
Middleware for the use of storage
in communication q

Micah Beck a, Dorian Arnold b, Alessandro Bassi c,
Fran Berman d, Henri Casanova d, Jack Dongarra a,*,
Terry Moore a, Graziano Obertelli e, James Plank a,
Martin Swany e, Sathish Vadhiyar a, Rich Wolski c

a Department of Computer Science, The University of Tennessee, 1122 Volunteer Boulevard,

Suite 203, Knoxville, TN 37996-3450, USA
b Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street,

Madison, WI 53706, USA
c RESO-LIP, ENS Lyon, 46, All�eee d’Italie, 69364 Lyon Cedex 07, France

d Department of CDS/CSE, University of California, San Diego,

9500 Gilman Drive, La Jolla, CA 92093-0114, USA
e Department of Computer Science, University of California,

Santa Barbara, Santa Barbara, CA 93106, USA

Received 11 October 2001; received in revised form 29 April 2002; accepted 17 June 2002

Abstract

The Logistical Computing and Internetworking (LoCI) project is a reflection of the way that

the next generation internetworking fundamentally changes our definition of high perfor-

mance wide area computing. A key to achieving this aim is the development of middleware

that can provide reliable, flexible, scalable, and cost-effective delivery of data with quality

of service guarantees to support high performance applications of all types. The LoCI effort

attacks this problem with a simple but innovative strategy. At the base of the LoCI project

is a richer view of the use of storage in communication and information sharing.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Internetworking; Wide area computing; Middleware; Information sharing; Grid computing;

Logistical computing

www.elsevier.com/locate/parco

Parallel Computing 28 (2002) 1773–1787

qWork supported in part by the NSF/NGS GRANT #NSF EIA-9975015, and NSF GRANT ACI-

9876895.
*Corresponding author. Fax: +1-8659748296.

E-mail address: dongarra@cs.utk.edu (J. Dongarra).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02 )00185-0

mail to: dongarra@cs.utk.edu


1. Introduction

At the base of the Logistical Computing and Internetworking (LoCI) research is a

richer view of the use of storage in communication. Current approaches to quality of

service (QoS) rely on the standard end-to-end model of communication: the state of
network flow is maintained at the end nodes and not in the network. By contrast, our

concept of logistical QoS is a generalization of the typical model that permits state

management within the networking fabric itself, via a much more flexible control

of message buffering, in order to achieve QoS delivery without difficult end-to-end

requirements. For example, whenever data is available to be sent well before it needs

to be received, it can be staged, i.e., moved in advance and stored in a location

‘‘close’’ to the receiver for later delivery. We define such strategies that employ stor-

age in communication, as logistical network computing, and the main purpose of the
LoCI project is to investigate and test the central conjecture of logistical network

computing:

If

(1) distributed network storage is made available as a resource and is flexibly

schedulable and

(2) communication, computational, and storage resources can be predictably

allocated for coscheduling,

Then advanced applications can be implemented on computational grids with higher

performance and/or lower overall use of communication, computational, and stor-

age resources.

The structure of our research in the LoCI program reflects the parts of this con-

jecture, which in turn represent the fundamental elements of logistical network com-

puting. To create a research-computing environment that enables us to allocate
communication, computation, and storage resources for coscheduling, we combine

four technologies from the world of computational grids:

• Internet Backplane Protocol (IBP) [1] is primitive middleware that supports a layer

of network storage, implemented as a system of buffers exposed for direct

scheduling, that advanced applications can use to leverage state management

for high-performance.

• Network Weather Service (NWS) [2] enables us to predict the ability of the
network to respond to data movement requests over time.

• NetSolve [3] provides a programming environment that facilitates the analysis of

program dependences, expressed in the form of dependence flow graphs, to under-

stand an application�s inherent communication requirements. A major component

of LoCI research is to identify and provide opportunities for extracting scheduling

information from applications.

