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Abstract

The challenge for the development of next generation
software is the successful management of the complex
grid environment while delivering to the scientist the full
power of flexible compositions of the available algorithmic
alternatives. Self-Adapting Numerical Software (SANS)
systems are intended to meet this significant challenge.
A SANS system comprises intelligent next generation
numerical software that domain scientists — with dispa-
rate levels of knowledge of algorithmic and program-
matic complexities of the underlying numerical software
— can use to easily express and efficiently solve their
problem. The components of a SANS system are:

* A SANS agent with:

— An intelligent component that automates method
selection based on data, algorithm and system attrib-
utes.

— A system component that provides intelligent man-
agement of and access to the computational grid.

— A history database that records relevant information
generated by the intelligent component and main-
tains past performance data of the interaction (e.g.,
algorithmic, hardware specific, etc.) between SANS
components.

* A simple scripting language that allows a structured
multilayered implementation of the SANS while ensur-
ing portability and extensibility of the user interface
and underlying libraries.

* An XML/CCA-based vocabulary of metadata to describe
behavioral properties of both data and algorithms.
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* System components, including a runtime adaptive
scheduler, and prototype libraries that automate the
process of architecture-dependent tuning to optimize
performance on different platforms.

A SANS system can dramatically improve the ability of
computational scientists to model complex, interdisciplin-
ary phenomena with maximum efficiency and a mini-
mum of extra-domain expertise. SANS innovations (and
their generalizations) will provide to the scientific and
engineering community a dynamic computational envi-
ronment in which the most effective library components
are automatically selected based on the problem charac-
teristics, data attributes, and the state of the grid.

1 Introduction

As modeling, simulation, and data intensive computing
become staples of scientific life across nearly every
domain and discipline, the difficulties associated with
scientific computing are becoming more acute for the
broad rank and file of scientists and engineers. While
access to necessary computing and information technol-
ogy has improved dramatically over the past decade, the
efficient application of scientific computing techniques
still requires levels of specialized knowledge in numeri-
cal analysis, computer architectures, and programming
languages that many working researchers do not have
the time, the energy, or the inclination to acquire.

The classic response to this situation, introduced over
three decades ago, was to encode the requisite mathe-
matical, algorithmic and programming expertise into
libraries that could be easily reused by a broad spec-
trum of domain scientists. In recent times, however, the
combination of a proliferation in libraries and the avail-
ability of a wide variety of computing platforms, including
several types of parallel platforms, have made it especially
hard to choose the correct solution methodology for scien-
tific problems. The advent of new grid-based approaches
to computing only exacerbates this situation. Since the
difference in performance between an optimal choice of
algorithm and hardware, and a less than optimal one, can
span orders of magnitude, it is unfortunate that selecting
the right solution strategy requires specialized knowl-
edge of both numerical analysis and of computing plat-
form characteristics.

What is needed now, therefore, is a way of guiding
the user through the maze of different libraries so that
the best software/hardware combination is picked auto-
matically.

We propose to deal with this problem by creating
Self-adapting Numerical Software (SANS) systems that
not only meet the challenges of scientific computing
today, but are designed to smoothly track the state of
the art in scientific computing tomorrow.
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In this paper we will describe the basic ideas of SANS
system, and we will sketch their realization in applica-
tion areas such as linear equation solving, eigenvalue
computations, and information retrieval. However, the
ideas and innovations SANS systems embody will gener-
alize to a wide range of other operations. Like the best
traditional libraries, such system can operate as “black
box” software, able to be used with complete confidence
by domain scientists without requiring them to know the
algorithmic and programmatic complexities it encapsu-
lates. But in order to self-adapt to maximize their effec-
tiveness for the user, SANS must encapsulate far more
intelligence than standard libraries have aspired to. The
work described below will make it possible to produce a
SANS system that incorporates the following elements:

* An intelligent component that includes an automated
data analyzer to uncover necessary information about
logical and numerical structure of the user’s data, a
data model for expressing this information as struc-
tured metadata, and a self-adapting decision engine

that can combine this problem metadata with other
information (e.g. about past performance of the sys-
tem) in order to choose the best library and algorith-
mic strategy for solving the current problem at hand;

