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Abstract

In this paper we evaluate the current status and perfor-
mance of several MPI implementations regarding two chap-
ters of the MPI-2 specification. First, we analyze whether
the performance using dynamically created communica-
tors is comparable to the approach presented in MPI-1
using a static communicator for different MPI libraries. We
then evaluate whether the communication performance
of one-sided communication on current machines repre-
sents a benefit or a disadvantage to the end-user com-
pared to the more conventional two-sided communication.
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1 Introduction

The MPI-2 specification (MPI Forum 1997) extends the
MPI-1 document (MPI Forum 1995) by three major
chapters, several minor ones, and some corrections/clari-
fications for MPI-1 functions. Although it has been pub-
lished since 1997, currently only the parallel file-1/0O
chapter has been accepted by the end-users. Clearly this
is the reason that despite having many benchmarks test-
ing MPI-1 functionality (Gropp and Lusk 1999; Hempel
1999:; Reussner et al. 1999; Mierendorft et al. 2000),
MPI-2 functionality has only been evaluated up to now in
this area (Rabenseifner and Koniges 2000).

Assuming that the user really wants to use features of
the MPI-2 specification, we would like to investigate in
this paper what the performance benefits and drawbacks
of different features of MPI-2 are. Two questions are of
specific interest in the context of this paper. First, do
dynamically created communicators offer the same point-
to-point performance on cwrent implementations as the
static MPI_COMM_WORLD approach? Secondly, what
is the achievable performance using one-sided opera-
tions?

Since the number of available MPI implementations
implementing some parts of the MPI-2 specification is
meanwhile quite large, in this paper we cannot give a
complete overview of all currently available MPI librar-
ies and the features they are providing. Furthermore, it 18
not our intention in this paper to compare performance
results between the machines, but to compare the num-
bers achieved using MPI-2 functionality with the per-
formance measured on the very same machine for static
MPI-1 scenarios, and therefore to comment on the qual-
ity of the implementation of the MPI-2 functionality. As
with all benchmark numbers, the reader should be aware
that all results represent only a snapshot.

The structure of this paper is as follows. In Section 2
we present briefly the test-suite used throughout the paper.
In Section 3 we present the results and experiences of
handling dynamic communicators. In Section 4 we present
the performance achieved using one-sided operations
with different MPI libraries and we discuss some related
issues. Finally, in Section 5 we summarize the results
achieved and we present the ongoing work in this area.

2 Latency Test-Suite

In this section we give a brief introduction to the latency
test-suite, which has been used for the performance eval-
uation throughout this paper. The latency test-suite 1S a
historically grown collection of tests, which has been
used to measure a wide variety of different performance
characteristics (Gabriel et al. 2001, 2003). Recently, the
test-suite has been rearranged such that it provides build-
ing blocks for point-to-point benchmarks, creating an eas-



ily extendable benchmarking environment. End-users can

thus create their own point-to-point benchmark which

incorporates relevant features of their application and thus

evaluate the performance of their data exchange routines.
Among the building blocks are:

« variable communicator arguments;

» variable data types, including user-defined data types:

« variable communication partners;

« variable data transfer primitives, currently restricted
however to ping-pong benchmarks.

The test-suite uses two different methods for determining
the next message size to be measured: a multiplicative
increase for short message length, and an additive increase
of the message size for large messages. This enables a
detailed analysis of short message behavior as well as a
reasonable number of measurements for large messages.

The latency test-suite reports for each message size an
average, maximum and minimum bandwidth achieved
and the according execution time. Furthermore, the stand-
ard deviation is reported for each message size, indicating
the stability of the measurement. The output can either be
written to standard output or to a file, using either stand-
ard UNIX file operations or relying on MPI-I/O. Sample
gnuplot scripts are provided for visualizing the output as
well as simple programs which enable comparing several
measurements.

For each building block, several reference modules are
available. As an example, several constructors for derived
data types are provided as well as different data transfer
primitives or communicator constructors. For the analysis
presented in this paper, new communicator constructors
using the methods provided in the MPI-2 specification
have been added, as shown in Section 3 as well as new
data transfer primitives using one-sided communication,
as shown in Section 4.