• Application level scheduling (AppLeS) [4] is enabling us to derive an efficient

schedule that meets those communication requirements. Once the scheduling

1774 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



information is made available, mapping the computation, network and storage re-

sources of the application to the Grid resources, subject to current and predicted

resource conditions, is a difficult problem. AppLeS is the leading instance of a

range of approaches we are exploring under LoCI.

These Grid technologies have focused, primarily, on the control of compute and

network resources to achieve high-performance distributed execution. Logistical

computing adds the control of storage to form a comprehensive Grid infrastructure.

By exposing more of the underlying storage structure of the network and maximizing

its exploitation in scientific applications, our research is moving network computing

towards the physical and logical limits of the underlying technology, as is found in

more mature areas of computer engineering.

2. Logistical network computing and explicit storage control

Our architectural analysis of high performance network computing derives from

an analogy with the architecture of modern pipelined microprocessors. The funda-

mental elements of modern processor architecture are:

• Buses and functional units which move and transform data, and
• Memory and cache, registers and pipeline buffers that store data.

With these mechanisms in place, the programming interface can then schedule the

execution of a program in a way that achieves maximum performance. Careful con-

trol of data at the various stages of an execution pipeline is necessary to ensure high

performance levels. It is our belief that Grid programs (or the Grid middleware)

must analogously control program state as it traverses the Grid.

Another important difference between modern RISC and VLIW architectures and
the CISC architectures of the 70s and 80s is that instructions are predictable because

theymodel the processor pipeline very directly. All elements of the pipeline behave in a

completely deterministic fashion except for the cache, which is statistically predictable.

In our model of logistical network computing, the fundamental elements are

• Predictable networking and computation which move and transform data, and

• Storage that is accessible from the network.

Using these elements, the programming interface can then schedule the execution

of a program in a way that achieves maximum performance. One important differ-

ence between logistical network computing and traditional methods is that it is based

on global scheduling expressed at the programming interface but implemented

by local allocation throughout the network. Traditional approaches express at the

programming interface only complex higher-level operations defined in terms of

the endpoints, encapsulating the complexity of the network. The result is that it is

much harder to implement predictable operations.

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1775



3. The Internet Backplane as middleware for next generation software

In order to experiment with logistical network computing, some mechanism for

the management of storage is required. Staging can be implemented at many possible

levels in the application or operating system, and as with all software architecture
decisions, the tradeoffs are complex, involving many factors including compatibility

of interfaces, administrative convenience and performance.

Most network computing environments are fairly self-contained in the sense that

data flows only between processors which host compute servers, and so it is possible

to implement data depots and storage management as part of the compute server.

Under this approach staging is accessible only to a single network computing do-

main, so that the management of storage is not shared between environments (e.g.

NetSolve [5], Globus [6], and Legion [7]) or between instances of a single environ-
ment. Such sharing is important because it allows storage to be managed as an

aggregate resource rather than as several smaller pools, and because it allows perfor-

mance-enhancing services such as caching to be implemented in an application- and

environment-neutral manner.

The middleware approach is to abstract a model of state management from the

particular computing environment and to define it to be a lower level service. It is

possible to implement that service in a user-level library, in a daemon process or

in kernel network drivers that reach lower into the protocol stack. In fact, the func-
tionality may ultimately be spread across these architectural levels, and could ulti-

mately be supported by modifications to the network infrastructure itself.

A key innovation of the LoCI project is the implementation of a software

mechanism for distributed data staging, called the IBP, a middleware service im-

plemented by TCP/IP connections to daemon processes, in the style of FTP and

NFS.

4. An overview of the Internet Backplane Protocol

Fundamentally, IBP is designed to allow much freer control of buffer manage-

ment at distributed storage depots through a general, but non-traditional scheme

for naming, staging, delivering and protecting data. To address the needs of new

Grid applications IBP diverges from the standard storage management systems

(e.g., distributed file systems or databases) in three fundamental ways, which we con-

sider in turn.

