
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/15/4/327
The online version of this article can be found at:

 
DOI: 10.1177/109434200101500401

 2001 15: 327International Journal of High Performance Computing Applications
Kennedy, Carl Kesselman, John Mellor-Crumme, Dan Reed, Linda Torczon and Rich Wolski

Francine Berman, Andrew Chien, Keith Cooper, Jack Dongarra, Ian Foster, Dennis Gannon, Lennart Johnsson, Ken
The GrADS Project: Software Support for High-Level Grid Application Development

 
 

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for 
 
 
 
 

 
 http://hpc.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://hpc.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://hpc.sagepub.com/content/15/4/327.refs.htmlCitations: 
 

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/15/4/327
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/15/4/327.refs.html
http://hpc.sagepub.com/


COMPUTING APPLICATIONS
GrADS PROJECT

THE GrADS PROJECT: SOFTWARE

SUPPORT FOR HIGH-LEVEL GRID

APPLICATION DEVELOPMENT

Summary

Advances in networking technologies will soon make it
possible to use the global information infrastructure in a
qualitatively different way—as a computational as well as
an information resource. As described in the recent book
The Grid: Blueprint for a New Computing Infrastructure,
this Grid will connect the nation’s computers, databases,
instruments, and people in a seamless web of computing
and distributed intelligence, which can be used in an on-
demand fashion as a problem-solving resource in many
fields of human endeavor—and, in particular, science and
engineering.The availability of grid resources will give rise
to dramatically new classes of applications, in which com-
puting resources are no longer localized but, rather, dis-
tributed, heterogeneous, and dynamic; computation is in-
creasingly sophisticated and multidisciplinary; and com-
putation is integrated into our daily lives and, hence, sub-
ject to stricter time constraints than at present. The impact
of these new applications will be pervasive, ranging from
new systems for scientific inquiry, through computing sup-
port for crisis management, to the use of ambient comput-
ing to enhance personal mobile computing environments.
To realize this vision, significant scientific and technical
obstacles must be overcome.Principal among these is us-
ability. The goal of the Grid Application Development Soft-
ware (GrADS) project is to simplify distributed heteroge-
neous computing in the same way that the World Wide
Web simplified information sharing over the Internet. To
that end, the project is exploring the scientific and techni-
cal problems that must be solved to make it easier for ordi-
nary scientific users to develop, execute, and tune applica-
tions on the Grid. In this paper, the authors describe the vi-
sion and strategies underlying the GrADS project, includ-
ing the base software architecture for grid execution and
performance monitoring, strategies and tools for construc-
tion of applications from libraries of grid-aware compo-
nents, and development of innovative new science and en-
gineering applications that can exploit these new technol-
ogies to run effectively in grid environments.

1 Introduction

Imagine remote, biodegradable sensors in the ocean,
monitoring temperature, biological materials, and key
chemical concentrations, transmitting the measurements
via wireless technology to digital libraries of oceano-
graphic data, mining and visualizing this data directly to
derive new insights, using the refined data in large-scale
predictive models, redeploying the sensors to refine the
system as a result of the predictions, and, finally, trigger-
ing nanoactuators to remove inappropriate concentrations
of effluent or other nonnative materials.

Imagine an earthquake engineering system that inte-
grates “teleobservation” and “teleoperation” to enable re-
searchers to control experimental tools (e.g., seismo-
graphs, cameras, robots) at remote sites. Combining real-
time, remote access to data generated by those tools,
along with video and audio feeds, large-scale computing
facilities for coupled simulation, data archives, high-per-
formance networks, and structural models, researchers
will be able to improve the seismic design of buildings,
bridges, utilities, and other infrastructure in the United
States.

Imagine a personal digital assistant integrated into
eyeglasses, powered by body heat and capable of calling
upon ambient computing, information, and network re-
sources, so that when you enter a building, your personal
information space is available to you; local computing
power offloads tasks such as face recognition, translation,
and navigation; and you can be simultaneously monitor-
ing your latest earthquake engineering experiment—or
your stock portfolio.

These examples illustrate what we believe will be
three dominant themes in 21st-century computing: com-

GrADS PROJECT 327

The International Journal of High Performance Computing Applications,
Volume 15, No. 4, Winter 2001, pp. 327-344
 2001 Sage Publications

1UNIVERSITY OF CALIFORNIA, SAN DIEGO
2RICE UNIVERSITY
3UNIVERSITY OF TENNESSEE, KNOXVILLE
4ARGONNE NATIONAL LABORATORY
5UNIVERSITY OF CHICAGO
6INDIANA UNIVERSITY
7UNIVERSITY OF HOUSTON
8UNIVERSITY OF SOUTHERN CALIFORNIA
9UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
10UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Address reprint requests to Jack Dongarra, Department of Com-
puter Science, University of Tennessee, 1122 Volunteer Boule-
vard, Suite 203, Knoxville, TN 37996-3450, U.S.A; dongarra@
cs.utk.edu.

Francine Berman
1

Andrew Chien
1

Keith Cooper
2

Jack Dongarra
3

Ian Foster
4,5

Dennis Gannon
6

Lennart Johnsson
7

Ken Kennedy
2

Carl Kesselman
8

John Mellor-Crummey
2

Dan Reed
9

Linda Torczon
2

Rich Wolski
10

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


puting resources are no longer localized but, rather,
distributed—and hence heterogeneous and dynamic; com-
putation is increasingly sophisticated and multi-
disciplinary; and computation is integrated into our daily
lives and, hence, subject to stricter time constraints than at
present.

None of these examples is that far fetched: revolution-
ary changes in broadband communications and wireless
networking, as well as relentless miniaturization, provide
the necessary technical underpinnings. Furthermore, am-
bitious research programs in ubiquitous computing and
grid middleware are targeting key challenges at the infra-
structure level: security, resource discovery, resource man-
agement, power management, and so on. However, exist-
ing efforts are not addressing one fundamental problem:
the programming of these highly complex and dynamic
systems. This challenging problem is the focus of the Grid
Application Development Software (GrADS) project, es-
tablished by the authors with support from the National
Science Foundation (NSF) Next Generation Software Pro-
gram in 1999. In this paper, we present the vision and strat-
egies underlying the GrADS effort.

Our use of the term “the Grid” is inspired by a recently
published volume titled The Grid: Blueprint for a New
Computing Infrastructure (Foster and Kesselman, 1999b),
which established a compelling vision of a computational
and information resource that will change the way that ev-
eryone, from scientist and engineer to business profes-
sional, teacher, and citizen, uses computation (Stevens
et al., 1997; Foster and Kesselman, 1999b). Just as the
Internet defines fundamental protocols that ensure uni-
form and quasi-ubiquitous access to communication, so
the Grid will provide uniform access to computation, data,
sensors, and other resources. Grid concepts are being pur-
sued aggressively by many groups and are at the heart of
major application projects and infrastructure deployment
efforts, such as the National Aeronautic and Space Admin-
istration (NASA) Information Power Grid (Johnston,
Gannon, and Nitzberg, 1999) (http://www.nas. nasa.gov/
About/IPG/ipg.html), the NSF PACI National Technology
Grid (Stevens et al., 1997) and Distributed Terascale Facil-
ity, the NSF Grid Physics Network (GriPhyN) (http://
www.griphyn.com), and the European Union Data Grid
(http://www.eu-datagrid.org/) and Eurogrid projects.
These and many other groups recognize the tremendous
potential of an infrastructure that allows us to conjoin dis-
parate and powerful resources dynamically to meet user
needs.