3 Performance Results with Dynamic
Communicators

The MPI-1 specification explicitly restricted itself on a
static group of processes, arguing (amongst others) that
on most platforms the performance of MPI will be signifi-
cantly better dealing with a constant process group. The
motivation behind the investigations in this section there-
fore is focused around the question whether this common
assumption is justified. More specifically, are the high
performance networking devices used on modermn archi-
tectures capable of dynamically establishing connections
to new processes, or are MPI libraries implementing this
part of the MPI-2 specification falling back to slower
devices (e.g. TCP/IP)?

The MPI-2 document gives the user three possibilities
on how to create a new communicator that includes proc-
esses, which have not been part of the previous world-
group, as follows.

1. Spawn additional processes using MPI_Comm_
spawn. The child processes can retrieve the com-
mon communicator by calling MPI_Comm_get_
parent.

2. Connect two already running (parallel) applica-
tions using a socket-like interface. One application
offers a “service” using MPI_Comm_accept, while
another application establishes connection to the
application offering the service using MPI_Comm_
connect.

3. Connect two already running application proc-
esses, which have a socket connection established
by using MPI_Comm_join. The resulting commu-
nicator uses the pre-established socket connection
for the data exchange and is restricted to the proc-
esses holding the socket connection.

In the frame of this paper we would like to focus on the
first two methods. The executed tests compare the band-
width and latency achieved using dynamic communicators
created by MPI_Comm_spawn, an inter-communicator
resulting from the coupling of two independent applica-
tions using MPI_Comm_connect and MPI_Comm_
accept and a static communicator typical for MPI-1. We
furthermore investigate the costs for spawning processes,
since many dynamic scenarios would benefit from a flex-
ible handling of child processes.

Not examined in this investigation is how different
batch-schedulers could handle applications, which dynam-
ically change the number of processes during runtime.
While this is an interesting and important question, it is
not a property of the MPI library, and depends strongly on
the local installation parameters of the batch-scheduler on
the machines.

The MPI libraries examined in this section are the fol-
lowing.

 MPI/SX: library version 6.7.2. Tests were executed on
an NEC SX-6 consisting of eight nodes, each having
eight 570 MHz processors with 64 GBytes of main
memory per node.

« Hitachi-MPI: library version 3.07. Tests were exe-
cuted on a Hitachi SR8000 with 16 nodes, each having
eight 250 MHz processors. Each node has 8§ GBytes of
main memory.

» SUN-MPI: library version 6. Tests were executed on a
SUN Fire 6800, with 24 750 MHz SPARC III proces-
sors, and 96 GBytes of main memory.
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Fig. 1 Point-to-point performance on the SX-6 for var-
ious communicators.

« LAM/MPI: library version 7.0.4. Tests were executed
on a cluster with 32 nodes, each having two 2.4 GHz
Pentium 4 Xeon processors and 2 GBytes of memory.
The nodes are connected by Gigabit Ethernet.

3.1 RESULTS USING MPI/SX

The first library, which we would like to analyze regarding
its performance and usability of this part of the MPI-2
specification, is the implementation from NEC. We ana-
lyzed the performance of the library on a single node
(intra-node communication) as well as between processes
on separate nodes using the NEC IXS switch (inter-node
communication).

Starting an application which is going to use MPI_
Comm_spawn, the user has to specify an additional
parameter called max_np, which indicates the maximum
number of processes used within the lifetime of the appli-
cation. For example, if the application is started origi-
nally with four processes and the user later wants to
spawn on four additional processes, the command line
would need to be as follows:

mpirun -np 4 -max_np 8 ./<myapp>

While this approach is explicitly allowed by the MPI-2
specification, it also clearly sets certain limits on the
dynamic behavior of the apphcation.

