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Scheduling workflow applications on processors with different capabilities
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Abstract

Efficient scheduling of workflow applications represented by weighted directed acyclic graphs (DAG) on a set of heterogeneous processors is
essential for achieving high performance. The optimization problem is NP-complete in general. A few heuristics for scheduling on heterogeneous
systems have been proposed recently. However, few of them consider the case where processors have different capabilities. In this paper, we
present a novel list scheduling based algorithm to deal with this situation. The algorithm (SDC) has two distinctive features. First, the algorithm
takes into account the effect of Percentage of Capable Processors (PCP) when assigning the task node weights. For two task nodes with same
average computation cost, our weight assignment policy tends to give higher weight to the task with small PCP. Secondly, during the processor
selection phase, the algorithm adjusts the effective Earliest Finish Time strategy by incorporating the average communication cost between the
current scheduling node and its children. Comparison study shows that our algorithm performs better than related work overall.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Workflow applications are generally described as collections
of tasks that are processed in a well-defined order to accom-
plish a specific goal [1]. Typically, such applications are carried
out by multiple processors connected either locally or in a dis-
tributed fashion. A heterogeneous distributed computing sys-
tem comprises of diverse set of resources interconnected with
a high-speed network, thereby supporting efficient executing of
computationally intensive applications with different comput-
ing needs. The scheduling of workflow applications is highly
critical to the performance of heterogeneous distributed com-
puting systems. It deals with the allocation of individual tasks
to suitable processors and assignment of the proper order of
task execution on each resource. The objective is to minimize
the overall completion time or makespan [2–5]. A popular rep-
resentation of a workflow application is the Directed Acyclic
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Graph (DAG) in which the nodes represent individual applica-
tion tasks and the directed arcs or edges represent inter-task data
dependencies. As the DAG scheduling problem is NP-complete
[6] in general, a number of heuristics have been proposed. In [7]
the authors classified various heuristics into four categories:

• List scheduling algorithms [8–12]
• Clustering algorithms [8,13–15]
• Duplication based algorithms [16–19]
• Guided random search methods [20–25].

Compared to algorithms from the other three categories, list
scheduling heuristics usually generate good quality schedules at
a reasonable cost. The basic idea of list scheduling algorithms
is to make a list (thus the name) of task nodes by first
assigning each node some priorities. The list is then formed
in decreasing order of priorities [2]. The order of the list
admits precedence constraints. While the list is not empty,
the algorithm repeatedly removes the first node from the
list and allocates it to a processor which optimizes some
predefined criteria. Various methods to specify the priorities
of nodes and select the best processor have been proposed
[2,7,9]. List scheduling heuristics are originally designed for
homogeneous systems where processor speed and capability
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Fig. 1. (a) An example DAG, (b) the computation cost for each node on three
machines, (c) the communication cost table.

and network bandwidth between any pair of processors are the
same. It has been extended in two directions. Firstly, several
dynamic list scheduling algorithms have been introduced [9,
26,13]. These algorithms update the priorities of each node
and the scheduling list dynamically at each step. Similar to
traditional list scheduling algorithms, at each step, the node
with highest priority is selected for scheduling. Dynamic list
scheduling can potentially generate better schedules. However,
these approaches can increase the time complexity of the
algorithms significantly. Secondly, a number of new list
scheduling algorithms for heterogeneous environment have
been proposed [9,7,27]. A comparison of those algorithms
reveals that during the processor selection phase: (1) insertion-
based policy which allows the possible insertion of a task in an
earliest idle time slot between two already-scheduled tasks on
a processor is better than non-insertion based counterparts; (2)
processor selection criteria that consider the different processor
speeds (e.g. Earliest Finish Time) outperform those that don’t
include this factor (e.g. Earliest Start Time).