4.1. IBP serves up both writable and readable storage to anonymous clients as a wide-

area network resource

The Internet is a mainly stateless communication substrate that serves up two

kinds of network resources to its generic and unauthenticated clients: read-only

storage through anonymous FTP and the Web, and remote processing servers that

connect to clients via two-way ASCII communication pipes with Telnet. There are

1776 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



projects that are trying to enlarge this resource space, such as Jini, NetSolve, and ac-

tive disk and network movement. IBP enlarges this resource space by focusing on

storage, namely writable storage. The benefits of offering writable storage as a net-

work resource are numerous:

• QoS guarantees for networking can be met more easily when the intermediate

routing nodes can store the communication buffers.

• Resource schedulers can include the staging of data near the processing resources

for better resource utilization and better scheduling.

• Content services can be enhanced with both client and server-driven replication

strategies (including, but not limited to caching, content push, multicast support,

and replica management) for improved performance.

• A ubiquitous foundation for achieving fault-tolerance may be achieved.

Currently, most strategies for achieving the above benefits are ad hoc work-

arounds of the existing Internet architecture.

4.2. IBP allows for the remote control of storage activities

Storage managed by IBP may be viewed as files or buffers, located on reliable stor-

age, in RAM, or perhaps on an active disk. IBP allows a user or processing entity to
both access and manage these storage entities remotely, without being involved in the

actual manipulation of the bytes. We present three general categories of how this im-

proves application performance and flexibility below.

As an illustration in Fig. 1, consider the generation of sensor data in NWS.

NWS generates a tremendous amount of performance data in order to make its

predictions. It is not clear when the data is being collected whether or not it will

be used (i.e., clients might not request predictions for a few minutes). Therefore

it is optimal to store the data in a location close to the sender so that the storing
is optimized. Sending the data to clients is less optimal, but that is a more infre-

quent operation. Ideally, of course, the data is stored on the machine being mon-

itored, but that may not be possible. Storing it nearby in IBP is the next best

alternative.

A similar example is checkpointing computations within NetSolve for fault-toler-

ance [8]. Since checkpoints may never be used, NetSolve would like to optimize the

act of checkpointing. Obviously, it is not a good idea to store the checkpoint on the

Fig. 1. IBP: keeping data close to sender.

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1777



compute server, because if the server fails, the checkpoint may not be available (since

the server is down). IBP thus allows the servers to checkpoint ‘‘nearby’’, which

allows for an optimal balance of performance and fault-tolerance.

In Fig. 2, the data is put close to the receiver so that the overhead of receiving is

low. Standard performance optimizations such as staging and caching fall into this

category, and are well-known enough to require no further elaboration.

In Fig. 3, storage is used in the network to explicitly route a message. This obvi-

ously improves the performance of broadcast messages. Additionally, it helps with
intermediate link failures. With standard end-to-end networking, one has to resend

packets from the sender if any link fails. With intermediate storage, the resend only

has to happen on the failed link. Finally, with intermediate storage, a user can do

explicit routing, which may be much more effective than standard Internet routing

[9].

4.3. IBP decouples the notion of user identification from storage

Typically, storage systems require authentication for any access that uses a per-

sistent resource, whereas networking has no persistent resources and so can rely

on security implemented at the end-points. IBP treats all storage as if it were a

communication buffer by offering up writable storage on the network to unauthen-

ticated clients. That clients are unauthenticated does not mean that the system is

chaotic or without safeguards. IBP allows the owner of a storage server to define

how much storage to serve for IBP and how that storage should be served. In

particular, IBP file allocation includes the notion that files may have a limited
lifetime before they are removed by the IBP system. Each file is accessed through

a unique storage capability so that access can be restricted without authentica-

tion. In addition, an IBP file may be allocated as volatile, meaning that the

IBP server may revoke the storage at any time. Such a system strikes a balance

between offering the benefits of writable storage on the network, and making sure

that the owner of such storage has the ability to reclaim it when desired.

Fig. 2. IBP: place data close to receiver.

Fig. 3. IBP: utilizing storage throughout.