When using the connect/accept approach, the user has
to set another flag for compiling and starting the applica-
tion. The tcpip flag strongly indicates already, that the

MPI_Comm_connect and MPI_Comm_accept functions
have been implemented in MPI/SX using TCP/IP. An inter-
esting question regarding this flag is whether communica-
tion in each of the independent, parallel applications 18
influenced by this flag, e.g. whether all communication is
executed using TCP/IP, or whether just the communica-
tion between the two applications connected by the
dynamically created inter-communicator is using TCP/IP.

Figure 1 shows the maximum bandwidth achieved with
the different communicators using a ping-pong bench-
mark between two processes. Obviously, the performance
achieved with a communicator created by MPI_Comm_
spawn is identical to the static approach. However, using
the communicator created by MPI_Comm_connect/accept
approach performs significantly worse, since the TCP/IP
performance of the machine cannot compete with the
bandwidth achieved through the regular communication
device.

Further investigations have shown that the tcpip flag
does not seem to influence the maximum achievable
bandwidth within each independent application. How-
ever, our measurements showed that the variance was
slightly higher than the test case not using the tcpip
flag. The standard deviation without the tcpip flag was
usually below 1%, while using the tcpip flag it was in
the range of 5-10%. This might be the result of occa-
sional polling of TCP/IP sockets.

3.2 RESULTS USING HITACHI-MPI

As on the previous machine, we conducted two sets for
each experiment on the Hitachi SR8000: all tests were
executed using two processes on the same node, indi-
cated in Figure 2 as intra-node communication, and using
two processes on different nodes, referred to as inter-
node communication. As shown in Figure 2 the perform-
ance achieved with the MPI_Comm_spawn example and
with the MPI_Comm_connect/accept example is compa-
rable to the static approach for the inter-node tests. For
the intra-node test cases, all tests are achieving the same
bandwidth for larege messages. For smaller messages, the
overall performance is probably identical as well, even if
minor variations are observable due to caching effects.

3.3 RESULTS USING SUN-MPI

The results achieved with SUN-MPI are presented in
Figure 3. To summarize these results and the experiences,
no additional flags had to be used to make any of the
examples work, and the performance achieved 1in all sce-
narios tested were always basically identical to the static
MPI_COMM_WORLD scenario.
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Fig. 2 Point-to-point performance on the Hitachi
SR8000 for various communicators.

3.4 RESULTS USING LAM/MPI 7.0.4

Using LAM/MPI v.7.0.4, all three tests provided basically
the same performance, as shown in Figure 4. We con-
ducted again two sets of tests, one using two processes on
separate nodes (inter-node tests) and one using two proc-
esses on a single node (intra-node tests). For the intra-
node tests, we used the sysv shared memory module.
We would like to comment however on the behavior of
LAM/MPI when using MPI_Comm_ spawn. When boot-
ing the lam-hosts, the user has to specify in a hostfile the
list of machines, which should be used for the parallel
job. A LAM daemon is then started on each of these
machines. The processes of a parallel job are started
according to their order in the hostfile. When calling
MPI_Comm_spawn, the new processes are started again
using the first machine in the list, if no hints are given to
the system using the according MPI_Info object. Ideally,
the user would expect that the first unused node (at least
unused according to the job which spawns the processes)
is chosen, to distribute the load appropriately. With the
current scheme, it is probable that for compute intensive
applications the overall job will slow down by spawning
additional processes on the nodes which are already run-
ning an MPI job. The user has the possibility to change
this behavior by using specific MPI_Info objects when
spawning new process. lam_spawn_sched_round_
robin introduces a round-robin scheduling of processes
giving the application the possibility to specify the first
host which would be used. lam_no_root_node_
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Fig. 3 Point-to-point performance on the SUN-Fire for
various communicators.
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Fig. 4 Point-to-point performance with LAM/MPI for
various communicators.

schedule excludes the root node of the spawn-com-
mand when creating new processes. This second mode 18
intended for supporting parallel applications using a
manager—-worker paradigm.

3.5 COSTS OF MPI_COMM_SPAWN

Some applications might benefit from a frequently chang-
ing number of processes, e.g. some MPI application imple-



Table 1
Execution time for spawning various numbers
of processes in milliseconds.