Although the DAG scheduling in general is a well studied
problem, most of the algorithms assume that the processors are
equally capable, i.e. each processor can execute all the tasks
with possibly different speeds. While some of the algorithms
don’t make the assumption explicitly, they don’t consider the
potential effect of different capabilities either [7,11,12]. Thus,
these algorithms suffer in performance when scheduling under
this situation. Other algorithms simply become inapplicable
without modification. For example, the Critical-Path-on-a-
Processor (CPOP) algorithm introduced in [7] allocates all
critical tasks onto a single processor in an attempt to minimize
the total execution time of the critical tasks. This algorithm
fails if none of the processors can process all the critical tasks.
Another category of algorithms which becomes unsuitable is
the clustering algorithms [8,13–15]. An algorithm of this type
allocates tasks into different clusters. Each cluster can contain
more than two tasks. When two tasks are assigned to the
same cluster, they are executed in the same processor. Under
the condition of processors with different capabilities, chances
are none of the processors can carry out all the potentially
large number of tasks in the same cluster. Therefore, unless
effectively modified, clustering algorithms cannot be directly
used under these circumstances.

In this paper, we propose a new static list Scheduling al-
gorithm for heterogeneous processors with Different Capabil-
ities (SDC). As found in [28], the methods followed to as-
sign weights to the nodes significantly affect the performance
Fig. 2. (a) Schedule for the DAG in Fig. 1 with priority list A, C, B, D, (b)
schedule for the DAG in Fig. 1 with priority list A, B, C, D.

of scheduling algorithms. We suggest a new approach of set-
ting task node’s weight. which considers the percentage of ca-
pable processor as well as the task’s average execution cost
among those capable processors. The SDC algorithm selects
the task with the highest b-level [2] at each step. The selected
task is then assigned to a processor which minimizes its Ad-
justed Earliest Finish Time (AEFT) (defined in Section 4) with
an insertion-based policy. The AEFT adapts the EFT by in-
cluding a new term which indicates how large the communi-
cation between current node and its children will be on the av-
erage provided that it is scheduled on the current processor. Due
to resource scarcity, the processor that minimizes EFT for the
current scheduling node is not necessarily the best choice be-
cause of potentially overwhelming inter-processor communica-
tion between the node and its children as shown by the example
in Section 4. The algorithm has been tested on a large number
of randomly generated problems of different sizes and types.
The parametric graph generator is similar to the one designed
in [7] but with a different set of parameters. We compare SDC
with two other list scheduling algorithms, the Heterogeneous
Earliest Finish Time (HEFT) [7] and Dynamic Level Schedul-
ing (DLS) [9]. Normalized Schedule Length (NSL) and Aver-
age Percentage Degradation (APD) [3] are used as the com-
parison metrics in this paper. The comparison study shows that
our algorithm performs considerably better in most cases, espe-
cially when the Communication-to-Computation Ratio (CCR)
and Percentage of Incapable Processor (PIP) are large.

The remainder of this paper is organized as follows. In
the next section, the scheduling problem and some related
terminology are defined. In Section 3, we provide some related
work in scheduling for heterogeneous computing systems. Our
algorithm (SDC) is introduced in Section 4. Section 5 presents
experimental results based on randomly generated task graphs
and a real world bioinformatics workflow application graph.
Section 6 contains the concluding remarks.

2. Problem description

A scheduling system usually consists of three parts:
application, computing environment and scheduling goal. The
application and computing environment can be represented by
a task graph and resource graph respectively.
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Fig. 3. The SDC algorithm.

2.1. Task graph

The DAG is a generic model of a workflow application
consisting of a set of tasks (nodes) among which precedence
constraints exist. It is represented by G = (V, E), where V
is the set of v tasks that can be executed on a subset of the
available processors. E is the set of e directed arcs or edges
between the tasks that maintain a partial order among them.
The partial order introduces precedence constraints, i.e. if edge
ei, j ∈ E , then task v j cannot start its execution before vi
completes. Matrix D of size v × v denotes the communication
data size, where di, j is the amount of data to be transferred from
vi to v j . A task graph is a weighted graph. The weight wi of a
node vi usually represents its computation cost. The weight of
an edge stands for the communication requirement between the
connected tasks (the amount of data that must be communicated
between them). We introduce a new approach to assign node
weight in Section 4.

In a given task graph, a root node is called an entry task and
a leaf node is called exit task. We assume that the task graph is
a single-entry and single-exit one. If there is more than one exit
or entry task, we can always connect them to a zero-cost pseudo
exit or entry task with zero-cost edges. This will not affect the
schedule.