* A history database that not only records all the infor-
mation that the intelligent component creates or
acquires, but also all the data (e.g., algorithm, hard-
ware, or performance related) that each interaction
with a numerical routine produces;

* A system component that provides the interface to the
available computational resources (whether on a desk-
top, in a cluster or on a Grid), combining the decision
of the intelligent component with both historical infor-
mation and its own knowledge of available resources
in order to schedule the given problem for execution;

* A scripting language that generalizes the decision pro-
cedure that the SANS follows and enables scientific
programmers to easily make use of it; and

* A metadata vocabulary that expresses properties of
the user data and of performance profiles, and that will
be used to build the performance history database. By
considering this as behavioral metadata, we are led to
intelligent software components as an extension of
the CCA framework (Armstrong et al., 1999; Com-
mon Component Architecture Forum).

* One or more prototype libraries, for instance for sparse
matrix computations, that accept information about
the structure of the user’s data in order to optimize
for execution on different hardware platforms.

The fact that current numerical libraries require detailed,
specialized knowledge that most potential users are
unlikely to have is a limitation on their usability that is
becoming increasingly acute. With SANS it will become
possible to endow legacy libraries with computational
intelligence, and to develop next generation libraries that
make it easier for users to realize the full potential of
current day computational environments. This investi-
gation into the potential for self-adaptation in scientific
software libraries will lay the foundation necessary to
meet the demands of computational science over the
next decade.

2 Optimization modes

The components of a SANS system can operate in sev-
eral optimization modes, each being more or less appro-
priate depending on the component’s level in the hierar-
chy and the nature of the data it is dealing with.
Completely off-line optimization This scenario is used
in PHIPAC (Bilmes et al., 1997) and ATLAS (Whaley
et al., 2001), and it works well for the dense BLAS
because the computational pattern is nearly independent of
the input: matrix multiplication does the same sequence of
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operations independent of the values stored in the matri-
ces. Because optimization can be done offline, one can
in principle take an arbitrary amount of time searching
over many possible implementations for the best one on
a given micro-architecture.

Hybrid off-line/run-time optimization This is the sce-
nario in which Sparsity (Im, 2000; Im and Yelick, 1999)
can work (it can be run completely off-line as well). In
both cases, some kernel building blocks are assembled
off-line, such as matrix-vector or matrix-matrix multi-
ply kernels for very small dimensions. Then at run time
the actual problem instance is used to choose an algo-
rithm. For Sparsity, the problem instance is described
by the sparsity pattern of the matrix A. Any significant
processing of this will also overwhelm the cost of a sin-
gle matrix-vector multiplication, so only when many are
to be performed is optimization worthwhile.

Completely Run-time optimization This is the sce-
nario to be followed when the available choices depend
largely on the nature of the user data. The algorithmic
decision making Intelligent Agent follows this protocol
of inspecting the data and basing the execution on it. A
standard example of inspector-executor is to examine the
sparsity pattern of a sparse matrix on a parallel machine
at run-time, and automatically run a graph partitioner like
Parmetis (Karypis and Kumar, 1996) to redistribute it to
accelerate subsequent matrix-vector multiplications.

Feedback Directed Optimization This scenario, not
disjoint of the last, involves running the program, col-
lecting profile and other information (Ammons et al.,
1997; Ball and Larus, 1996; Chang et al., 1991; Graham
et al., 1982) and recompiling with this information, or
saving it for future reference when similar problems are
to be solved. We will make use of this mode through the
explicit incorporation of a database of performance his-
tory information.

3 Outline of the structure of
self-adaptive software

A Self-adaptive Numerical Software system has three soft-
ware components: a decision making component, consist-
ing of an Intelligent Agent plus a History Database, a Net-
work Scheduler, and the underlying Adaptable Libraries.
The SANS Agent is the software that accepts the data
from the user application in order to pass it to the sched-
uler, which takes into account network conditions, and a
chosen underlying library. These libraries can be of a
traditional type, but more interestingly they can adapt
themselves to the available hardware, setting algorithm
implementation parameters such that performance is opti-
mized with respect to machine characteristics (Bilmes et
al., 1997; Whaley et al., 1997).