Number of 1 2 3 !
processes spawned

SX-6 intra 4.1 4.9 59 6.7
SX-6 inter 187 199 198 199
SR8K 409 419 441 461
SUN 36.3 405 437 404
LAM intra 0.8 1.3 1.8 2.4
LAM inter 0.9 1.3 3 M 2.0

menting some type of computational service, various
manager—worker scenarios or simulations using adaptive
mesh refinement. In this section we summarize the costs
of spawning one to four processes on each of the ana-
lyzed machines. All of these tests have been executed by
running the code interactively, since spawning of proc-
esses in a batch environment is on most platforms not
supported. Even on machines supporting this functional-
ity, the spawning might then include an arbitrary time-
slice for allocating processors through the scheduler.

We can observe on all platforms that the costs for
spawning processes were at least an order of magnitude
higher than the point-to-point latency. Most notably, the
costs for spawning processes on the Sun Fire are around
40 ms and on the Hitachi SR8000 higher than 400 ms. We
are not distinguishing here between the inter- and intra-
node cases, since the machine always spawned the first
process on the node where the parent process was running,
and the follow-on processes on other nodes. Thus, we
always had a mixed intra- and inter-node environment.

For MPI/SX and LAM/MPI, the costs for spawning
increase slightly with the number of new processes.
However, the overall costs were in a low millisecond area.

4 Performance of One-Sided Operations

The chapter about one-sided communication was origi-
nally planned to be the most dramatic supplement to the
MPI-1 specification, since it specifies a completely new
paradigm for exchanging data between processes. In con-
trast to the two-sided communication of MPI-1, a single
process controls the parameters for source and destina-
tion processes. However, since the goal was to design a
portable interface for one-sided operations, the specifica-
tion has become rather complex. It can be briefly summa-
rized as follows.

+ To move data from the memory of one process to the
memory of another processes, three operations are pro-

vided: MPI_Get, MPI_Put and MPI_Accumulate, the
latter combining the data of the target processes in a
similar fashion to MPI_Reduce.

+ MPI-2 defines furthermore three different methods to
synchronize the processes involved in the data
exchange: MPI_Win_fence, MPI_Win_start/post/wait/
complete and MPI_Win_lock/unlock. The first two
methods are called active target synchronization, since
the destination processes is also involved in the opera-
tion. The last method is called passive target synchro-
nization, since the target process is not participating in
any of the MPT calls.

Another call from the MPI-2 document is of particular
interest for the one-sided operations, namely the possibil-
ity to allocate some “fast” memory using MPI_Alloc_
mem (MPI Forum 1997). On shared memory architectures
this might be, for example, a shared memory segment
which can be directly accessed by a group of processes.
Therefore, RMA operations and one-sided communica-
tion might be faster, if memory areas are involved, which
have been allocated via this function.
Among the analyzed MPI libraries are the following.

« MPI/SX: library version 6.7.2. Tests were executed on
an NEC SX-6 consisting of eight nodes with eight
570 MHz processors each.

« Hitachi-MPI: library version 3.07. Tests were exe-
cuted on the same machine as in the previous section.

» IBM-MPI: ppe.poe version 4.1.0.4. Tests were exe-
cuted on an IBM p690, each node consisting of 32
1.7 GHz Powerd+ processors with 128 GB memory
per node, AIX version 5.2.

+ SUN-MPI: library version 6. Tests were executed on
the same machine as described previously in Section 3.

 LAM/MPI: library version 7.0.4. Tests were executed
on the same cluster as used for the tests in the previous
section.

4.1 BENCHMARKING ONE-SIDED
OPERATIONS

One-sided operations are meant to be used in situations
where one process is in control of the sender and receiver
side parameters, e.g. the receiver process does not know
the precise size or the precise number of incoming mes-
sages. Typical usage scenarios might involve, for example,
data exchange between different domains in applications
using unstructured meshes.