2.2. Resource graph

A resource graph is an undirected weighted graph (both
nodes and edges are weighted). A node of a resource graph
represents a processor and an edge denotes the link between a
pair of connected processors. The resource graph is a complete
graph with p fully connected nodes. The weight of a node
represents the processor computation capacity (the amount of
computation that can be performed in a unit time). Similarly,
the weight of an edge stands for its communication capacity
(the amount of data that can go through the link in a unit time).
We further assume that all inter-processor communications are
performed without contention. This assumption holds since our
computing environment consists of processors connected with
wide area network links as pointed out in [29].

2.3. Performance criteria

Before presenting the performance criteria, it is necessary to
define a few attributes used in the algorithm. The computation
Fig. 4. (a) An example DAG, (b) the computation cost for each node on three
machines, (c) the communication cost table.

cost of task vi on processor p j is wi, j . If vi cannot be processed
on p j , then wi, j = ∞. The data transfer rates between
processors are kept in a matrix dtr of size p × p. The startup
cost of communication of each processor is stored in a vector
sc of size p. The communication cost ci |m, j |n from task vi to
v j when task vi is scheduled on processor pm and task v j is
scheduled on processor pn is given by

ci |m, j |n = scm +
di, j

dtrm,n
(1)

we assume that intra-processor communication cost is
negligible, i.e. ci |m, j |m = 0. The task graph’s edge weight is
defined as the average communication cost:

ci, j = s̄c +
di, j

d̄tr
(2)

EST(vi , p j ) and EFT(vi , p j ) are the earliest execution start
time and the earliest execution finish time of task vi on
processor p j respectively. The entry task can start execution
at time 0. Other tasks’ EST can be computed by

EST(vi , p j ) = max
{

avail(vi , p j ),

max
vk∈pred(vi )

(FT (vk, psk ) + ck|sk ,i | j )

}
(3)

where avail(vi , p j ) is the earliest time at which processor p j is
ready for task vi ’s execution; pred(vi ) is the set of immediate
predecessor tasks of task vi . The inner max block in Eq. (3)
is the time that all the data needed to execute task vi on
processor p j is available, i.e. the ready time. This is obtained
by considering all immediate predecessors of task vi , the time
they finish (FT) and the time needed to transfer data from
the machine where they actually run on to the machine in
consideration p j . The EFT is defined by

EFT(vi , p j ) = wi, j + EST(vi , p j ). (4)

The schedule length L of the DAG is the actual finish time of
the exit task vexit.

L = FT(nexit). (5)

Although several performance criteria such as the lateness
or the total flow time are suggested in the literature [30], our
goal of scheduling in this research is to minimize the scheduling
length L (makespan).
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Fig. 5. (a) HEFT algorithm, (b) DLS algorithm, (c) SDC algorithm.
3. Related work

While static list scheduling is a well studied problem,
it still gains attention due to its potential of generating
good schedules without high time complexity. In [7] two list
scheduling algorithms are introduced. The HEFT algorithm
significantly outperformed the other algorithms in terms of both
performance and cost metrics, including normalized schedule
length, speedup, frequency of best results and average running
time. The HEFT algorithm selects the task with the highest
upward rank (b-level) at each step and assigns it to the processor
which minimizes its earliest finish time with an insertion-
based policy. The task node weight is computed as the average
computation cost across all processors and the edge weight is
the average communication cost across all edges.

An iterative list scheduling is proposed in a recent study
[11]. This algorithm generates an initial solution with moderate
quality and then improves it iteratively. The initial step is the
same as the HEFT algorithm. Subsequently it modifies the
weight of task nodes and edges on each iteration. The processor
selection criteria is the minimization of EFT, which is the same
as the HEFT algorithm. Simulation results show that an iterative
algorithm can produce shorter schedule length than those of
HEFT [7], DLS [9] and other algorithms. It is assumed that all
tasks can be executed on any of the available processors.

Dynamic Level Scheduling (DLS) algorithm presented in [9]
accounts for varying processor speeds as well as descendant
effect and resource scarcity. It uses dynamically changing
priorities to match tasks with processors at each step. Although
this algorithm explicitly considers the effect of different
processor capabilities, it has a high time complexity.