Despite this tremendous potential, enthusiasm, and
commitment to the grid paradigm, the dynamic and com-

328 COMPUTING APPLICATIONS

“These examples illustrate what we believe
will be three dominant themes in
21st-century computing: computing
resources are no longer localized but,
rather, distributed—and hence
heterogeneous and dynamic; computation
is increasingly sophisticated and
multidisciplinary; and computation is
integrated into our daily lives and, hence,
subject to stricter time constraints than at
present.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


plex nature of the grid environment, and the sophistica-
tion of the applications being discussed, the challenges
are daunting. Few software tools exist. Our understanding
of algorithms and methods is extremely limited. Middle-
ware exists, but its suitability for a broad class of applica-
tions remains unconfirmed. Impressive applications have
been developed, but only by teams of specialists (Lyster et
al., 1992; DeFanti et al., 1996; Foster et al., 2001; Foster
and Kesselman, 1999b; Gabriel et al., 1998; Kimura and
Takemiya, 1998; Sheehan et al., 1998). Entirely new ap-
proaches to software development and programming are
required for grid computing to become broadly accessi-
ble.

It is this combination of the national importance of the
problem and the need for multidisciplinary research ad-
vances that has led us to initiate the GrADS project and
focus it on the goal of conducting fundamental research
leading to the development, in prototype form, of technol-
ogies needed to make the Grid usable on a daily basis by
scientists and engineers. Collectively, the challenges that
must be overcome to achieve this goal can be summarized
in a single requirement: we need application development
technologies that make it easy to construct and execute
applications with reliable (and often high) performance in
the constantly changing environment of the Grid.

As we pursue this goal, we can draw on a significant
body of knowledge and technology in distributed com-
puting, the Internet, and grid middleware. However, al-
though traditional distributed computing technologies
provide critical building blocks and frameworks for grid
application development, distributed computing is not
concerned with, and does not address the large-scale and
dynamic resource sharing, frequently stringent perfor-
mance requirements, large resource needs, and the
multidisciplinary nature of grid applications. Although
emerging Internet, peer-to-peer, and grid middleware
technologies are meeting the need for large-scale re-
source sharing, they do nothing to simplify application
development.

The GrADS project has begun to develop the knowl-
edge and technology base required to support application
execution in this new computing environment, along with
application development strategies to make it accessible
to ordinary scientists, engineers, and software developers
for problem solving. To do this, we are pursuing research
in four major areas: (1) collaboration on the design and
implementation in prototype form of important scientific
applications for the Grid; (2) the design of programming
systems and problem-solving environments that support
the development of configurable grid applications by end

users in high-level languages close to the notation of their
application domain; (3) the design and implementation of
execution environments that dynamically match con-
figurable applications to available resources in order to
provide consistent, reliable performance; and (4) the de-
sign and construction of hardware and software test beds
for experimentation with the GrADS preparation and exe-
cution system and the applications developed to use them.

We anticipate that the successful completion of this re-
search program will lead to revolutionary new ways of us-
ing the global information infrastructure as a platform for
computation, data sharing, and collaboration.

1.1 APPLICATIONS

Just as the emergence and usability of the World Wide
Web has ushered in new paradigms in application devel-
opment and access to information, the maturing of the
Grid and its natural extension to peer-to-peer platforms,
wireless endpoints, remote instruments, and sensors will
engender innovative new application paradigms and new
environments for application development and execution.
Such environments will support application adaptivity,
portability, ubiquity, and performance. Emerging grid ap-
plications will provide the driving force behind the archi-
tecture, research, and prototypes that will be developed by
researchers in the Center for Grid Application Develop-
ment Software. Over the next decade, grid applications
will address a wide variety of critical challenges in sci-
ence and engineering. New applications in computational
biology, bioinformatics, genomics, high-energy physics,
crisis management, and other domains will require real-
time data collection, mining and analysis, simulation, and
visualization of results.

There are several key challenges that must be ad-
dressed for grid computing to be effective. Applications
must be able to nimbly adapt to a dynamic set of target re-
sources and to incorporate huge amounts of information
from heterogeneous sources and distant endpoints (e.g.,
sensors, target computational resources on peer-to-peer
networks). Moreover, the grid software infrastructure to
which the applications themselves are targeted is com-
plex, heterogeneous, and dynamic. Globus (Foster and
Kesselman, 1999a), NetSolve (Casanova and Dongarra,
1997), Condor (Livny, 1998, 1999), Legion (Grimshaw,
Wolf, and the Legion Team, 1997; Gannon and Grim-
shaw, 1999), and commercial infrastructure systems have
different levels of robustness and operate on different re-
source subsets. Over the next 10 years, applications will
need to be able to adapt and perform with respect to the in-
frastructure provided by ambient resources. The design of

GrADS PROJECT 329

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


development environments and runtime systems for such
adaptable and “ultraportable” applications constitutes an
extremely challenging and comprehensive set of prob-
lems.

The success of the Grid as a computing platform is de-
pendent on development of performance-efficient appli-
cations that can effectively exploit a wide range of coop-
erating resources. Software that supports development
and execution of such applications is critical to making
grid programming tractable. During the research associ-
ated with the Center for Grid Application Development
Software, a collection of emerging grid-enabled applica-
tions will focus our research goals and help set research
priorities. These applications provide a means for critical
evaluation and assessment of the grid application devel-
opment software resulting from our research. The follow-
ing examples are representative of major classes of a new
generation of grid applications.

On-Demand Applications. A critical aspect of com-
putational Grids is their ability to concentrate the massive
computational and information resources required for
real-time, on-demand applications. To understand the im-
portance of on-demand application development for the
Grid, consider the problem faced by a crisis manager after
a major disaster such as an earthquake. Although the com-
ponent operations that are essential to crisis management
are known in advance, each crisis presents unique require-
ments. The crisis manager must integrate information
from many different sources to determine the actions
needed to respond to the particular crisis at hand. For ex-
ample, she must be able to understand the state of the cur-
rent infrastructure, possibly by aggregating sensors in
buildings, power lines, and utility conduits into a network
that can report the changing state of the basic infrastruc-
ture. She must be able to integrate reports from emer-
gency crews with patient information to ensure that emer-
gency treatments are consistent with the needs of each pa-
tient. Finally, she needs to be able to access mesoscale
weather models, fueled by information from a grid of
Doppler radars, to identify weather patterns that may ex-
acerbate the crisis. There may also be a need to simulate
the flow of groundwater contaminants through the soil.