1778 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



5. Logistical mechanisms

The two key logistical mechanisms that we are designing are the IBP, which al-

lows us to express logistical data movement, and the NWS that allows us to predict

the effects of future requests for data movement.

5.1. The Internet Backplane Protocol API

We have defined and implemented a client API for IBP consisting of seven pro-

cedure calls, and a server daemon software that makes local storage available for re-

mote management. Currently, connections between clients and servers are made

through TCP/IP sockets.

IBP client calls may be made by any process that can connect to an IBP server.
IBP servers do not require administrative privileges to install and operate, so IBP

has the flavor of software such as PVM [10] that can leverage the privileges of ordi-

nary users to create a distributed computing platform. IBP servers can implement

various storage allocation policies in order to control the local impact. For example,

the IBP server may be allowed to allocate spare physical memory, or it may be di-

rected to only allow the allocation of unused disk space and to revoke that allocation

in favor of local use when necessary. Alternatively, the IBP server may enforce only

time-limited allocations, where the storage is automatically revoked after a set time
period. These features manage the local impact of allowing allocation of local re-

sources through IBP.

Each IBP server allocates storage in the form of append-only byte arrays. There

are no directory structures or file names (this structure can be layered on top of IBP

through the use of a directory server such as Globus� MDS). Clients initially allocate

storage through a request to an IBP server. If the allocation is successful, the server

returns three capabilities to the client, one for reading, one for writing, and one for

management. These capabilities can be viewed as names that are assigned by the ser-
ver and are meaningful only to IBP. The contents of the capability can be obscured

cryptographically in order to implement a basic level of security. In order to achieve

high performance, applications can pass and copy capabilities among themselves

without coordinating through IBP.

IBP�s API and several logistical network computing applications are described in

detail in other documents [11,12].

5.2. The Network Weather Service: monitoring resources for logistical scheduling

While IBP provides the mechanisms that allow applications to exploit logistical

network computing, resource usage must be carefully scheduled or application per-

formance will suffer. To make these decisions the scheduler must predict the future

performance of a set of resources. We use the NWS [13] to make these predictions

based on the observed performance history of each resource.

The NWS periodically monitors available resource performance by passively and

actively querying each resource, forecasts future performance levels by statistically

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1779



analyzing monitored performance data in near-real time, and reports both up-to-date

performance monitor data and performance forecasts via a set of well-defined inter-

faces.

The monitor interface is easily extensible; currently implemented monitors include

TCP/IP latency and bandwidth, CPU load, and Globus GRAM process start times
[14]. Monitor traces are presented as time series to a set of NWS forecasting models

that make short-term performance predictions levels. Both forecast values and accu-

racy measures are reported for each resource and performance characteristic. Using

this accuracy information, schedulers can gauge the value of individual forecasts and

use this valuation to exploit different risk strategies. Forecast and forecast-quality

data is published via C-language interfaces for access by dynamic schedulers.

It is the function of logistical scheduling to compose intermediate network and

storage resources into an end-to-end ‘‘path’’ that supports a specified QoS. Our
schedulers will rely on NWS performance forecasts to identify, dynamically, resource

compositions that meet the QoS specifications of different, and potentially compet-

ing, Grid applications. A key research question that we are addressing concerns the

degree to which NWS predications may be effectively composed to produce an over-

all predication.

6. NetSolve as an environment for experimentation in logistical scheduling

NetSolve is a client, server and agent system in which the client uses simple pro-

cedure calls to solve some problems remotely through the services hosted by a Net-

Solve server. The agent acts as a coordinator of the NetSolve Grid maintaining the

state information of the different components and acting as a global scheduler.

The concept of storage provided by LoCI through IBP depots can be used in a

variety of ways in the NetSolve framework.

1. NetSolve involves communication of data between the client and the servers. This

data can be cached in an IBP depot located near the server(s) in situations where

the NetSolve client calls a number of NetSolve problems with the same data.

2. In cases where the NetSolve user is not interested in the intermediate results, these

intermediate results can be stored in the IBP depots for later use by the NetSolve

servers during next phase of the computation.