Scheduling tasks on processors with different capabilities
is studied in [31]. The processors are homogeneous in the
sense that each one has the same processing speed. The tasks
are independent and cost unit time on each capable processor.
The author proves that there exists an optimal solution for
this restricted problem and gives a polynomial time algorithm
to solve it. In the further research [32], two polynomial
algorithms with less time complexities than those proposed in
[31] are designed. Both study special cases and thus polynomial
solutions are possible. In this paper, we consider situations
where tasks have precedence constraints and bear different
computation costs on capable processors.

The impact of different weight assignment methods is
investigated in [28]. In heterogeneous environment one could
use the task computing costs in various ways to compute the
weight. In that study, the authors compare different methods
such as mean value, median value, best value, worst value
etc. Results show that significant variations in the makespan
underline the dependency of the scheduling algorithms on the
weight computing methods. The sensitivity is largely due to
the fact that scheduling algorithms have difficulty to access the
relative importance of independent tasks effectively.

4. The SDC algorithm

4.1. Setting task node weight

There are various ways to set the weights of task nodes
in a heterogeneous setting [28]. For instance, one can take
the average value, the best value, etc. In this paper, we
consider the effect of scarcity of resources in addition to the
average computation cost. We set relatively higher weight to
the node with less capable resources. The rationale behind
this is that tasks with scarce capable resources should be
given higher priority in order to avoid situations that give
rise to undesirable effects. This can be best illustrated with
an example. In Fig. 1(a)–(c), an example task graph and its
resource information are given. Task B and C have the same
average computation cost. In addition, B can only be processed
on processor 1. Fig. 2(a) shows the schedule when C is
scheduled before B. In this case, task C has a smaller earliest
finish time when it is assigned on processor 1. Task B has no
choice but to be scheduled on processor 1. Assigning task C
on processor 1 will delay the starting time of task B thus the
whole schedule. To avoid this problem, we can intentionally
assign larger weights to tasks with scarce capable processors.
As illustrated by Fig. 2(b), task B is considered before task C.
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B is still assigned on processor 1. This time C is scheduled on
processor 2. The schedule length is reduced from 7 to 6 due to
the change of scheduling order between task B and C.

The set of capable processors for node vi is denoted as

C P(vi ) = {pk | wi,k 6= ∞}. (6)

We define the Percentage of Capable Processors (PCP) of node
vi as

PCP(vi ) =
‖C P(vi )‖

p
(7)

where p is the number of all processors. Thus the Percentage of
Incapable Processors (PIP) is

PIP(vi ) = 1 − PCP(vi ). (8)

The weight of node vi is specified as

wi =

∑
p j ∈C P(vi )

wi, j/‖C P(vi )‖

PCP(vi )
. (9)

By applying this specification we give relatively higher weights
and thus higher priorities to those task nodes with fewer capable
resources. Experimental results in Section 5 show that this
method gives better schedules than the one using average
computation costs.

4.2. Prioritizing the tasks

This step is essential for list scheduling algorithms. A task
processing list is generated by sorting the task by decreasing
order of some predefined rank function. In this research, we use
b-level [2] as the rank function. The b-level of node vi is the
length of the longest path from vi to the exit node. It can be
obtained by recursively traversing the task graph from the exit
node with time complexity O(e + v).

BLEV(vi ) = wi + max
v j ∈succ(vi )

{ci, j + BLEV(v j )} (10)

where ci, j is the average communication cost of ei, j , wi is
the weight of node vi , and succ(vi ) is the set of immediate
successors of vi . Ties are broken randomly in order not to
introduce high computing cost. The sorted list preserves the
precedence constraints among tasks.

4.3. Selecting processors

Various criteria have been proposed to select suitable
processors for a task. When scheduling in a homogeneous
environment, Earliest Start Time is a popular choice [33,8,34],
while in heterogeneous settings, using Earliest Finish Time as
selection criteria gives better schedules [7]. Sih and Lee [9]
suggest to select (node, processor) pair that maximize the so-
called Dynamic Level at each step. They extend the definition
of Dynamic Level by including the effects of descendant and
resource scarcity when scheduling in heterogeneous systems.
Furthermore, insertion based policy is better than a non-
insertion based one as observed in [3]. Insertion based policy
considers scheduling an idle time slot between two already
schedule nodes as long as the slot is long enough and inserting
the task to the slot doesn’t break any precedence constraint.