Ubiquitous Applications. During the next decade, an
increasing number of users will develop applications for
execution on a platform in which the user does not know
(or care) where the application might be executed. Cur-
rent examples of such software platforms include Search
for Extraterrestrial Intelligence (http://setiathome.
ssl.berkeley.edu/) and Entropia (http://www.entropia.
com) (which target largely embarrassingly parallel appli-

cations to compute on “throw away” endpoints), Condor
(which targets individual, migratable, and largely embar-
rassingly parallel jobs on workstation clusters), and
APST (middleware that targets parameter sweep applica-
tions on a wide variety of grid environments). Such sys-
tems demonstrate the potential for the Grid, but the re-
search community must improve application program-
ming models for grid execution. As part of the GrADS
research, we intend to develop more sophisticated (and
dependable) programming models that can execute ubiq-
uitously and reliably in large-scale grid environments.

Robust, Portable Applications. Much as the Web has
catalyzed the creation of immense collections of private
data, and supports easy accessibility to large quantities of
public data, we anticipate that the emergence of the Grid
will spawn public grid resources (computing, storage,
etc.). Already, we see significant development under way
for production grid systems (e.g., the NASA Information
Power Grid, the NSF GriPhyN and Network for Earth-
quake Engineering Simulation [http://www.neesgrid.org/],
and the European Union Data Grid) based on a existing
software infrastructures (e.g., Globus in the four exam-
ples just cited). To capitalize on such resources, a new
generation of portable, grid-aware applications is needed.

The user community’s desire to exploit grid resources
and to protect its software development serve as impor-
tant motivators for developing portable, standard services
that support robust grid applications. In the long run, con-
vincing the developers of grid applications—users, scien-
tists, and third-party commercial organizations—must
depend on the development of standard interfaces for crit-
ical grid services that enable both portability forward to
new software infrastructures and platforms and access to
very large numbers of resources. However, current grid
software infrastructures lack the capabilities to support
flexible, robust grid applications in a world of heteroge-
neous systems, unreliable networks, and asynchronous
resource revocation. The core research that has begun un-
der the aegis of the GrADS project includes support for
adaptivity, resource negotiation, and performance con-
tracts. These capabilities will help applications operate
effectively in an ever-changing grid environment. In addi-
tion, the proposed research will develop the understand-
ing that enables definition of standard shared libraries that
export these capabilities.

Integrated Data Analysis and Simulation. Data-ori-
ented applications will constitute one of the most active
and critical areas for the next decade in science and engi-
neering. Many research communities collect, analyze,
and mine immense amounts of data in collections that are

330 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


often not colocated with the computational servers. For
example, there is considerable effort currently being de-
voted to the development of parallel and distributed appli-
cations that use genomic data to assess, evaluate, and de-
velop structural models and to answer fundamental ques-
tions about life.

In addition, the NSF GriPhyN project is developing a
distributed analysis environment for physics experiments
that will serve thousands of users (Chervenak et al.,
2000). A crucial concept being pioneered by GriPhyN is
virtual data, that is, derived data products that are defined
by the computations to produce them. Given a set of vir-
tual data definitions, a user request for data value(s) can
be translated into computations and data movements. We
anticipate collaboration with GriPhyN in two areas: esti-
mation of the computational requirements of virtual data
computations and scheduling of computations and data
movement based on compiler-detected query profiles.

Another important area in which integrated data as-
similation from distributed resources is becoming more
important is weather forecasting, exemplified by the Inte-
grated Forecasting System (IFS) developed by European
Center for Medium Range Weather Forecasting
(ECMWF), and in climate analysis, exemplified by the
ERA-40 project covering the time period from 1957 to
2001 pursued jointly between the NCAR, NOAA,
NESDIS, ECMWF, and several other organizations. The
IFS has real-time aspects and uses a wide range of sensor
and network technologies, and is an excellent application
for GrADSoft technologies.

The GrADS project is collaborating with both devel-
oping applications and mature grid exemplar codes to
guide our design and development efforts. In the long
term, we plan to work with developers of exemplar appli-
cations in each of the application classes to prototype pro-
gram development software that meets the needs of cur-
rent grid applications as well as the new generation of
applications that evolve to reap the benefits of the Grid.
During our research into application development soft-
ware, we expect to gain new insights into how to design
and implement grid applications. Thus, our research
agenda includes the study of new types of applications, as
well as new approaches to application design and imple-
mentation.

1.2 VISION

For the Grid to become a useful computational
environment—one that will be routinely employed by or-
dinary scientists, engineers, and other problem solvers—
it must be relatively easy to develop new applications.

Currently, applications must be developed atop existing
software infrastructures, such as Globus, by developers
who are experts on grid software implementation. Al-
though many useful applications have been produced in
this manner, it is too difficult for grid computing to
achieve widespread acceptance.

In our vision, the end user should be able to specify ap-
plications in high-level, domain-specific problem-solv-
ing languages and expect these applications to seamlessly
access the Grid to find required resources when needed.
In these environments, users would be free to concentrate
on how to solve a problem rather than on how to map a so-
lution onto the available grid resources.

To realize this vision, we must solve two fundamental
technical problems. First, we must understand how to
build programming interfaces that insulate the end user
from the underlying complexity of the grid execution en-
vironment without sacrificing application execution effi-
ciency. Second, we must provide an execution environ-
ment that automatically adapts the application to the
dynamically changing resources of the Grid. Our overall
approach to addressing these challenges is described in
the next section.

2 GrADS Software Architecture

To address the fundamental challenge of program devel-
opment for grid environments, GrADS has initiated a co-
ordinated and far-reaching program of research, proto-
typing, and technology transfer aimed at the central
problems of programming models, algorithms, program-
ming systems, and applications.

Underlying and unifying our diverse investigations is a
basic assumption: effective application development for
grid environments requires a new approach to the design,
implementation, execution, and optimization of applica-
tions. A new strategy is needed because the traditional de-
velopment cycle of separate code, compile, link, and exe-
cute stages assumes that the properties of underlying
resources are static and relatively simple. In the Grid, this
assumption is not valid. (Needless to say, the alternative
approach, frequently adopted in distributed computing, of
hand coding applications with socket calls or remote pro-
cedure calls is not viable either.) We require a software de-
velopment environment that enables the effects of dyna-
mism to be mitigated and controlled.

Figure 1 presents the new program development struc-
ture that we believe is required. In what we refer to as the
GrADSoft architecture, the discrete steps of application
creation, compilation, execution, and postmortem analy-

GrADS PROJECT 331

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


sis are replaced with a continuous process of adapting ap-
plications to a changing Grid and to a specific problem in-
stance. Two key concepts are critical to the working of this
system. First, an application must be encapsulated as a
configurable object program, which can be optimized rap-
idly for execution on a specific collection of grid resources.
Second, the system relies on performance contracts that
specify the expected performance of modules as a function
of available resources. Our research and development ef-
fort has begun to address the various elements of this archi-
tecture. In the remainder of the paper, we summarize the
key ideas underlying the GrADS effort and explain in de-
tail the technical challenges to be addressed and the ap-
proach to be followed in each area.