The basic sequence of functions when using active tar-
get synchronization is as follows. Processes can allow
access to a certain area in their memory to other proc-
esses, initiating a so-called exposure epoch. A process must
furthermore open an access epoch, if it would like to put



data into or get data from the memory of another process.
MPI-2 does not however guarantee that the data transfer
is finished after MPI_Put or MPI_Get have retumed; the
result of the data transfer might only be visible when
closing the access and exposure epoch. Because of this
property, a code will typically initiate the data transfer
using one-sided operations and close the access and
exposure epoch at the point where the data transfer has to
be finished from the application point of view. This
behavior is similar to non-blocking two-sided communi-
cation in MPI-1.

As a result of this property, in each access and expo-
sure epoch an application will execute a limited number
of one-sided operations before finishing an access and
exposure epoch and launching new ones. The basic per-
formance characteristics of one-sided operations could
therefore be measured in determining the synchroniza-
tion costs, i.e. the costs to open and to close access and
exposure epochs, as well as the achievable bandwidth
using one-sided operations. These two parameters are the
focus of this paper, and will be measured by executing a
ping-pong test using one-sided operations.

To implement a ping-pong benchmark using one-sided
operations, each process creates first an access and expo-
sure epoch and puts or gets data in/from the remote mem-
ory using a single MPI operation. After closing the
access and exposure epoch on both processes and thus
forcing all operations to finish, both processes create a
second exposure and access epoch, transferring the data
back. Timing is done including the overall execution time
for both operations. The following code fragment indi-
cates the benchmark code for the test-case using
MPI_Win_fence for synchronization.

i [ rank ==-0 }
/* active part in the ping pong */
MPI_Win_fence ( 0, win );
MPI Put ( buf, cnt, datatype,.... win);
MPI_Win_fence ( 0, win );

/* passive part in the ping pong */
MPI_Win_fence ( 0, win );
MPI_Win_fence ( 0, win );

}

glga af { rank == 1 )} {
/* passive part in the ping pong */
MPI_Win_fence ( 0, win );
MPI_Win_£fence ( 0, win );

/* active part in the ping pong */

MPI Win_fence ( 0, win );

MPI Put ( buf, ent, datatype,..., win);
MPI_Win_fence ( 0, win );

While a ping-pong benchmark is not necessarily a typical
communication pattern when using one-sided operations,
we found that it still reveals the relevant communication
parameters of one-sided operations. To further judge the
MPI implementations, we conducted some additional
tests using slight modifications of the ping-pong bench-
mark described above:

« analyzed the behavior of one-sided operations using
derived data types:

+ analyzed the performance of one-sided operations for
multiple put/get operations between the same pair of
processes;

+ analyzed whether the processes not actively involved
in the one-sided operation can execute calculations,
without affecting the performance of the data transfer.

MPI-2 allows optimizations of one-sided operations on a
group level, which would require additional parameters
to characterize them. The analysis of the behavior of one-
sided operations on a group level is currently ongoing
work and outside of the scope of this paper.

The MPI-2 specification gives users possibilities to
optimize one-sided operations by passing hints to the MPI
library, which describe certain options on how the win-
dows are used. Some hints can be passed as an MPI_Info
object when creating the window, while others can use the
assert arguments to the synchronization routines. In
the following tests, the default values MPI_INFO_NULL
and assert=0 have been used. An investigation into the
effects of each of these parameters on the different systems
would be very interesting; however, it would exceed the
scope of this paper. Additionally, the usage of these argu-
ments might optimize the communication performance on
one platform, while degrading the performance on another.

Using passive target synchronization, the parameters
characterizing the performance of the operation are dif-
ferent than the ones described above. To measure the
achievable bandwidth using MPI_Win_lock/unlock, a
streaming benchmark could be used (Thakur et al. 2004).
For producing comparable results with respect to the pre-
vious section, we omitted the passive target synchroniza-
tion in the following tests and focused on operations
using active target synchronization only.