The Earliest Finish Time method apparently fails to consider
how well the descendants of current scheduling node vi
matches the selected p j which minimizes the EFT(ni , p j ). This
is of particular importance in our computing environment where
processors have different capabilities as identified in [9]. We
propose a new target function called Adjusted Earliest Finish
Time (AEFT). The SDC algorithm assigns task to the processor
which minimizes the AEFT with an insertion-based policy. The
Adjusted Earliest Finish Time is defined as

AEFT(vi , p j )

= EFT(vi , p j ) +
1

‖succ(vi )‖

∑
vt ∈succ(vi )

st

√ ∏
wt,k 6=∞

ci | j,t |k (11)

where st = ‖C P(vt )‖ is the number of capable processors for
task vt . For each child vt of vi , we calculate the geometric
average of its communication cost with vi (assuming it is
scheduled on p j ) when vt is scheduled on each capable
processor pk ∈ C P(vt ). The second term in Eq. (11) considers
how the current node’s allocation will affect the communication
with its descendant on average. Without the second term,
undesirable results can be produced. For example, in the case
where EFT(vi , p j ) is minimized, due to the scarcity of capable
processors to execute vi , it has to be placed on some processor,
say pk , where communication cost between p j and pk can be
very expensive. This will undermine the overall quality of the
resulting schedule.

4.4. Procedure of the algorithm

The pseudo code of the SDC algorithm is as follows. As with
other list scheduling algorithms, the SDC algorithm has two
major stages: a task prioritizing stage and a processor selection
stage. The first stage computes the priorities of all the tasks
while the second one selects the tasks in the order of their
priorities and assigns each selected task on its most desirable
processor, which minimizes the task’s adjusted finish time. As
an illustration, Fig. 4(a) presents a sample DAG. The number
next to each edge of the graph corresponds to the amount of
data that needs to be transferred from a task to its immediate
successor. The cost to execute each of the 4 tasks in the graph on
each of three different machines is given in Fig. 4(b). Fig. 4(c)
shows the cost to transfer a data unit for any pair of machines.
For the simplicity of illustration, we use unit data transfer rate.
This is not assumed in the simulation experiments.

Fig. 5 shows the schedules obtained by HEFT, DLS and our
SDC algorithm. The schedule length of SDC is shorter than
those of the other two algorithms. The scheduling list of HEFT
and SDC happens to be same, which is {A, C, B, D}. DLS
algorithm does not maintain a static scheduling list. It selects
a pair of (node, processor) that maximize the Dynamic Level at
each step.
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Fig. 6. The effect of weight assignment method on average NSL.

Fig. 7. The effect of weight assignment method on average percentage degradation.
4.5. Time-complexity analysis

We will refer to Fig. 3 when analyzing the time complexity
of the algorithm. Line (1) and (2) take O(vp) time. Line (3)
can be done in O(e + v) [2]. Sorting tasks in Line (4) takes at
most O(v log v). Lines 5–11 will cost O(ep2) time. Thus the
total time complexity is O(ep2). For a dense graph when e is
proportional to O(v2), the time complexity becomes O(v2 p2).

5. Experimental results and discussion

We have evaluated our algorithm with a wide range of
graphs. In this section, we present the comparative results of
the SDC algorithm and some related work given in Section 3,
namely HEFT and DLS. Randomly generated DAGs and a
genomic sequence annotation workflow are considered for
assessing the algorithms.

5.1. Comparison metrics

The comparisons of the three algorithms are made using the
following two measures:
• Normalized schedule length (NSL). The principal perfor-

mance metric of an algorithm is the length of its output
schedule. The NSL of an algorithm is defined as:

NSL =
L∑

vi ∈cpmin

min
p j ∈P

{wi, j }
(12)
where L is the schedule length. cpmin is the critical path of
the DAG when the task node weights are evaluated as the
minimum computation cost among all capable processors.
The denominator represents a lower bound on the schedule
length. Such a lower bound may not always be possible to
reach and NSL ≥ 1 for any algorithm. We use averaged
NSL over a set of DAGs as a comparison metric.