GrADS Preparation System. The left side of Figure 1
depicts the tools used to construct configurable object pro-
grams. We expect that most application developers will use
high-level problem-solving environments to assemble grid
applications from a toolkit of domain-specific compo-
nents. Another path allows developers to build the special-
ized components that form these problem-solving environ-
ment toolkits (e.g., a library for solving partial differential
equations (PDEs) on computational grids) or to create new
modules for their specific problem domain.

In either scenario, modules are written in derivatives of
standard languages with grid-specific extensions (e.g.,
data or task distribution primitives). They are bound to-
gether into larger components, libraries, and applications

332 COMPUTING APPLICATIONS

“In our vision, the end user should be able
to specify applications in high-level,
domain-specific problem-solving
languages and expect these applications to
seamlessly access the Grid to find required
resources when needed.”

P
S
E

GrADS
Libraries

Appli-
cation

PCPC
PC

GrADS
Compiler

Software
Components

PC PC

Performance
Feedback Performanc

Contract
Violation

PCPC
PC

Config-
urable
Object

Program

Service
Negotiator

Scheduler

Negotiation

Realtime
Monitor

Dynamic
Optimizer

Grid
Runtime
System

GrADS Execution
Environment

GrADS Program
Preparation System

PC
Performance
Contract
Iterative
runtime process

Fig. 1 GrADS preparation and execution architecture

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


with a coordination language. This process creates mal-
leable modules, annotated with information about their
resource needs and predicted performance for a wide va-
riety of resource configurations.

The goal is to build tools that free the user from many
of the low-level concerns that arise in programming for
the Grid today, and to permit the user to focus on high-
level design and performance tuning for the heteroge-
neous distributed computing environment.

GrADS Execution Environment. When a con-
figurable object program is delivered to the execution en-
vironment, the GrADSoft infrastructure must first deter-
mine what resources are available and secure an appropri-
ate subset for the application. Using annotations from
performance contracts and results from compiler analy-
sis, service negotiators will broker the allocation and
scheduling of module components on grid resources.
Next, the infrastructure will invoke the dynamic
optimizer to tailor the reconfigurable object program for
good performance with the available resources. This step
will also insert sensors and actuators to help the perfor-
mance-monitoring system control application execution.

During program execution, a real-time monitor tracks
program behavior and validates observed behavior
against performance contract guarantees. Should a per-
formance contract be violated, the monitor will respond
by interrupting execution through an actuator, leading to
several possible actions. The actuator can invoke the dy-
namic optimizer with more information (from perfor-
mance monitoring) to improve program behavior in the
current execution context, negotiate a new execution con-
text in which the existing executable is more likely to sat-
isfy the old contract, or do both by negotiating a new con-
text and tailoring the executable for it. Dynamic forecasts
of resource performance and grid capacity will be used to
reduce renegotiation overhead. The goal of this closed-
loop system is to ensure that execution of the application
proceeds reliably, meeting the specifications of its per-
formance contracts, in the constantly changing grid en-
vironment.

3 Program Preparation System

Developing a parallel program for efficient execution on
the Grid currently requires a level of expertise that few
possess. Unless grid programming can be greatly simpli-
fied, the power of grid computing will be inaccessible to
many. To address this issue, the GrADS project is con-
ducting research on program preparation systems, focus-

ing on the design and construction of software that simpli-
fies building and running grid-enabled applications. To
simplify development of grid-enabled applications, we
are focusing on a methodology in which most users will
compose applications in a high-level, domain-specific
language built on preexisting component libraries. This
approach hides grid-level details and allows the user to
express a computation in terms that make sense to an ex-
pert in the application domain. Underneath the domain-
specific language, and supporting it, will be a layer of
software that manages the complex task of computing on
the Grid. This software, embedded in a collection of li-
braries, will include not only the base algorithms but also
composable performance models and dynamic mapping
strategies for each method. To manage heterogeneity and
the late binding of resources without sacrificing perfor-
mance, we are developing a dynamic optimizer that does
load-time code optimization.

For this approach to succeed, we are undertaking the
following scientific and technical challenges: (1) devel-
opment of programming models and compiler technol-
ogy to support efficient high-level programming; (2) de-
velopment of programming models that help library
writers cope with properties of the Grid such as variation
in latency and performance, or even failure; (3) design of
composable performance models for use in selecting re-
sources, in tailoring code to runtime resources, and in de-
tecting performance problems; (4) incorporation of par-
tial evaluation strategies in the GrADS compiler to
support rapid runtime tailoring for efficient execution;
and (5) investigation of the impact of essential activities
such as checkpointing, reporting, and monitoring on
overall performance and devising strategies to mitigate
these effects. These issues cannot be addressed at a chalk-
board. To find appropriate solutions, we have adopted a
methodology that includes extensive experimentation
and exploration in the context of the GrADS applications
effort.

By repeatedly moving solutions into prototype tools
and using these tools in the next generation of applica-
tions, we will refine our approaches and improve their ef-
fectiveness and usability.

A Framework for Grid Application Development.
A grid-programming system should make it easy for end
users to build applications that execute efficiently on the
Grid. Such a system should provide several ways to con-
struct applications. We expect that the most common ap-
proach will be to compose applications from prewritten,
domain-specific library components as is done with

GrADS PROJECT 333

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


CCAT (Gannon et al., 2000), Khoros (Khoral Software,
1998), SciRun (Casanova et al., 1999), and NetSolve (Ca-
sanova et al., 1999). These systems allow users to “script”
an application by configuring and composing software
components or services that run elsewhere into a single
distributed application. Scripts are either composed
graphically or written using a high-level scripting lan-
guage such as Python (Lutz, 1996) or Matlab (Hahn,
1997).

To bridge the gap between these comfortable, high-
level scripting languages and an efficient, grid-enabled
executable, we must develop a novel and effective compi-
lation system. Our strategy has two novel components: an
implementation technique for the domain-specific lan-
guages that we call telescoping languages and a tool for
load-time tailoring that we call the dynamic optimizer.

Telescoping languages. The telescoping-languages
approach (Kennedy et al., 2001) makes extensive use of
whole-program analysis and optimization to automate the
construction of extensible languages. We will build a sys-
tem called the TeleGen compiler, shown in Figure 2.
TeleGen will read an annotated, domain-specific library,
analyze it, and produce a customized optimizer that un-
derstands the library entry points (including their execu-
tion properties) as if they were native primitives in the
base language. It will also create a version of the library
that includes optimized versions of some entries.
TeleGen’s compilation approach builds on work in high-
level axiom-driven optimization (Menon and Pingali,
1999a, 1999b), call-site analysis and library routine im-
plementation selection (Guyer and Lin, 1999), and
interprocedural optimization of high-level languages
(DeRose and Padua, 1996; Chauveau and Bodin, 1999).