Additionally, we have metadata associated with the
user input and the library algorithms, plus a simple con-
trol language which provides the interface between the

user and the intelligent agent. With this scripting lan-
guage we turn what used to be a mere call — or series of
calls — to a library into a script that can convey contex-
tual information to the intelligent system, which may
use this information to make a more informed choice of
software for solving the user’s problem. Through the
use of keywords and control structures in the scripting
language we make it possible for the user to pass various
degrees of information about the problem to be solved. In
the cases where the user passes little information, the
intelligent agent uses heuristics to uncover as much of
this information as is possible.

The Intelligent Agent is the decision making compo-
nent on an algorithmic level. It is that part of the soft-
ware that uses encoded knowledge of numerical analysis
to analyze the data (section 4.1). The System Component
(section 6) knows about hardware, both in general terms
and regarding the current state of the network and avail-
able resources. These two components engage in a dia-
logue to determine the best algorithm and platform for
solving a given user problem. The agent’s actions are
informed by the History Database (section 4.4) where
performance data regarding problems solved is stored.
This stored knowledge is then used by the intelligent
and network components to inform their decisions, and
possibly tune their decision-making process.

SANS systems can various usage modes, depending
for instance on the level of expertise of the application
user, and on the way the system is called from the appli-
cation code.

* For a non-expert user, a SANS system acts like an
expert system, fully taking the burden of finding the
best solver off the user’s hands. In this scenario, the
user knows little or nothing about the problem — or
is perhaps unable to formulate and pass on such
information — and leaves it up to the intelligent soft-
ware to analyze structural and numerical properties of
the problem data.

e Users willing and able to supply information about
their problem data can benefit from a SANS system in
two ways. Firstly, decisions that are made heuristi-
cally by the system in expert mode can now be put on
firmer ground by the system interrogating the user or
the user passing on the information in the calling script.
Secondly, users themselves can search for appropriate
solution methods by using the system in “test bed”
mode.

* Finally, expert users, who know by what method they
want to solve their problem, can benefit from a SANS
system in that it offers a simplified and unified inter-
face to the underlying libraries. Even then, the system
offer advantages over the straightforward use of exist-
ing libraries in that it can supply primitives that are
optimized for the available hardware, and indeed,
choose the best available hardware.
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4 The SANS Agent
4.1 THE INTELLIGENT COMPONENT

The Intelligent Component of a SANS system is the soft-
ware that accepts the user data and performs a numeri-
cal and structural analysis on it to determine what feasi-
ble algorithms and data structures for the user problem
are. We allow the users to annotate their problem data
with “metadata” (section 5), but in the most general
case the Intelligent Component will do this by means of
automated analysis (section 4.2). Moreover, any rules
used in analyzing the user data and determining solution
strategies are subject to tuning (section 4.3) based on per-
formance data gained from solving the problems. Below
we present each of these aspects of the SANS agent in
turn, including detailed examples of how the components
could engage with and be used by our driver applica-
tions.

4.2 AUTOMATED ANALYSIS OF
PROBLEM DATA

Users making a request of a SANS system pass to it both
data and an operation to be performed on the data. The
data can be stored in any of a number of formats, and
the intended operation can be expressed in a very global
sense (“solve this linear system™) or with more detail
(“solve this system by an iterative method, using an addi-
tive Schwarz preconditioner”). The fewer such details the
user specifies, the more the SANS will have to determine
the appropriate algorithm, computational kernels, and
computing platform. This determination can be done
with user guidance, or fully automated. Thus, a major
component of a SANS system is an intelligence compo-
nent that performs various tests to determine the nature
of the input data, and makes choices accordingly.

Some of these tests are simple and give an unambigu-
ous answer (“is this matrix symmetric”), others are sim-
ple but have an answer that involves a tuning parameter
(“is this matrix sparse”); still others are not simple at all
but may involve considerable computation (“is this matrix
positive definite”). For the tests with an answer on a con-
tinuous scale, the appropriateness of certain algorithms
as a function of the tested value can only be prepro-
grammed to a limited extent. Here the self-adaptivity of
the system comes into play: the intelligence component
will consult the history database of previous runs in
judging the match between algorithms and test values,
and after the problem has been solved, data reflecting
this run will be added to the database.