• Average Percentage Degradation from the best (APD).
APD of an algorithm is the average (over all DAGs) of
the percentage of degradation of the schedule lengths L
produced by this algorithm from those best schedules. Let
G denote a set of DAGs, G = {g1, g2, . . .}. ALG =

{alg1, alg2, . . .} is the set of algorithms we are comparing.
sl(algi , g j ) represents the schedule length of g j using
algorithm algi . The APD of algorithm algi over graph set
G is defined as:

APD(algi , G)

=

∑
g j ∈G

(
sl(algi , g j ) − sl

(
argmin
alg∈ALG

(
sl(alg, g j )

)
, g j

))
‖G‖

.

(13)

• Efficiency. The speedup of a task graph is defined as the time
required for sequential execution of the graph in a single
processor, divided by the time it takes to complete it with
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Fig. 8. Average NSL of the algorithms.
N processors. We assume that there is at least one processor
can execute all the tasks when comparing efficiencies
of various algorithms. The sequential execution time is
obtained by assigning all tasks to a single processor that
minimizes cumulatively the computation costs. Efficiency
is the ratio of speedup to the number of processors used.
We use efficiency as the metric to test the scalability of our
algorithm. The results are presented in Section 5.2.3.3.

5.2. Randomly generated application graphs

5.2.1. Random task graph generation
In the first part of the evaluation, task graphs are generated

randomly with the following input parameters:

• Task size in the graph (v). The value of v is assigned from
the set {20, 40, 60, 80, 100}.

• Shape parameter of the graph (α). The height of a DAG

h =

√
v

α
. α gets value from set {0.5, 1.0, 2.0}.

• Average computation cost(comp). The average computation
cost of a task node is the average time required to complete
the task on all of its capable processors. The average
computation cost of task node vi (compi ) is generated
randomly from normal distribution N (comp, 0.5comp).
Then the computation cost of vi on processor p j (wi, j ) is
from normal distribution N (compi , 0.5compi ). The values
of comp is from set {10, 20, 30, 40, 50}.
• Communication-to-Computation Ratio (CCR). The graph’s
CCR is the ratio of average communication cost to the
average computation cost. CCR = {0.01, 0.1, 1.0, 10, 100}.

• Average communication cost(comm).

comm = CCR ∗ comp. (14)

• Percentage of Incapable Processors (PIP). This is defined
in Eq. (8). There are two schemes used when setting PIP.
In the first set of experiments, we investigate the effect
of new weight assignment function on schedule length.
The PIP of each task node is randomly generated from
uniform distribution (0, 0.9). We want to evaluate how the
SDC algorithm performs with respect to PIP in the second
set of experiments. The PIP of task node vi , PIP(vi ) is
from normal distribution N (PIP, 0.5PIP), where PIP =

0, 0.1, 0.2, . . . , 0.9.

Three sets of experiments are conducted in this part of
the evaluation. Experiment set I are designed to examine
the effectiveness of weight assignment function described in
Section 4.1. Experiment set II accesses the validity of processor
selection criteria outlined in Section 4.2. When generating
the graphs, each parameter set is repeated 25 times for the
first set of experiments and 10 times for the second. This
gives 9375 graphs for Experiment set I and 37,500 graphs for
Experiment set II. Experiment set III evaluates the efficiency of
the algorithm. The processor number varies from 4 to 64. Other
parameters are the same as those of experiment set I. Results
are presented in Section 5.2.3.
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Fig. 9. Average percentage degradation of the algorithms.
Fig. 10. Efficiency comparison with respect to the number of processors.

5.2.2. Generation of resource graph
The resource graph as described in 2.2 is a complete graph.

The parameters we need to set are:

• Number of processors (p). In this study, we set p = 10.
• Average data transfer rate (dtr). This is the average data

transfer rate over all combinations of processors. We fix this
value as 1. The data transfer rate between pm and pn (dtrm,n)

is from normal distribution N (1, 0.5). We only uses numbers
that are positive.

• Average data transfer size (d). Since the average data
transfer rate is 1, the average data transfer size is the same
Fig. 11. A genomic sequence annotation workflow.

as the average communication cost. The data size to be
transferred from task vi to v j is di, j ∼ N (dtr, 0.5dtr).

• Startup cost. In this study, we omit the startup cost.