3. In a collaborative project, where the NetSolve users interact to solve a large ap-

plication, the LoCI framework provided through the IBP depots can be used to
share the NetSolve results among the various users.

Mechanisms have been implemented in NetSolve where the user can invoke Net-

Solve calls to allocate storage in the IBP depots, encapsulate the storage in the form

of an object and pass these objects in the NetSolve calls to solve problems. Thus the

input data to a NetSolve problem can be stored in an IBP depot before the user

makes the NetSolve call to solve the problem and the output data from the NetSolve

servers can be directed to an IBP depot. The NetSolve calls that deal with the LoCI

1780 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



storage infrastructure are in turn implemented in terms of the simple API calls pro-

vided by LoCI. Though the NetSolve users can achieve the desired effect by directly

invoking the LoCI API, NetSolve provides the abstraction in order to experiment

with different storage infrastructures.

In the following experiment, we illustrate the use of IBP in NetSolve to cache
input and intermediate results. The problem involves multiplication of two complex

matrices, A and B to form a complex matrix C, followed by solving a complex system

of equations involving C and a known matrix Y , i.e.,

1. C ¼ A � B
Implemented as

Cr ¼ ArBr � AiBi

Ci ¼ AiBr þ ArBi

where Ar, Br and Cr are the real parts of the matrices and Ai, Bi and Ci are the

imaginary parts of the matrices.

2. C � X ¼ Y
where Y is a known complex matrix and X is the unknown complex matrix. The

inputs to this problem are Ar, Br, Ai, Bi and Y . The only output for this problem is
X . The rest of the matrices associated with the complex matrix C are intermediate

values and are stored in an IBP depot located near the NetSolve server. To mimic

the geographical expanse of the Grid, we placed a NetSolve client application at

the University of California, San Diego and experimented with requests to a pool

of computational and LoCI servers at the University of Tennessee as illustrated

by Fig. 4.

Fig. 5 compares the performance obtained when the same problem was solved
without using the LoCI storage and when using LoCI storage for different matrix

sizes. The results show that using LoCI infrastructure in NetSolve helps to improve

the performance of data movement for solving problems.

IIT

UCSD

Fig. 4. NetSolve client server storage.

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1781



We also solved another problem involving sparse matrices from the Harwell–

Boeing collection of the Matrix Market repository to solve system of equations using

the MA28 solver library. Fig. 6 illustrates the performance benefits of using LoCI

storage in NetSolve improves with the increase in number of accesses to the storage

by the NetSolve servers.

7. Logistical scheduling and the AppLeS project

The AppLeS project [4,16] focuses on the design and development of Grid-

enabled high-performance schedulers for distributed applications. The first genera-

Fig. 5. Performance of NetSolve with and without network storage.

Fig. 6. Results of improved computational efficiency when IBP caching is used with NetSolve.

1782 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



tion of AppLeS schedulers demonstrated that simultaneously taking into account

application- and system-level information makes it possible to effectively schedule

applications onto computational environments as heterogeneous and dynamic as

the Grid. The benefits of that approach have been demonstrated for over a dozen

applications (see the AppLeS Web site [17]). However, all those schedulers were
tightly embedded within the application itself and thus difficult to re-use. Therefore,

the next step was to build on AppLeS principles to provide re-usable software envi-

ronments that target classes of structurally similar applications. Two such environ-

ments, or templates, have been developed so far: the AppLeS Master Worker

Application Template (AMWAT) [18] and the AppLeS Parameter Sweep Template

(APST) [19]. In the context of the LoCI project, we have investigated and imple-

mented logistical scheduling as part of APST.