4.2 SYNCHRONIZATION COSTS

To determine the costs of the synchronization operation, the
execution time of a single four-byte MPI_Put operation is
analyzed. Since the results achieved with MPI_Get are
identical, they have been omitted in Table 2 for the sake
of clarity. Table 2 summarizes the execution time for all
analyzed MPI libraries and provides for comparison the
time to transfer a four-byte message using MPI_Send and



Two-sided va. One-gided perlormancs

NENENE

Mexmimum Bandwidth [MByias/sec]

g

Fig.5 Performance of one-sided operations on the NEC SX-6 for intra-node (left) and inter-node (right) communica-

tion.

Table 2

Execution time for transferring a four-byte message using different communication methods in pus.
Send/Recv Win_fence Win_fence + start/post start/post +

MPI_Alloc_mem MPI_Alloc_mem

SX-6 intra 3.0 42.2 53.6 26.9 33.6

SX-6 inter 3.0 42.2 53.6 26.9 33.6

SR8K intra 11.2 64.9 — 182.9 —

SREK inter 22.8 119.5 = 256.4 -

SUN 2.8 35.3 4.7 294 3.3

IBM intra 3.5 63.9 - 69.2 -

IBM inter 115 104.0 ~ 78.4 -

LAM intra 15.4 164.3 — 84.1 -

LAM inter 44.7 257.5 — 127.2 —

MPI_Recv, All timings are given in us. A minus in the table
indicates that the usage of MPI_Alloc_mem did not have
any influence on the performance for this message size.
The total execution time of the four-byte transfer oper-
ation using MPI_Put is for all analyzed MPI libraries sig-
nificantly higher than the execution time to send four
bytes from one process to another using two-sided com-
munication. Since it is very unlikely that the data transfer
costs for the four bytes are the cause of the high execu-
tion time for the one-sided operation, we conclude that
the dominating part in these tests are the costs of syn-
chronization operation, respectively the protocol used to
implement the synchronization. Only SUN-MPI using

memory allocated by MPI_Alloc_mem achieved a rea-
sonable small-message performance close to send/recv
communication performance.

4.3 ACHIEVED BANDWIDTH

In this section we present the bandwidth achieved with
one-sided operations on all analyzed platforms.

43.1 Results Using MPI/SX. The performance of one-
sided operations with MPI/SX without using special mem-
ory allocated by MPI_Alloc_mem is lower than regular
point-to-point performance achieved using MPI_Send
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SR8000.

and MPI_Recv. The application can still achieve the same
maximum bandwidth with one-sided operations as in the
MPI-1 scenario; however, the message size has to be sig-
nificantly larger than for two-sided communication. This
is mainly due to the higher synchronization costs as
shown in the previous subsection.

Using MPI_Alloc_mem to allocate the memory seg-
ments which are then used in the one-sided operations,
the user can improve the performance of one-sided oper-

ations for both the MPI_Win_fence and the MPI_Win_
Start/Post tests. While in the previous test without the
usage of MPI_Alloc_mem, the MPI_Win_Start/Post mech-
anism was achieving a slightly better performance than
the MPI_Win_fence mechanism, the difference increases
significantly when using “fast” memory.

4.3.2 Results Using Hitachi-MPIL. The results for the
Hitachi are shown in Figure 7. For messages up to
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1.5 Mbytes in length, the one-sided operations are up to
20% slower than two-sided communication. For messages
exceeding this message size, the bandwidth achieved
using one-sided operations is slowly converging towards
the bandwidth of the send/recv test-case. There is no real
difference in the performance whether MPI_Put or MPT_
Get is used. However, the performance is usually slightly
better when using MPI_Win_fence for synchronizing the
participating processes than the performance when using
MPI_Win_Start/Post for synchronization.

The situation is similar for the inter-node case. The
implementation of the test-suite using MPI_Win_fence
for synchronization achieves a somewhat better perform-
ance than the test-case using MPI_Win_Start/Post. For
all tests, the usage of MPI_Alloc_mem did not show any
effect on the performance.