5.2.3. Performance comparison
The algorithm presented in Section 4 has two distinctive

features: a new weight assignment method and a modified
processor selection criteria. The effects of both features are
presented in this section.
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Fig. 12. Comparison of three algorithms on a genomic sequencing annotation
workflow.

5.2.3.1. Effect of weight assignment function. Experiment set
I investigates how the weight assignment method will impact
the average NSL and APD. The results are shown in Figs. 6 and
7 respectively. Two algorithms, namely HEFT and DLS, and
their modified counterparts AHEFT and ADLS are compared.
The AHEFT (respectively ADLS) is adapted from HEFT (DLS)
where our weight assignment method described in Section 4.1
is adopted. We only show the cases where CCR = 0.1, 1 and
10 due to space limits. From Fig. 6 we first observe that for all
cases the average NSLs show an increasing trend with respect
to the increasing of task graph size. This is due to the fact that
the proportion of task nodes other than those on the critical
path increases with the task graph size, making it more difficult
to achieve the lower bound. We also notice that the adjusted
algorithm performs better than their corresponding original
version and the degree of improvement varies with respect to
CCR. When CCR = 0.1, the improvement of modified DLS
over DLS is 5.0% when task size is 100. The average NSL is
reduced by 2.2% in the case of AHEFT (the adjusted HEFT
algorithm) versus HEFT. When CCR increases to 10, there is no
noticeable effect. Remember that we use b-level (defined in Eq.
(10)) as the priority of task node. When CCR is large, average
communication cost dominates BLEV in Eq. (10). Adjustment
of task node weight does not really impact the priority, thus
does not affect the scheduling list order. On the other hand,
when CCR is small, assigning higher weight to those task
nodes with large PIP can give higher priority to these tasks
and therefore change the scheduling list order. As a result the
schedule length is improved.

Fig. 7 depicts the degradation from the best solutions of the
algorithms. When CCR = 0.1, the APD of AHEFT is less than
2.1% for all task graph sizes. On average, the APD of DLS is
improved by 4.8% when CCR = 0.1. From the first graph of
Fig. 7, we notice that the decrease of APD is more perceivable
for DLS than for HEFT. In HEFT algorithm, the priority of
each task node is set at the beginning and the scheduling list
remains unchanged during the whole procedure. However, DLS
algorithm reevaluates the dynamic level at each scheduling step
and selects the (ready node, processor) pair that maximize it.
The task weight constantly affects the dynamic level values
during scheduling process.

5.2.3.2. Effect of processor selection criteria. Experiment set
II to the processor selection policy. We investigate how
the algorithms will be impacted under graphs with various
characteristics. Fig. 8 gives the average NSL values of the
algorithms at different CCR, task size and PIP. The DLS,
HEFT and NSDC are the algorithms without weight assignment
adjustment. When comparing 3 figures on each row, we notice
that the average NSLs tend to increase with the increasing task
graph size. This is consistent with previous observations in the
first set of experiments. When CCR is small, NSDC algorithm
performs almost the same as HEFT. This is because the
second term of the definition for Adjusted Earliest Finish Time
(Eq. (11)) is relatively small comparing to EFT. However, due
to the significant impact of weight assignment function in the
cases of small CCR, SDC generates better schedules overall.
This is more obvious when PIP > 0.4. The average NSL of
SDC algorithm is better than the DLS algorithm by 4.7%, and
the HEFT algorithm by 1.6% when CCR = 0.01. When CCR is
large, the communication cost becomes dominant. Scheduling
the task without considering communication cost will suffer a
huge performance penalty if the children of the node can only
be processed on a subset of available resources. The average
NSL of SDC is better than the DLS algorithm by 16.4%, and
the HEFT by 28.3% when CCR = 100. It is also noticed that
when CCR is large, the average NSL is large in that the lower
bound of schedule length does not include any communication
cost. Our algorithm works better overall especially when the
heterogeneity of processor capabilities is considerable.

The Average Percentage Degradation (APD) of the
algorithms at different parameters is given in Fig. 9. It can be
seen that in almost all cases the APD of our algorithm remains
the lowest. The APDs of other two algorithms fluctuate with
respect to both PIP and CCR. This indicates that our algorithms
are less sensitive to PIP and CCR compared to the other two.

