-312 (2005) (Spe-
cial Issue on Program Generation, Optimization, and Adaptation)

11. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An ex-
tended set of FORTRAN Basic Linear Algebra Subprograms.
ACM Trans. Math. Softw. 14(1), 1-17 (1988)

12. Foster, 1., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B.,
Zhang, X.: Virtual clusters for grid communities. In: CCGRID
’06: Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’06). Washington, DC,
USA, 2006, pp. 513-520. IEEE Computer Society, Los Alamitos
(2006)

13. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architec-
ture for the FFT. In: Proc. 1998 IEEE Intl. Conf. Acoustics Speech

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

Cluster Comput (2009) 12: 101-122

121

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

and Signal Processing, vol. 3, pp. 1381-1384. IEEE, New York
(1998)

Huang, W., Koop, M., Panda, D.: Efficient one-copy MPI shared
memory communication in virtual machines. In: IEEE Cluster
2008, 2008

IBM: IBM Blue Cloud. http://www-03.ibm.com/press/us/en/
pressrelease/22613.wss, Nov. (2007)

Krintz, C., Wolski, R.: Using phase behavior in scientific applica-
tion to guide Linux operating system customization. In: Workshop
on Next Generation Software at IEEE International Parallel and
Distributed Processing Symposium (IPDPS), April 2005
Lamport, L.: A new solution of Dijkstra’s concurrent program-
ming problem. Commun. ACM 17(8), 453-455 (1974)

Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, FT.: Ba-
sic Linear Algebra Subprograms for Fortran usage. ACM Trans.
Math. Soft. 5(3), 308-323 (1979)

Levon, J.: Oprofile—a system profiler for Linux. http://oprofile.
sourceforge.net/ (2004)

Mergen, MLE,, Uhlig, V., Krieger, O., Xenidis, J.: Virtualization
for high-performance computing. SIGOPS Oper. Syst. Rev. 40(2),
8-11 (2006)

Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proac-
tive fault tolerance for HPC with Xen virtualization. In: ICS *07:
Proceedings of the 21st Annual International Conference on Su-
percomputing. New York, NY, USA, 2007, pp. 23-32. ACM, New
York (2007)

Naughton, T., Vallee, G., Scott, S.: Dynamic adaptation using Xen.
In: First Workshop on System-level Virtualization for High Perfor-
mance Computing (HPCVirt 2007), March 2007

Padua, D.A., Wolfe, M.: Advanced Compiler Optimizations for
Supercomputers. Commun. ACM 29(12), 1184-1201 (1986)
Ranadive, A., Kesavan, M., Gavrilovska, A., Schwan, K.: Perfor-
mance implications of virtualizing multicore cluster machines. In:
Workshop on HPC System Virtualization, in Conjunction with Eu-
rosys’08, Glasgow, UK, 2008

Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic
live adaptation of virtual computational environments in a multi-
domain infrastructure. In: Autonomic Computing, 2006. ICAC
’06. IEEE International Conference, pp. 5-14, 2006

Vuduc, R., Demmel, J., Yelick, K.: OSKI: a library of automati-
cally tuned sparse matrix kernels. In: Proc. SciDAC 2005, Journal
of Physics: Conference Series, vol. 16, San Francisco, CA, June
2005

Whaley, R.C., Petitet, A., Dongarra, J.: Automated Empirical Op-
timizations of Software and the ATLAS Project. Parallel Comput.
27(1-2), 3-35 (2001)

Whitaker, A., Shaw, M., Gribble, S.: Scale and performance in
the Denali isolation kernel. In: Symposium on Operating Systems
Design and Implementation (OSDI), 2002

Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Evaluating the
performance impact of Xen on MPI and process execution for
HPC systems. In: VTDC *06: Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed Comput-
ing, 2006

Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization
for HPC systems. In: Min, G., Martino, B.D., Yang, L.T., Guo, M.,
Riinger, G. (eds.) ISPA Workshops. Lecture Notes in Computer
Science, vol. 4331, pp. 474-486. Springer, Berlin (2006)

Youseff, L., Wolski, R., Krintz, C.: Linux kernel specialization for
scientific application performance. Technical Report UCSB Tech-
nical Report 2005-29, Univ. of California, Santa Barbara, Nov.
(2005)

Zhang, X., MclIntosh, S., Rohatgi, P., Griffin, J.L.: Xensocket: a
high-throughput interdomain transport for vms. Technical report,
IBM Research Technical Report RC24247 (2007)

Lamia Youseff is currently a Ph.D.
candidate in computer science at
the University of California, Santa
Barbara (UCSB). Her general re-
search interests include operating
systems, high performance comput-
ing and virtualization techniques.
Her doctoral research is focused
on virtualization aspects for sci-
entific and HPC applications, un-
der the supervision of Prof. Rich
Wolski at UCSB. Prior to joining
UCSB, Lamia received her B.Sc.
from The American University in
Cairo (AUC), with Summa Cum

Laude. During her undergraduate tenure, she received several awards
including the international ACM-UPE Scholarship Award in 2002 and
AUC President’s cup in 2003.