4.3.3 Results Using IBM-MPIL. The results achieved
on an IBM p690 using an early version of IBM’s MPI
library for the new High Performance Switch are pre-
sented in Figure 8. Similarly to other MPI implementa-
tions, the cost of the synchronization operation decreases
the performance of one-sided operations with IBM-MPI
for intra-node communication when passing short mes-
sages. For larger message sizes the maximum band-
widths achieved with one- and two-sided communication
become similar. The uneven behavior for large message
sizes is reproducible and might be a result of how all the
messages fit (or not) into the shared 512 MB third-level
cache on each node during the tests.

IBM-MPI achieves the same inter-node performance
for one- and two-sided communication. In the tests pre-
sented in Figure 8 no large pages have been configured on
the IBM, which could increase the performance between
the nodes for either method.

4.3.4 Results Using SUN-MPI. The results achieved
with SUN-MPI are presented in Figure 9. Two major
effects can be observed. First, the usage of MPI_Alloc_
mem can dramatically improve the performance of one-
sided operations. If memory is allocated using this func-
tion, the performance achieved with one-sided operations
outperforms the point-to-point performance using send/
recv operations. Without this optimization, the achievable
bandwidth is roughly half of the bandwidth achieved for
two-sided communication.

There is no real performance difference between the
two synchronization mechanisms analyzed. However, if
memory is not allocated using the provided MPI func-
tion, the performance using MPI_Get is slightly better
than that achieved with MPI_Put.

4.3.5 Results Using LAM/MPI 7.0.4. The perform-
ance results achieved with LAM are presented in
Figure 10. For both drivers analyzed, the bandwidth
achieved with one-sided communication is comparable to
the send/recv performance. The only difference 18 that
the peak observed in both protocols between 32- and 64-
Kilobyte messages is somewhat lower, which is probably
the result of caching effects. The usage of MPI_Alloc_
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mem does not affect the performance of one-sided opera-
tions using these two devices, although according to the
documentation the user might profit from this function
for certain other devices.

4.4 DERIVED DATA TYPES IN ONE-SIDED
OPERATIONS

MPI-2 allows the usage of so-called portable derived data
types in one-sided operations. Portable data types are

defined to consist of a single basic data type, where the
displacement between each block can be expressed as a
multiple of the extent of the basic data type.

Since a single process is describing the data type
parameter for the source and destination process, user-
defined data types further increase the complexity of the
implementation of one-sided operations, since the MPI
library has to find a compact description for derived data
types, which can be sent and processed in the target win-
dow.
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Fig. 11 Multiple Put operations using start/post for
synchronization on the NEC SX-6.

With the exception of LAM/MPI, all analyzed imple-
mentations fully supported portable data types on the
analyzed machines. None of the implementations distin-
guishes between portable and non-portable data types,
which is not an issue as long as the library is used only in
a homogeneous environment. The performance of one-
sided operations using derived data types was on most
platforms comparable to the performance of point-to-
point operations using the same data types. LAM/MPI
only supports contiguous derived data types. This fact is
also mentioned in the documentation and confirmed by
our experiments.

4.5 MULTIPLE PUT/GET OPERATIONS

In contrast to two-sided point-to-point operations, the
interface designed for one-sided communication would
allow for several inter-message optimizations. Since the
data transfer operations just have to be finished after
closing the access and exposure windows, an implemen-
tation could take advantage of the fact that it has the com-
plete schedule of all ongoing operations. This would
enable, for example, optimizations on the group level as
well as between each pair of processes.

In this subsection we would like to evaluate how the
implementations handle the latter scenario. By transfer-
ring a single buffer in n Put/Get operations, we compare
the execution time of this communication schedule to the
case, where the same amount of data is transferred with a
single Put/Get operation. A “smart” implementation might
recognize, that the operations can be merged into a single
one, since the transferred data form a contiguous buffer
on the source as well as on the destination process.

None of the analyzed MPI libraries supported the opti-
mization described in the previous paragraph. The typical
behavior of most MPI libraries is similar to the result
shown using MPI_Put and the start/post synchronization
within a single node on the NEC SX-6 in Figure 11. The
communication appears to have a protocol switch at cer-
tain message lengths, which leads to a temporary drop in
the available bandwidth directly at the switching point.
For the multiple message scenario analyzed in this sub-
section, this switching point is shifted towards a larger
overall data transfer size with increasing number of trans-
fer operations. This can lead to performance improve-
ments for short Put/Get operations, but also has the effect
that the overall amount of data, which has to be trans-
ferred to reach the maximum bandwidth of the system,
has to increase.