4.3 SELF-TUNING RULES FOR
SOFTWARE ADAPTATION

The Intelligent Component can be characterized as self-
tuning in the following sense: The automated analysis
of problem data concerns both questions that can be set-
tled quickly and decisively, and ones that can not be set-
tled decisively, or only at prohibitive cost. For the latter
category we will use heuristic algorithms. Such algo-
rithms typically involve a weighing of options, that is,
parameters that need to be tuned over time by the expe-
rience gained from problem runs. Since we record per-
formance data in the history database (section 4.4) of
the SANS Agent, we have a mechanism to provide feed-
back for the adaptation of the analysis rules used by the
Intelligent Component, thus leading to a gradual increase
in its intelligence.

4.4 HISTORY DATABASE

Self-adaptivity of our agent-based numerical library to
meet the needs of diverse users on any computational
environment requires a knowledge base of performance
data to make intelligent choices for algorithms, data struc-
tures, architectures, and programming languages. Each
interaction with a numerical routine produces valuable
data ranging from iteration counts (algorithm level) to
cache hits (hardware level). The middleware designed
to interface between the user application and the com-
putation grid must be able to exploit all “known” data
for each user request. Based on the problem posed by
the user, the available data structures, and the state of
the computational environment, the system would select
the “best” software library component(s) for solving the
current problem. Categorization of performance and prob-
lem “metadata” into relational databases should be based
on the application domain as well as the state of all net-
works and processors defining the Grid.

Maintaining a dynamic (constantly updated) database
of problems solved along with the state of the computa-
tional grid and library components used to obtain the
solution can facilitate dynamic problem solving for
numerous applications and also provide insights into
future library component designs. In many cases, not
one algorithm or approach may be viable as grid condi-
tions change (e.g., network traffic increases during the
workday or processor failures) so that the library may
dynamically create a “poly-algorithm” approach. Detecting
slow convergence or a stall of any current module would
be stored in both contexts: the problem being solved and
the computational environment. In the course of solv-
ing the user’s problem, several solution strategies (e.g.,
more than one preconditioner for an iterative solver for
sparse linear systems of equations) may be used and
recorded into the database. Utilizing past and present
performance metadata facilitates dynamic (customized)

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011


http://hpc.sagepub.com/

solutions to large-scale problems, which cannot be gen-
erated from current numerical software libraries.

5 Metadata and the Scripting Language

The operations typically performed by traditional librar-
ies are on data that has been abstracted from the original
problem. For instance, one may solve a linear system in
order to solve a system of ODEs. However, the fact that
the linear system comes from ODEs is lost once the
library receives the matrix and right hand side. By intro-
ducing metadata, we gain the facility of annotating
problem data with information that is typically lost, but
which may inform a decision making process. We will
implement the facility for the user to pass such metadata
explicitly in order to guide the intelligent library. More
importantly, however, we will design heuristics for uncov-
ering such lost data, taking the burden completely off the
user.

The syntax with which the user specifies metadata
could take the form of simple lists of keywords. How-
ever, for increased flexibility we propose that the user
interact by means of a simple scripting language.

As mentioned earlier, our scripting language will
not be a classical programming language; rather, it is
one designed to inexpensively perform a weighing of
possible options to compose an adaptive solution as a
“poly-algorithm”. A script in this language will be inter-
preted by the SANS agent to which the application con-
nects. Additionally, the agent may use predefined scripts
for method composition. Finally, the agent may use scripts
to dynamically compose a “poly-algorithm” solution based
on past solution history, changes in the run-time environ-
ment, etc.

The metadata passed by the user can not only be of
varying levels of detail and sophistication, it can also lie
on various points of a scale between purely numerical
specification on the one extreme, and user application
terms on the other. The former corresponds to the tradi-
tional parameter-passing approach of numerical librar-
ies: users who are well-versed in numerics can express
guidelines regarding the method to be used. However,
most users are not knowledgeable about numerics; they
can at most be expected to have expert knowledge of
their application area. By building in a — heuristic —
translation from application domain concepts to numeri-
cal concepts we allow the user to annotate the data in
problem-native terms, while still assisting the SANS sys-
tem in decision making.