The resulting optimizer behaves as a compiler for a
new language—the base language (e.g., C) augmented
with the functions of the domain-specific language. In
this scheme, a domain-specific scripting language can be
implemented as a preprocessor that translates scripts into
base language programs that call the library components.
The optimizer should produce highly optimized code
from such an input. This implementation strategy can be
applied iteratively to several different levels of libraries—
telescoping them into one translator.

The success of the telescoping languages strategy de-
pends on the existence of sophisticated component librar-
ies that are specially prepared for grid execution by pro-
fessional library developers. (The challenges of
developing such libraries are detailed below.) These li-
braries will be annotated by the developers with mapping
strategies, performance models, hints on how to optimize

calls to individual components in various contexts, and al-
gebraic specifications of library operations (e.g.,
commutativity, transitivity, associativity) (Glen et al.,
1996) to facilitate high-level optimization.

A critical issue for this work is constructing TeleGen
so that the optimizers it generates can, themselves, pro-
duce configurable object programs suitable for use in the
GrADS execution system. The optimizer must under-
stand all of the components of a library—code, perfor-
mance model, and mapping strategy—and manipulate
them to create the configurable object program.

Research issues include the design of high-level
optimizers for the Grid, methods for selecting the right
code variants for a given collection of grid resources,
mechanisms for generating and managing the myriad
variants that the system will need, and the design of tools
to help the library designer build useful library annota-
tions.

Dynamic optimizer. The dynamic optimizer is a com-
ponent of the program preparation system that lives in the
execution environment. It is invoked at load time to tailor
the configurable object program to the actual runtime en-
vironment. The dynamic optimizer queries the target ma-
chine for configuration data, inserts the sensors and actu-
ators needed by the runtime system, and rewrites the ob-
ject program into an executable that will run efficiently on
the target machine. Deferring code generation into the dy-
namic optimizer should simplify configurable object pro-
grams, reduce their size, and provide more consistent op-
timization.

Libraries and Algorithms. Modeling, simulation,
and data-intensive computing have become staples of sci-
entific research. This has exposed the difficult aspects of
scientific computing to a broader audience of scientists
and engineers. While access to computing has improved
dramatically over the past decade, efficient scientific
computing still requires specialized knowledge in numer-
ical analysis, computer architectures, and programming
languages.

Many working researchers do not have the time, the
energy, or the inclination to acquire such expertise. Scien-
tists expect their computing tools to serve them, not the
other way around. Unfortunately, the growing desire to
tackle interdisciplinary problems with more realistic sim-
ulations on increasingly complex computing platforms
will only exacerbate the problem. The classic solution to
this problem was to encode the requisite expertise into
easily used libraries. Although traditional numerical li-
braries, such as LAPACK (Anderson et al., 1999), Ell-
pack (Houstis and Rice, 1990), ScaLAPACK (Blackford

334 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


et al., 1997), and PETSc (Balay et al., 2001), have brought
immense benefits, the radical changes occurring in scien-
tific computing are creating new challenges that these li-
braries, in their current form, cannot meet, despite the im-
mense benefits of such traditional numerical libraries.

To address the present and future challenges in scien-
tific computing, we are developing a new generation of
Self-Adapting Numerical Software (SaNS). We will de-
sign and build a framework for SaNS for numerical librar-
ies and algorithms. This system will operate as black-box
software, intended for use by domain scientists who need
not understand the algorithmic and programming com-
plexities it encapsulates. To manage the complexities of
the Grid and to adapt in ways that maximizes their effec-
tiveness, SaNS must encapsulate far more intelligence
than standard libraries. The work described below will
make it possible to produce a SaNS system that (1) auto-
matically analyzes the logical and numerical structure of
the data to allow the library to choose the best algorithmic
strategy for solving the problem; (2) embodies a set of
rules, progressively self-tuned over time, for choosing the
appropriate algorithm for a given linear system, based on
its analysis of the data and any hints provided by the user;
(3) encodes metadata about the user’s data, about its own
characteristics, and about the known implementations of
the algorithm it selects, so that the system can schedule the
computation effectively on the available resources; and (4)
uses a scripting language that generalizes the decision pro-
cedure that the SaNS follows and enables scientific pro-
grammers to easily make use of it.

Using SaNS libraries should improve the ability of
computational scientists to solve challenging problems ef-
ficiently—without requiring much extra-domain exper-
tise. As these innovations become generally available, they

GrADS PROJECT 335

TeleGen
Translator
Generator

Script
Translator

Enhanced
Language
Complier

Vendor
Optimizing
Complier

Domain
Library

Script
Optimized

Object
Program

Fig. 2 Telescoping languages

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


will create a dynamic computational environment that au-
tomatically selects and integrates the most effective li-
brary components for a given problem, data set, and col-
lection of resources. The SaNS metadata scheme will
allow us to capture this self-adaptive process in databases,
creating an indispensable resource for future library de-
velopers. Current numerical libraries, whose limitations
are increasingly obvious, are now threatened with obso-
lescence. This investigation will lay the foundation
needed to meet the challenging demands of computa-
tional science over the next decade.

4 Execution Environment
for Grid Applications

As explained earlier, our research seeks to allow future
grid applications to operate in highly dynamic environ-
ments, adapting their resource demands and behavior to
the environments in which they find themselves—and
also, when possible, adapting the environment to fit their
requirements.

The realization of this overall goal requires the devel-
opment of new mechanisms for information and control
flow between program preparation system, program, and
environment so that (1) information about the environ-
ment, and program behavior in that environment, can be
discovered and communicated to program components in
meaningful terms and (2) program requirements can be
communicated to the environment, and to program com-
ponents, in ways that allow effective control.

These two goals define, collectively, the purpose of the
GrADSoft execution environment. They have led us to fo-
cus our research in this area on three key issues, namely,
the protocols, services, and methods required to (1) dis-
cover and disseminate information about the dynamically
changing structure and state of grid resources (grid infor-
mation service); (2) select, allocate, and control collec-
tions of grid resources, and communicate requirements
among resource providers and consumers (resource man-
agement service); and (3) monitor and, as necessary, con-
trol adaptively an executing program. These protocols
and services represent what is sometimes called
middleware (Aiken et al., 2000): code that executes in the
network in support of applications. As in other areas of the
Grid, we are concerned with achieving a separation of
concerns between resource protocols that must be broadly
deployed and collective protocols and services that can be
localized in more application-specific code (Foster,
Kesselman, and Tuecke, 2001).

The following scenario illustrates some of the issues
that arise in the execution environment. We imagine the
program preparation system generating an executable im-
age, a set of performance requirements, and a budget for
executing the application that is expressed in some grid
currency. These latter two abstractions serve as the basis
of a performance contract between the application and the
resources it uses. The execution environment then
launches the program by submitting it to the application
monitoring and adaptive control service (service 3). To do
so, this system consults the grid information service (ser-
vice 1) to determine what resources are available and ap-
propriate, and the resource management service (service
2) to ensure that those resources are allocated for the exe-
cution, subject to demand and supply, respectively.