4.6 OVERLAPPING ONE-SIDED
OPERATIONS AND COMPUTATION

In this subsection we evaluate how strongly the passive
side of a one-sided operation is involved in the data trans-
fer. The test which we conducted is similar to the overlap
test in the mpptest (Gropp and Lusk 1999) test-suite. The
benchmark measures first the time required for the data
transfer of a given message length. In the next step, it
determines for a certain calculation the problem size,
which takes the same amount of time as the data transfer.
The final benchmark executes the data transfer and the
computation for the determined problem size simultane-
ously. If an MPI implementation cannot overlap the com-
munication and the computation, the execution time
should be approximately twice as high as the pure data
transfer, while an MPI library capable of real overlap will
execute this benchmark roughly in the same time as the
pure data transfer.

Executing this test with one-sided operations was done
by introducing a computation in the passive side of the
ping-pong. If a library performs well in this test, it can be
due to two reasons:

» when the one-sided operations are modeled on top of
two-sided point-to-point communication, the library is
capable of doing progress outside of MPI functions
(e.g. using a progress thread);

« the library is taking advantage of native support for
Put/Get operations on a platform.

From the MPI libraries analyzed, only IBM-MPI handles
the overlapping of communication and computation effi-
ciently, for both intra- and inter-node scenarios. This
result is shown in the upper part of Figure 12. MPI/SX,
SUN-MPI, LAM/MPI and Hitachi-MPI all introduced a
significant overhead when overlapping communication
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Fig. 12 Overlapping computation and one-sided com-
munication with IBM MPI (upper) and LAM/MPI (lower).

and computation. As a representative of these MPI librar-
ies, the result of LAM/MPI in the inter-node communica-
tion is shown in the lower part of Figure 12.

5 Summary

In this paper we have presented our experiences and the
performance of various MPI libraries, with respect to the
handling of dynamically created communicators and one-
sided communication operations. Handling of dynamic
process management is still one of the chapters of the
MPI-2 specification, which is implemented by few MPI
libraries so far. The results achieved in our analysis show,
however, that the usage of these functions are not impos-
ing any performance penalties to the end-user per se. If
problems are arising with respect to dynamic process
management, then according to our experience they are
not related to their implementation in MPI. Problems are

usually caused by the runtime environment and/or batch
queue systems and their restrictive handling of dynami-
cally created processes.

The section covering one-sided communication 18 sup-
ported by many MPI implementations. The analysis of
their performance reveals that the synchronization costs
of one-sided operations are on all current implementa-
tions fairly high. This leads to the conclusion, that one-
sided operations should not be used, if the overall amount
of data transferred between two processes is small. The
achievable bandwidth with one-sided operations is on all
analyzed platforms close to the bandwidth achieved with
two-sided communication. The only situation where a
performance benefit of one-sided communication over
two-sided communication could be observed was if the
memory used in the data transfer had been allocated
through a special MPI function. This functionality of pro-
viding “fast” memory is however not widely supported by
current MPI libraries. The overall conclusion of this anal-
ysis therefore has to be that users should not switch from
two-sided communication to one-sided for performance
reasons, but only in cases where it matches the communi-
cation pattern of their application better than two-sided
operations.

The interpretations of the results presented are twofold.
On one hand, we see a strong variance with respect to the
performance of many MPI-2 functions, which can con-
fuse the application developer and influence their deci-
sion whether to use MPI-2 functionality or not. On the
other hand, the goal of MPI libraries cannot be to make
everything “equally slow”, but to take advantage of as
many optimization possibilities as possible. Additionally,
one should acknowledge that the library developers
invested huge efforts to optimize MPI-1 functionality,
efforts that might be invested in MPI-2 functions as soon
as these sections are more widely used.
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