
 

 

When we try to assess how much progress we have made in 

computational modeling and simulation, recalling some history 

about the related approaches of experiment and theory can help 

keep things in perspective. For example, we can trace the 

systematic use of experiment back to Galileo in the early 

seventeenth century. Yet for all the incredible successes it 

enjoyed over its first three centuries, the experimental method 

arguably did not fully mature until the elements of good design 

and practice were finally analyzed and described in detail by R. 

A. Fisher and others in the first half of the twentieth century. In 

that light, it seems clear that while computational science has 

had many remarkable youthful successes, it is still at a very early 

stage in its growth. 

Many of us today who want to hasten that growth believe that 

the most progressive steps in that direction require much more 

community focus on the vital core of computational science: 

software and the mathematical models and algorithms it 

encodes. Of course the widespread obsession with hardware is 

understandable. No one who helps administer the TOP500 

Supercomputer Sites project, as I do, can claim to be immune to 

it. But when it comes to advancing the cause of computational 

modeling and simulation as a new part of the scientific method, 

there is no doubt that its complex software ecosystem must take 

center stage. 

At the application level the science has to be captured in 

mathematical models, which in turn are expressed 

algorithmically and ultimately encoded as software. 

Accordingly, on typical projects the majority of the funding goes 

to support this translation, which over its course requires 

intimate collaboration among domain scientists, computer 

scientists, and applied mathematicians. This process also relies 

on a large infrastructure of mathematical libraries, protocols, and 

system software that has taken years to build up and that must be 

maintained, ported, and enhanced for many years to come if the 

value of the application codes that depend on it are to be 

preserved and extended. The software that encapsulates all this 



time, energy, and thought routinely outlasts (usually by years, 

sometimes by decades) the hardware it was originally designed 

to run on, as well as the individuals who designed and developed 

it. 

Thus the life of computational science revolves around a 

multifaceted software ecosystem. But today there is (and should 

be) a real concern that this ecosystem, including all of its 

complexities, is not ready for the major challenges that will soon 

confront the field. Domain scientists now want to create much 

larger, multi-dimensional applications in which a variety of 

previously independent models are coupled together, or even 

fully integrated. They hope to be able to run these applications 

on petascale systems with tens of thousands of processors, to 

extract all performance that these platforms can deliver, to 

recover automatically from the processor failures that regularly 

occur at this scale, and to do all this without sacrificing good 

programmability. This vision of computational science contains 

numerous unsolved and exciting problems for the software 

research community. Unfortunately, it also highlights aspects of 

the current software environment that are either immature, 

underfunded, or both, as Douglass Post and Lawrence Votta 

recently pointed out in Physics Today. 

Advancing to the next stage of growth for computational 

simulation and modeling will require us to solve basic research 

problems in computer science and applied mathematics even as 

we create and promulgate a new paradigm for the development 

of scientific software. To make progress on both fronts 

simultaneously will require a level of sustained, interdisciplinary 

collaboration among the core research communities that, in the 

past, has only been achieved by forming and supporting research 

centers dedicated to such a common purpose. A stronger effort is 

needed by both government and the research community to 

embrace such a broader vision. 

I believe that the time has come for the leaders of the 

computational science movement to focus their energies on 

creating such software research centers to carry out this 

indispensable part of the mission. The NCSA community has 

always been in the vanguard of efforts to catalyze and organize 

precisely these kinds of interdisciplinary research partnerships 

that we now require to transform the future of scientific 

software. I have every confidence that this community stands 

ready to step up again to this momentous new effort. 

Jack Dongarra is university distinguished professor of computer 

science in the Computer Science Department at the University of 

Tennessee. He also holds the title of distinguished research staff 

in the Computer Science and Mathematics Division at Oak 

Ridge National Laboratory and is an adjunct professor in the 



Computer Science Department at Rice University. He specializes 

in numerical algorithms in linear algebra, parallel computing, 

use of advanced computer architectures, programming 

methodology, and tools for parallel computers. He is executive 

editor of the Cyberinfrastructure Technology Watch, a 

publication of the NSF-funded CyberInfrastructure Parntership. 

 

 

Access Online | posted 10-25-05 

 

 

 

 

http://access.ncsa.uiuc.edu/
http://www.ncsa.uiuc.edu/