APST targets the class of parameter sweep applications (PSAs), i.e., applications
structured as large numbers of computational tasks that exhibit little or no synchro-

nization. In addition, we assume that tasks use (and may share) potentially large

input datasets, and produce potentially large output datasets. The PSA model is rep-

resentative of well-known methodologies such as parameter space search techniques,

Monte Carlo simulations, and parameter studies. As such, PSAs arise in many fields,

including Computational Fluid Dynamics, Bioinformatics, Particle Physics, Dis-

crete-event simulation, Computer Graphics, and many areas of Biology. PSAs are

primary candidates for Grid computing given their large scale. Also, due to their
loose task synchronization requirements, PSAs are able to tolerate high latencies

and faults, both of which are to be expected on the Grid.

Many real-world PSAs are manipulating increasingly large datasets that need to

be moved among and staged on distributed Grid storage. Data movement is needed

so that distributed compute resources can be utilized, and data staging is needed so

that data can be shared and re-used by application tasks. The question is then: How

does one make decisions on where to move and where to stage application data in

order to minimize application execution time? In this paper we have termed this
problem as logistical scheduling, which is key for improving the performance of PSAs

on the Grid.

Much research work has been devoted to the problem of scheduling independent

tasks. This problem is NP-complete, and several heuristics have been proposed (see

[20] for a comparative survey). In this work we have built on three list-scheduling

heuristics described in [21]: Min–min, Max–min, and Sufferage. Those heuristics

have been shown to be effective when application tasks exhibit affinities with com-

pute resources. This means that some hosts are better for some application tasks,
but not for others (e.g., due to specialized hardware, optimized software libraries,

etc.). Our key intuition is that the presence of input data on a Grid storage resource

‘‘near’’ a Grid compute resource leads to affinities. In other words, a task has affin-

ity with compute resources which are ‘‘near’’ input data required by that task. This

is particularly relevant for PSAs where tasks use and share large datasets over a

Grid.

We have made a number of contributions to the PSA scheduling problem on the

Grid. First, we have extended the three heuristics in [22] so that they take into

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1783



account logistical issues (input data staging, input data re-use, and data move-

ments). Second, we developed a new heuristic, XSufferage, that exploits some of

the structure of the Grid computing platform. Third, we enhanced all four heuris-

tics so that they can be executed in an adaptive fashion: scheduling decisions can

be revised periodically at runtime in order to account for dynamic resource condi-
tions. All details on this work can be found in [23]. In that paper we presented

many simulation experiments comparing the four list-scheduling heuristics and a

greedy self-scheduled work queue algorithm. The main difference between the

list-scheduling heuristics and the self-scheduled work queue is that the former re-

quire performance predictions (answers to questions like ‘‘how long will that task

take on that resource?’’), whereas the latter does not. One interesting question is

then to quantify the impact of performance prediction inaccuracy on the effective-

ness of list-scheduling heuristics. We derived two significant conclusions from our
simulation results:

(i) XSufferage outperforms other heuristics (and the self-scheduled work queue)

by more than 10% on average when one assumes perfect performance predic-

tion;

(ii) Adaptivity makes it possible for the list-scheduling heuristics to tolerate perfor-

mance prediction errors (and outperform the self-scheduled work queue).

After developing this adaptive logistical scheduling strategy, we implemented it as

part of the APST software. Implementing logistical scheduling requires

(i) fine-grain control of Grid storage resources;

(ii) fine-grain control of Grid compute resources;

(iii) predictions of the expected performance of data transfers and computations on

those resources.

Those three requirements are met by IBP, NetSolve, and NWS, which have been

described in earlier sections. IBP provides the levels of control required to move and

stage application data among distributed IBP storage servers. NetSolve provides a

simple way to execute application tasks on remote resources while using data staged

in IBP servers as input. Those two mechanisms allow for the implementation of all

logistical scheduling decisions made by our adaptive heuristics. By default, if APST

is configured to use list-scheduling, it uses the XSufferage heuristic which was proved

to achieve the best performance in our simulation experiments. Finally, NWS predic-
tions are the basis for making scheduling decisions. APST uses a combination of

NWS predictions as well as historical observations of application performance as

input to the list-scheduling heuristics. Finally, the APST software uses several tech-

niques to improve performance, such as multi-threading for latency-hiding and net-

work transfer overlapping. Those techniques, as well as all other implementation

details, are described in [19].