6 Scheduler

The System Component of the SANS agent manages the
different available computation resources (hardware and

software), which in today’s environment can range from
a single workstation, to a cluster, to a Computational
Grid. This means that after the intelligent component
has analyzed the user’s data regarding its structural and
numerical properties the system component will take
the user data, the metadata generated by the intelligent
component, and the recommendations regarding algo-
rithms it has made, and based on its knowledge of avail-
able resources farm the problem out to a chosen compu-
tational server and a software library implemented on
that server. Eventually the results are returned to the
user. Empirical data is also extracted from the run and
inserted into the database; see section 4.4.

However, this process is not a one-way street. The
intelligent component and system component can actually
engage in a dialogue as they weigh preferred algorithms
against, for instance, network conditions that would make
the available implementation of the preferred algorithm
less computationally feasible.

Part of the System Component is scheduling opera-
tions and querying network resources. Software for this
part of a SANS system already exists, in the Netsolve
(Casanova and Dongarra, 1997, 1998; Casanova et al.,
1999), GrADS (Berman et al., 2001; Petitet et al., 2001)
and LFC (Roche) packages.

7 Optimized Libraries

Automation of the process of architecture-dependent tuning
of numerical kernels can replace the current hand-tuning
process with a semiautomated search procedure. Cur-
rent limited prototypes for dense matrix-multiplication,
ATLAS (Whaley et al., 2001) and PHIPAC (Bilmes et
al., 1997), sparse matrix-vector-multiplication (Sparsity
(Im, 2000; Im and Yelick. 1999), and FFTs (FFTW,;
Frigo, 1999; Frigo and Johnson, 1998) show that we can
frequently do as well as or even better than hand-tuned
vendor code on the kernels attempted.

Current projects use a hand-written search-directed
code generator (SDCG) to produce many different C
implementations of, say, matrix-multiplication, which are
all run on each architecture, and the fastest one selected.
Simple performance models are used to limit the search
space of implementations to generate and time. Since C
is generated very machine specific optimizations like
instruction selection can be left to the compiler. This
approach can be extended to a much wider range of
computational kernels by using compiler technology to
automate the production of these SDCGs.

8 Related Work

We list here, briefly, a number of existing projects and
their relations to our proposed SANS systems.
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LSA The University of Indiana’s Linear System Analyzer
(LSA) (http://www.extreme.indiana.edu/pseware/lsa/
index.html; Gannon et al., 2002) is building a prob-
lem solving environment (PSE) for solving large,
sparse, unstructured linear systems of equations. It
differs from our proposed systems in that it mostly
provides a testbed for user experimentation, instead
of a system with intelligence built in. A proposed
LSA intelligent component (http://www.extreme.indi-
ana.edu/pseware/lsa/LSAfuture.html) is more built
on Attificial Intelligence techniques than numerical
analysis.

ESI The Equation Solver Interface (ESI) Standards

Multi-lab Working Group & Interface Design
Effort (http://z.ca.sandia.gov/esi/) aims to develop
an integral set of standards for equation-solver ser-
vices and components. These standards are explic-
itly represented as an interoperable set of inter-
face specifications.
While the ESI standard gives a much more detailed
interface to equation solver libraries than we aim
to provide in our scripting language, its existence
will make it easier for us to integrate libraries
that have an ESI interface into our systems.

CCA The Common Component Architecture Forum
(CCA Forum) (http://www.acl.lanl.gov/cca/) has
as its objective to define a minimal set of stan-
dard features that a High-Performance Compo-
nent Framework has to provide, or can expect, in
order to be able to use components developed
within different frameworks.

ILU Tuning There is ongoing work at Boeing (Lewis,
2000) in choosing the many parameters determin-
ing an ILU decomposition to optimize a either
time or space, depending on the class of matrices
(aerodynamics, structures, etc.).

Tune The TUNE project (http://www.cs.unc.edu/Research/
TUNE/) seeks to develops a toolkit that will aid a
programmer in making programs more memory-
friendly.

Kernel optimization In the preceding we have already
mentioned ATLAS (Whaley et al., 2001), PHIPAC
(Bilmes et al., 1997) Sparsity (Im, 2000; Im and
Yelick, 1999), and FFTW (Frigo, 1999; Frigo and
Johnson, 1998). An interesting project that com-
bines ideas of dynamic optimization and low-level
kernel optimization is Spiral (Piischel and Moura,
2002) which generates optimal implementations
of DSP algorithms.
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