In pursuing these goals, we are working initially
within the context of the grid architecture defined by the
Globus Toolkit (Foster and Kesselman, 1999a), due to its
widespread adoption within the scientific community
and significant experience and code base. At the connec-
tivity and resource levels in a grid architecture, the Globus
Toolkit defines standard authentication and authorization
protocols, information service protocols, and resource
management protocols. At the collective level, it provides
resource discovery, brokering, and coallocation func-
tions. (Other relevant protocols and services are being
discussed within the Global Grid Forum, for example, for
event delivery.) The adoption of this framework has al-
lowed us to focus our attention on the central problems
(for us) of how to obtain, organize, and exploit monitoring
and control information, problems that can be expressed
in terms of interactions between cooperating services and
resources. Issues of security, resource access, and so on
can be relegated to Globus—and/or to complementary in-
dustrial standards and trends such as Jini (Waldo, 1999)
and the emerging peer-to-peer technology base (as is be-
ing pioneered by companies such as Entropia, CDDB
[http://www.cddb.com] [Casanova and Dongarra, 1997],
Napster [http://www.napster.com], and Parabon [http://
www.parabon.com]). The end result of this work will be
the definition of both a middleware architecture and spe-
cific new middleware services designed to support the
concerns of adaptive grid computations. We expect that
this work will result in feedback useful to the grid proto-
cols and services R&D community.

In the following, we expand on each of the three points
noted above, indicating in each case the nature of the pri-
mary research challenges.

336 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Grid Information Service. To provide the functional-
ity needed for negotiation and scheduling, the execution
environment must be able to obtain information about the
resources available for application use. A wide variety of
information can conceivably be of interest, for example,
hardware configuration, measured load, access control
policies, application performance data, power consump-
tion (Narayanan, Flinn, and Satyanarayanan, 2000), esti-
mates of nonobservable system properties, and predic-
tions of future states (Wolski, 1997; Dinda and
O’Hallaron, 1999; Smith, Foster, and Taylor, 1998;
Downey, 1997; Narayanan, Flinn, and Satyanarayanan,
2000; Kapadia, Fortes, and Brodley, 1999). Our goals in
the GrADS project are as follows: develop an integrated
framework in which these many different types of infor-
mation can be used in a coordinated and uniform fashion;
conduct a broad exploration of how different sorts of in-
formation can be produced and used; and produce a set of
effective techniques for information collection, analysis,
and application.

In previous work, we established frameworks for pro-
viding uniform access to, and indexing of, diverse infor-
mation sources (the Globus MDS) (Fitzgerald et al.,
1997; Czajkowski et al., 2001); for collecting experimen-
tal data and using this data to generate forecasts of future
state (the Network Weather Service) (Wolski, 1997); and
for structuring networks of sensors and transformers to
support adaptive control (Autopilot) (Reed and Ribler,
1999). Each of these systems has been proven effective in
various experimental and, in some cases (e.g., MDS),
large-scale deployments. Within GrADS, we are building
on this infrastructure, integrating these diverse elements
and extending them in major ways. We are developing
new services, including distributed event management,
new methods of measuring and predicting components of
system state, methods for discovering and maintaining
relevant information about resources of interest in the ex-
ecution environment, robust and scalable publication
methods, methods that can deal effectively with both
measured and dynamically derived data, and methods for
information service discovery in widely distributed, dy-
namic environments (van Steen et al., 1998; Czerwinski
et al., 1999; Guttman et al., 1998; Howes and Smith,
1995). We are also addressing the question of how to rep-
resent our degree of confidence in data and security con-
cerns relating to dissemination of data.

Grid Resource Management Service. The execution
environment must also provide the ability to reserve, allo-
cate, configure, and manage collections of resources that

match an application’s needs. Building on elements of the
Globus resource management architecture (Czajkowski
et al., 1998), which provides secure remote access and
reservation mechanisms (Foster et al., 1999), we are de-
veloping new coreservation and coallocation algorithms
capable of dealing with resources with dynamic
and probabilistic properties, integrating performance
contracts (see next paragraph) into resource reservation
and resource operations, integrating traditional quality of
service methods into resource management frameworks,
and mapping compiler-derived and library-derived per-
formance information into global resource reservation
and allocation services.

A major goal of our work in this area is to explore and
understand the nature of the language that should be used
to share complex, multidimensional requirements and
performance data between resource providers and con-
sumers. To that end, we are investigating the design of a
language of performance contracts to enable dynamic ne-
gotiation between resource providers and consumers. A
performance contract maps a set of resources and a set of
application resource needs to a specified performance
level—to satisfy the contract, the assigned resources and
the application must behave as specified.

Our approach to performance contracts derives them
from a performance model provided by the configurable
object program and a set of resource performance charac-
teristics culled from the grid information service. The ser-
vice negotiator (which is logically part of the application
monitoring and adaptive control service) brokers perfor-
mance contracts between applications and resources. It
uses the information and reservation services to find
available resources, select a set that matches the predicted
needs of the application, and make any needed reserva-
tions. As a part of our research, we have begun to develop
a theory of performance contracts and service negotiation
that can be adapted to the varying behavior of the Grid.
Matchmaking techniques may be relevant here (Livny,
1998; see also Subhlok, Lieu, Lowekamp, 1999).

Building on this framework, we will investigate more
dynamic resource-brokering mechanisms based on the
use of economic models (e.g., bidding, cost negotiation,
dynamic pricing) as a basis for arbitrating between com-
peting resource demands. We plan to study both auction-
based and commodity-based formulations of the perfor-
mance economies. Auction-based systems are attractive
because of their scalability, but it can be shown that com-
modity-based (but not auction-based) economies achieve
both equilibrium and stability (Waldspurger et al., 1992;

GrADS PROJECT 337

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Smale, 1976). Because grid applications must adapt to
changing performance conditions, overall system stabil-
ity is an important concern.

Application Monitoring and Adaptive Control Ser-
vice. Work in the two areas just listed will provide a pow-
erful, extensible framework for communicating require-
ments, various information, and control functions be-
tween applications, intermediate brokering functions, and
resources. The third area in which we are working is
building on this framework to construct a closed-loop
control system, called the application execution monitor,
that uses various dynamic performance information
sources to guide an application to completion despite per-
formance variations in the underlying resource base, via a
process of adaptive control of both application behavior
and resource demands.

To enable such adaptation, the execution monitor de-
pends on the dynamic optimizer (which will be developed
in conjunction with the program preparation system) to
insert the sensors and actuators that allow it to manage the
execution. The dynamic optimizer, invoked just prior to
execution, also instantiates the final performance contract
according to the rules of the resource economy that is in
place.