In [19] we also described experimental results that corroborate parts of our

simulation results. Our main result is that we have shown that list-scheduling is

1784 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787



indeed practical for real-world Grid computing. Our results, obtained on a Grid

testbed containing storage and compute resources in Tennessee, California,

and Japan, showed that XSufferage can make use of IBP, NetSolve, and NWS in

order to greatly improve application performance over the standard self-scheduled

work queue approach. In those experiments, performance prediction errors were of
the order of 10% for compute resources and 30% for network resources. According

to what we observed in our simulation experiments, those errors are well within the

bounds of what can be tolerated thanks to the use of adaptivity.

The APST software is an active development project that has grown out of the

LoCI activity. We extended it to use other Grid middleware services, including those

provided by Globus [25] and Condor [26]. Version 1.1 of the software is freely avail-

able from the project�s website [24]. We are currently pursuing several new research

directions concerning scheduling and performance of PSAs on the Grid platform.
For instance, we are investigating scheduling techniques for applications that consist

of a partitionable workload (such as applications from bio-informatics). This work is

building on scheduling algorithms surveyed in [15]. Also, we are investigating how

the ability to change which list-scheduling heuristic is used at runtime can improve

the overall performance of PSAs.

8. Conclusions and future work

By exposing the intermediate communication state to application or middle-

ware control, Logistical Computing forms a comprehensive approach to Grid

computing. Process resources, network resources, and storage resources can be ex-

plicitly controlled and scheduled to ensure performance in the face of fluctuating

resource availability. In particular, the IBP allows distributed applications to

break with the end-to-end communication model achieving better QoS levels

through explicit state control. By combining this innovative approach to dynamic
storage management with NetSolve and the NWS we have been able to deliver

high-performance distributed computing to the end user through the familiar

RPC programming model. Our intention is to continue our development of Lo-

gistical Computing and to deploy a campus-wide testbed using the Scalable Intra-

campus Research Grid (SInRG) at the University of Tennessee. Designed to

develop a University Grid user community, we are developing a Logistical Com-

puting environment for SInRG both as a means of validating our results, and

easing the Grid programming burden.
The software for IBP, NWS, NetSolve, and AppLeS can be found at the following

URLs:

http://icl.cs.utk.edu/ibp/

http://nws.cs.utk.edu/

http://icl.cs.utk.edu/netsolve/

http://apples.ucsd.edu/

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1785

http://icl.cs.utk.edu/ibp/
http://nws.cs.utk.edu/
http://icl.cs.utk.edu/netsolve/
http://apples.ucsd.edu/


References

[1] J. Plank et al., The Internet backplane protocol: storage in the network, in: NetStore99: The Network

Storage Symposium, Seattle, WA, 1999.

[2] R. Wolski, N. Spring, J. Hayes, The network weather service: a distributed resource performance

forecasting service for metacomputing, Future Gener. Comp. Syst. 15 (5–6) (1999) 757–768.

[3] H. Casanova et al., Application-specific tools, in: I. Foster, C. Kesselman (Eds.), The Grid: Blueprint

for a New Computing Infrastructure, Morgan Kaufman Publishers, San Francisco, CA, 1998, pp.

159–180.

[4] F. Berman et al., Application-level scheduling on distributed heterogeneous multiprocessor systems,

in: Proceedings of Supercomputing �96, 1996.
[5] H. Casanova, J. Dongarra, Applying NetSolve�s network enabled server, IEEE Comput. Sci. Eng. 5

(3) (1998) 57–66.

[6] I. Foster, K. Kesselman, Globus: a metacomputing infrastructure toolkit, Int. J. Supercomp.

Applicat. 11 (2) (1997) 115–128.

[7] A. Grimshaw, W. Wulf, et al., The Legion vision of a worldwide virtual computer, Commun. ACM

40 (1) (1997) 39–45.