5.2.3.3. Efficiency comparison. We compared the efficiency of
three algorithms, namely, SDC, HEFT and DLS. The number
of processors used is varied from 4 to 64, incrementing by the
power of 2. The rest of the parameters are the same as those
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used in Section 5.2.3.1. Fig. 10 shows the comparison with
graph size 100 and CCR 0.1. SDC has better efficiency than
the other two algorithms consistently. HEFT and DLS have
comparable efficiency when processor number is small. With
the increase of processor number, HEFT surpasses DLS with
respect to efficiency.

5.3. Performance analysis on application graph of a genomic
sequence annotation workflow

We further tested our algorithm on a genomic sequence
annotation workflow [35]. Fig. 11 shows the task graph. In
the figure, the DAG branches after the input sequence File
node into a sub-DAG of analysis that works on the original
input and a sub-DAG that analyzes the input sequence that
is masked for repeats with RepeatMasker. The unmasked
sequence is analyzed further using three software packages,
namely tRNAscanSE, Genscan and HmmGene The masked
sequence is searched against two databases using Blastall.
The results from the latter search are further processed by
an application (bt2fasta). This generates a new database of
formatted gene sequences. The unmasked input sequence is
then used as input to Sim4, which in turn aligns the input
sequence to the entries in the newly created database. Results
for all analyses are then integrated into an XML file for further
interpretation using some annotation tool. In this workflow
application, several domain specific softwares are involved.
Because of those softwares’ special requirements, some of
them can only be installed on designated machines while
others are available on all processors. This is a good example
where processors bear different capabilities in terms of software
availability.

There are 10 tasks and 16 edges in the graph. We set the
computation units relatively according to the tasks’ demands.
The transferred data size is also specified approximating the
corresponding file size. Processor number is varied between 2
and 10. The PIP of each processor is set randomly. Fig. 12(a)
shows the performance of the algorithms with respect to
three different CCR values. The highest CCR is set to 0.1
because the workflow is computation-intensive in reality. On
the average, SDC performs best among the three algorithms.
The performance gain is more notable for larger CCRs.
Comparing to DLS, HEFT produces better schedules when
CCR is small. When CCR increases to 0.1, the trend is
reversed. In [7], where all the processors can handle every
task, the conclusion is different. The authors observe that
HEFT always obtains smaller average NSL when testing with
a modified molecular dynamic task graph. The comparison of
three algorithms regarding different processor numbers is given
in Fig. 12(b). It is noticed from the figure that since there are at
most 4 tasks in any level in the task graph, increasing processor
number does not significantly reduce SLR if p > 4. The SDC
algorithm outperforms the other two algorithms in all cases.

6. Conclusions

In this paper, we presented a new algorithm for scheduling
DAG based workflow applications in heterogeneous systems
where processors have different capabilities. The algorithm
has two distinctive features. First, we suggest considering the
effect of tasks’ scarcity of capable processors when assigning
the task node weights. For two task nodes with the same
average computation cost, our weight assignment policy tends
to give higher weight to the task with small PCP. Secondly,
during the processor selection phase, we adjust the effective
Earliest Finish Time strategy by incorporating the average
communication cost between the current scheduling node and
its children. We evaluate the algorithm using a large set of
randomly generated task graphs with different characteristics
and a real world bioinformatics workflow application. Results
show that each feature of the SDC algorithm improves the
schedule length. It is noted that the new weight assignment
policy impacts the schedule perceivably when CCR is small
while the processor selection strategy affects the schedule
length more substantially at larger CCR. By combining the
two strategies, the SDC algorithm outperforms the other two
algorithms overall. Efficiency comparison among the three
algorithms reveals that SDC scales well for varying processor
number.

Our future work goes in the direction of extending the SDC
algorithm to the dynamic environment where processor load,
capability and network condition vary during the execution
of workflow applications. We also plan to implement the
algorithm in a distributed system called GridSolve [36].
Currently, GridSolve does not have the capability to execute
workflow applications with user coordination. We aim to
enhance it by augmenting the Agent’s ability to schedule
the whole workflow using SDC algorithm. GridSolve servers
usually have different capabilities (software) since they are set
up by different service providers. Our algorithm should work
better in this situation.
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