The Autopilot system (Ribler and Reed, 1997; Reed et
al., 1996; Reed and Ribler, 1999) embodies several of the
ideas on which we will build our distributed monitoring
systems. Autopilot sensors, inserted in application or li-
brary code, can capture application or system character-
ization metrics. When an application executes, the em-
bedded sensors register with a directory service provided
by an Autopilot manager. Sensor clients can then query
the manager to locate sensors with specific properties and
receive measurement information directly from these sen-
sors. Sensors, managers, and sensor clients can execute
anywhere on the Grid.

Atop this substrate, the key research issue is develop-
ing techniques to decide how and when a performance
contract has been violated (e.g., managing temporal vari-
ation and distributed contract testing) and how to respond
to the violation in order to maximize application perfor-
mance. To carry out this plan, we are investigating new
strategies that allow the compiler, scheduler, runtime sys-
tem, and other components to extract, cooperatively and
nonintrusively, pertinent information from the running
application.

Our preliminary experiments with performance con-
tracts (Vraalsen et al., 2001) indicate that this is a fruitful
approach. Using Autopilot’s fuzzy logic decision proce-
dures, it was possible to detect local perturbations in pro-

cessor and network availabilities during application exe-
cution. The current focus of our work is to extend these
tests to encompass the temporal and global contract as-
pects mentioned above.

5 Understanding Grid
Software Behavior

The long-term success of our grid software research
agenda requires that we develop design methodologies
that allow systematic design and evaluation of depend-
able, robust, and scalable grid services and applications
software. Unfortunately, such design methodologies are
currently totally lacking. It is no exaggeration to say that
grid services and software are designed and characterized
today largely based on the designer’s intuition and on ad
hoc experimentation with little knowledge of when they
will fail catastrophically. We view this as completely un-
satisfactory and adopt as our long-term research goal the
development of an experimental methodology for charac-
terizing grid software that allows us to evaluate and pre-
dict the performance, fault tolerance, and scalability of
middleware services.

As an important first step toward the development of
such design methodologies, we are developing and de-
ploying two major test beds and associated tool suites de-
signed to provide both soft (configurable) and hard
(fixed) environments for exploring dynamic grid behav-
iors. Our goal in this work is to enable systematic study
and, ultimately, understanding of the dynamic behavior of
grid resources, middleware, and applications.

These tool test beds and tool suites are referred to as
the MicroGrid and MacroGrid test beds. Both share the
use of Globus services as a unifying computational envi-
ronment. They differ in terms of the degree of con-
figurability and realism they offer. The use of a common
environment means that programs can be run without
change on both test beds, hence allowing comparative
studies.

The MicroGrid test bed, which runs on clusters of PCs
or workstations, provides tools that use a combination of
simulation and direct execution techniques to produce a
repeatable, observable test bed for grid experiments. Ma-
jor challenges include the following:

• Fidelity in Grid resource modeling. The modeling of
computation, storage, and networking resources faith-
fully, across a range of resource requirements and exe-
cution speeds. Scalable online network simulation is a
critical challenge—and differs from the offline simu-

338 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


lation efforts generally studied by the networking re-
search community.

• Representative background load modeling. Under-
standing what interaction of background and fore-
ground load is critical to representative behavior. This is
essential to all aspects of resource modeling, including
computation, storage, and network systems.

• Efficiency and scalability. Achieving efficient simula-
tion to enable study of long periods of behavior, and
scalability to achieve the study of large systems—
which often exhibit different behavior.

As part of the GrADS effort, we have constructed and
are experimenting with a number of generations of the
MicroGrid tools (Song et al., 2000), exhibiting a succes-
sion of greater capabilities. These efforts are integrating
our novel research efforts with relevant efforts developed
in the community.

The second major infrastructure, the MacroGrid, inte-
grates computational and network resources at the GrADS
institutions to serve as a realistic (although less con-
figurable) experimental test bed. This test bed provides a
more controlled environment, and likely a much higher de-
gree of instrumentation and data capture, than is possible
in typical grid environments. This test bed is being used for
the initial application experiments discussed in the next
section and to validate MicroGrid simulations.

Future efforts will focus on developing an experimental
methodology for characterizing grid software in a manner
that allows accurate evaluation of the software’s behavior
before deployment. A further goal of this work is to under-
stand how to characterize a regime of behavior and also to
identify those regimes for which behavior is poor, or at
least uncharacterized. Possible approaches include statisti-
cal sampling, perturbation analysis, and enforcement of
behavioral constraints (e.g., linearity) on software.

6 Research Methodology
and Progress

The GrADS research and development activities are orga-
nized as three parallel, interdependent thrusts: basic re-
search, test bed development, and application evaluation.
The basic research thrust began by defining performance
contracts, exploring adaptivity (both experimentally and
theoretically), and creating initial prototypes of the
GrADS development and execution environment. A key
step in this effort was the investigation of two application
prototypes discussed in other papers within this volume: a
distributed version of the ScaLAPACK linear system

GrADS PROJECT 339

“Future efforts will focus on developing
an experimental methodology for
characterizing grid software in a manner
that allows accurate evaluation of the
software’s behavior before deployment.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


solver (Petitet et al., 2001) and a grid-enabled version of
Cactus (Allen et al., 2000; Allen et al., 2001; Ripeanu,
Iamnitchi, and Foster, 2001), a powerful modular toolkit
for the construction of parallel solvers for partial differen-
tial equations. With knowledge gleaned from these ef-
forts, the research thrust has begun to explore an inte-
grated approach to grid software development that
emphasizes compile-time and runtime information shar-
ing between algorithms, compilers, tools, and libraries.

The test bed development thrust has embarked on the
creation of a substantive GrADS software toolkit
(GrADSoft) that provides a basis for experimental verifi-
cation of our ideas and for technology transfer. Exploiting
the core infrastructure provided by Globus and software
components from our AppLeS, the Network Weather Ser-
vice, Autopilot, NetSolve, D95, and scalar compiler sys-
tems, the GrADSoft prototype will eventually bring to-
gether an increasingly sophisticated set of languages,
libraries, compilers, schedulers, service negotiators, and
performance tools.

Finally, in concert with our PACI, ASCI, and other
partners, the evaluation thrust will use the emerging
GrADSoft prototype to develop and assess grid-enabled
applications. This evaluation will couple the basic re-
search and test bed efforts and provide a blueprint for a
powerful technology transfer mechanism for the GrADS
project and possible extensions thereof. The Cactus ex-
periment, alluded to above, is an example of this ap-
proach.

In brief, the research, test bed, and application evalua-
tion thrusts are linked in a tight cycle of exploration, de-
velopment, and experimental validation that focuses re-
search on problems that are both important and practical.

7 Summary

The GrADS project has established an effort to pioneer
technologies that will be needed for ordinary scientific us-
ers to develop applications for the Grid. These technolo-
gies will include a new program preparation framework
and an execution environment that employs continuous
monitoring to ensure that reasonable progress is being
made toward completion of a computation.