[8] A. Agbaria, J.S. Plank, Design, implementation, and performance of checkpointing in NetSolve, in:

International Conference on Dependable Systems and Networks (FTCS-30 & DCCA-8), 2000.

[9] M. Swany, R. Wolski, Data Logistics in Networking: The Logistical Session Layer, University of

Tennessee, Knoxville, TN, 2001.

[10] A. Geist et al., PVM: Parallel Virtual Machine. A Users� Guide and Tutorial for Networked Parallel

Computing, The MIT Press, Cambridge, MA, 1994.

[11] A. Bassi et al., Internet Backplane Protocol: API 1.0, University of Tennessee, Computer Science

Department, 2001.

[12] W. Elwasif et al., IBP-mail: controlled delivery of large mail files, in: NetStore �99: Network Storage

Symposium, 1999, Internet2, http://dsi.internet2.edu/netstore99.

[13] R. Wolski, Forecasting network performance to support dynamic scheduling using the Network

Weather Service, in: Proceedings of the 6th IEEE Symposium on High Performance Distributed

Computing, IEEE Computer Society Press, Los Alamitos, CA, 1997, pp. 316–325.

[14] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufman Publishers, San Francisco, CA, 1998, p. 677.

[15] T. Hagerup, Allocating independent tasks to parallel processors: an experimental study, J. Parallel

Distrib. Comput. 47 (1997) 185–197.

[16] F. Berman, R. Wolski, The AppLeS Project: a status report, Proceedings of the 8th NEC Research

Symposium, Berlin, Germany, May, 1997.

[17] http://apples.ucsd.edu.

[18] G. Shao, Adaptive Scheduling of Master/Worker Applications on Distributed Computational

Resources, PhD thesis, University of California, San Diego, May, 2001.

[19] H. Casanova, G. Obertelli, F. Berman, R. Wolski, The AppLeS parameter sweep template: user-level

middleware for the Grid, in: Proceedings of SuperComputing 2000 SC�00, November 2000.

[20] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D.

Theys, B. Yao, D. Hensgen, R.F. Freund, A comparison study of static mapping heuristics for a class

of meta-tasks on heterogeneous computing systems, in: Proceedings of the 8th Heterogeneous

Computing Workshop (HCW�99), April 1999, p. 15–29.

[21] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on nonindentical

processors, J. ACM 24 (2) (1977) 280–289.

[22] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R. Freund, Dynamic matching and scheduling of a

class of independent tasks onto heterogeneous computing systems, in: 8th Heterogeneous Computing

Workshop (HCW�99), April 1999, p. 30–44.

[23] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling parameter sweep

applications in Grid environments, in: Proceedings of the 9th Heterogeneous Computing Workshop

(HCW�00), May 2000, p. 349–363.

1786 M. Beck et al. / Parallel Computing 28 (2002) 1773–1787

http://dsi.internet2.edu/netstore99
http://apples.ucsd.edu


[24] The APST homepage, http://grail.sdsc.edu/projects/apst/.

[25] Globus homepage, http://www.globus.org.

[26] J. Basney, M. Livny, Deploying a high throughput computing cluster, in: High Performance Cluster

Computing, vol. 1, Prentice Hall, May, 1999, Chapter 5.

M. Beck et al. / Parallel Computing 28 (2002) 1773–1787 1787

http://grail.sdsc.edu/projects/apst/
http://www.globus.org

	Middleware for the use of storage in communication
	Introduction
	Logistical network computing and explicit storage control
	The Internet Backplane as middleware for next generation software
	An overview of the Internet Backplane Protocol
	IBP serves up both writable and readable storage to anonymous clients as a wide-area network resource
	IBP allows for the remote control of storage activities
	IBP decouples the notion of user identification from storage

	Logistical mechanisms
	The Internet Backplane Protocol API
	The Network Weather Service: monitoring resources for logistical scheduling

	NetSolve as an environment for experimentation in logistical scheduling
	Logistical scheduling and the AppLeS project
	Conclusions and future work
	References