Keith Seymour is a Senior Re-
search Associate at the Innovative
Computing Laboratory (ICL) in the
Electrical Engineering and Com-
puter Science Department at the
University of Tennessee, where he
has worked on the f2j/JLAPACK,
NetSolve/GridSolve, PAPI, and
GCO (Generic Code Optimization)
projects. He received his M.S. in
Computer Science from the Univer-
sity of Tennessee in 1997. His re-
search interests include grid com-
puting and empirical code optimiza-
tion.

Haihang You is a Research Asso-
ciate at the Innovative Computing
Laboratory (ICL) in the Computer
Science Department at the Univer-
sity of Tennessee, Knoxville. He re-
ceived his M.S. in Computer Sci-
ence and M.S. Minor in Physics
from the University of Tennessee in
2001, B.S. in Physics from Beijing
Normal University. His research in-
terests include Performance Analy-
sis, Empirical Code Optimization,
and Adaptive Finite Element Meth-
ods for Differential Equations.

Dmitrii Zagorodnov received the
B.S. and M.S. degrees in com-
puter science from the University
of Alaska, Fairbanks, and the Ph.D.
degree from the University of Cal-
ifornia San Diego. He is currently
a researcher at the Computer Sci-
ence Department of the University
of California Santa Barbara. His re-

\ | search interests are the area of soft-

ware systems: operating system de-
sign, network protocols and routing,
as well as theoretical and applied
problems in distributed systems.

@ Springer

http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

122

Cluster Comput (2009) 12: 101-122

Jack Dongarra received a Bache-
lor of Science in Mathematics from
Chicago State University in 1972
and a Master of Science in Com-
puter Science from the Illinois In-
stitute of Technology in 1973. He
received his Ph.D. in Applied Math-
ematics from the University of New
Mexico in 1980. He worked at the
Argonne National Laboratory until
1989, becoming a senior scientist.
He now holds an appointment as
University Distinguished Professor
of Computer Science in the Com-
puter Science Department at the
University of Tennessee and holds the title of Distinguished Research
Staff in the Computer Science and Mathematics Division at Oak Ridge
National Laboratory (ORNL), Turing Fellow at Manchester University,
and an Adjunct Professor in the Computer Science Department at Rice
University. He is the director of the Innovative Computing Laboratory
at the University of Tennessee. He is also the director of the Center
for Information Technology Research at the University of Tennessee
which coordinates and facilitates IT research efforts at the University.

He specializes in numerical algorithms in linear algebra, parallel
computing, the use of advanced-computer architectures, programming
methodology, and tools for parallel computers. His research includes
the development, testing and documentation of high quality mathemat-
ical software. He has contributed to the design and implementation
of the following open source software packages and systems: EIS-
PACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM,

@ Springer

MPI, NetSolve, Top500, ATLAS, and PAPI. He has published approx-
imately 200 articles, papers, reports and technical memoranda and he
is coauthor of several books. He was awarded the IEEE Sid Fernbach
Award in 2004 for his contributions in the application of high perfor-
mance computers using innovative approaches and in 2008 he was the
recipient of the first IEEE Medal of Excellence in Scalable Computing.
He is a Fellow of the AAAS, ACM, and the IEEE and a member of the
National Academy of Engineering.

Rich Wolski is a Professor in Com-
puter Science at the University of
California, Santa Barbara (UCSB).
He received his M.S. and Ph.D. de-
grees from the University of Cali-
fornia at Davis (while he held a full-
time research position at Lawrence
Livermore National Laboratory).
He is currently also a strategic advi-
sor to the San Diego Supercomputer
Center and an adjunct faculty mem-
ber at the Lawrence Berkeley Na-
tional Laboratory. His most recent
research efforts have focused on the
development of statistical predictive
techniques for resource-constrained power usage, resource failure pre-
diction, batch queue delay prediction, and cloud computing infrastruc-
ture design and implementation.

	Paravirtualization effect on single- and multi-threaded memory-intensive linear algebra software
	Abstract
	Introduction
	Background
	Experimental settings
	Autotuning software systems
	System characteristics detection
	Cache blocking size configuration
	Routines generation and tuning

	Memory intensive applications
	DGEMM driver description and performance
	Kernel memory and DGEMM resident set size
	Swap disk activity
	TLB activity and performance

	Multiple threads performance
	Inter VM communication
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