Based on preliminary efforts to develop grid-enabled
versions of the ScaLAPACK linear solver and the Cactus
toolkit, we have begun construction of the GrADSoft in-
frastructure, which will provide generic mechanisms for
initiating and monitoring the execution of applications on
the Grid. In addition, the project has developed and de-
fined the concept of a configurable object program, which

includes the resource-mapping and performance-model-
ing components necessary for use in the GrADS
execution system. Finally, we constructed two major test
beds (MicroGrid and MacroGrid) to support experimen-
tation with grid execution and monitoring technologies.

In the future, we plan to address the programmability
problem through the development of frameworks for gen-
erating high-level, domain-specific problem-solving sys-
tems based on libraries of grid-aware components. These
libraries are the subject of a major research thrust of the
GrADS effort. Over the long term, we believe that a sys-
tem such as the one being constructed by GrADS can dra-
matically increase the impact of the Grid by making it ac-
cessible to the entire science and engineering community.

ACKNOWLEDGMENTS

This material is based on work supported by the National Sci-
ence Foundation (NSF) (9975020). The authors would like to
thank Frederica Darema, manager of the NSF Next Generation
Software Program, which provides GrADS funding, for her
constant support of our effort and her intellectual contributions
to the ideas underlying the GrADS project. In addition, we
would like to thank the many participants (research staff and stu-
dents) in the GrADS project who have contributed to the devel-
opment of the ideas and systems described in this paper.

BIOGRAPHIES

Francine Berman is director of the San Diego Supercom-
puter Center, director of the National Partnership for Advanced
Computational Infrastructure, professor of computer science
and engineering at the University of California, San Diego
(UCSD), fellow of the Association for Computing Machinery,
and director of the Grid Computing Laboratory at UCSD. Her
research interests over the past two decades have focused on
parallel and distributed computation, in particular the areas of
programming environments, tools, and models that support
high-performance computing. Her current research focuses on
the development of performance-oriented software, models,
and applications for networked heterogeneous distributed re-
sources, also known as computational Grids or Metasystems.
She has served on numerous boards and program and confer-
ence committees, providing expertise in the areas of parallel
computing and grid computing. She received a B.A. from the
University of California, Los Angeles, in 1973. She obtained an
M.S. and a Ph.D. in computer science from the University of
Washington in 1976 and 1979, respectively.

Andrew Chien is the Science Applications International Cor-
poration chair professor in the Department of Computer Science
and Engineering at the University of California, San Diego. He
is also the chief technology officer and cofounder of Entropia
Inc. He received his undergraduate, master’s, and doctoral de-
grees from the Massachusetts Institute of Technology in 1984,

340 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


1987, and 1990, respectively. From 1990 to 1998, he was a fac-
ulty member in the Department of Computer Science at the Uni-
versity of Illinois and a senior research scientist in the National
Center for Supercomputing Applications. He is also a recipient
of a 1994 National Science Foundation Young Investigator
Award, a 1995 C. W. Gear Outstanding Faculty Award, and a
1996 Xerox Outstanding Research Award.

Keith Cooper is a professor in the Department of Computer
Science at Rice University. His research has focused on tech-
niques for compiler-based optimization and code generation.
This has led him into work on interprocedural analysis and opti-
mization, code generation, optimization methods for
uniprocessor machines, and the application of classical optimi-
zation techniques in very high speed integrated circuit hardware
description language (VHDL) compilation. His current interests
include adaptive compilers, binary translation, techniques for
reducing power consumption, and code generation for aggres-
sive microprocessors. He is a coauthor of Engineering a Com-
piler (with Linda Torczon), which will be published in 2002 by
Morgan-Kaufmann.

Jack Dongarra holds an appointment as university distin-
guished professor of computer science in the Computer Science
Department at the University of Tennessee and is an adjunct
R&D participant in the Computer Science and Mathematics Di-
vision at Oak Ridge National Laboratory and an adjunct profes-
sor in computer science at Rice University. He specializes in nu-
merical algorithms in linear algebra, parallel computing, use of
advanced-computer architectures, programming methodology,
and tools for parallel computers. His research includes the de-
velopment, testing, and documentation of high-quality mathe-
matical software. He has contributed to the design and imple-
mentation of the following open source software packages and
systems: EISPACK, LINPACK, the BLAS, LAPACK,
ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS,
and PAPI. He has published approximately 200 articles, papers,
reports, and technical memoranda, and he is coauthor of several
books. He is a fellow of the American Association for the Ad-
vancement of Science, the Association for Computing Machin-
ery, and the Institute of Electrical and Electronics Engineers,
and a member of the National Academy of Engineering.

Ian Foster is senior scientist and associate director of the
Mathematics and Computer Science Division at Argonne Na-
tional Laboratory, professor of computer science at the Univer-
sity of Chicago, and senior fellow in the Argonne/University of
Chicago Computation Institute. He has published four books
and more than 100 papers and technical reports in parallel and
distributed processing, software engineering, and computa-
tional science. He currently coleads the Globus project with Carl
Kesselman of the University of Southern California/Informa-
tion Sciences Institute, which won the 1997 Global Information
Infrastructure Next Generation Award and provides protocols
and services used by many distributed computing projects
worldwide. He cofounded the influential Global Grid Forum

and recently coedited a book on this topic, published by Mor-
gan-Kaufmann, titled The Grid: Blueprint for a New Computing
Infrastructure.

Dennis Gannon is a professor in the department of computer
science at Indiana University, which he also chairs. His previous
positions include the Department of Computer Science at
Purdue University and Center for Supercomputer Research and
Development at the University of Illinois. He is a founding
member of the Department of Energy 2000 Common Compo-
nent Architecture software tools group and the National Center
for Supercomputing Applications Alliance, where he is chief
computer scientist. He also helped found the Java Grande Fo-
rum. His current research interests involve the construction of
distributed applications based on software component technol-
ogy, the integration of parallel and distributed programming
systems, the design of problem-solving workbenches, and dis-
tributed grid services. He is also the science directory for the
Pervasive Technology Labs at Indiana University.

Lennart Johnsson is Hugh Roy and Lillie Cranz Cullen Dis-
tinguished Professor of Computer Science, Mathematics and
Electrical and Computer Engineering, College of Natural Sci-
ences and Mathematics and College of Engineering, University
of Houston.

Ken Kennedy is the Ann and John Doerr professor of compu-
tational engineering and director of the Center for High Perfor-
mance Software Research (HiPerSoft) at Rice University. He is
a fellow of the Institute of Electrical and Electronics Engineers
(IEEE), the Association for Computing Machinery (ACM), and
the American Association for the Advancement of Science, and
has been a member of the National Academy of Engineering
since 1990. From 1997 to 1999, he served as cochair of the Pres-
ident’s Information Technology Advisory Committee (PITAC).
For his leadership in producing the PITAC report on funding of
information technology research, he received the Computing
Research Association Distinguished Service Award (1999) and
the RCI Seymour Cray HPCC Industry Recognition Award
(1999). He has published more than 150 technical articles and
supervised 34 Ph.D. dissertations on programming support soft-
ware for high-performance computer systems. In recognition of
his contributions to software for high performance computation,
he received the 1995 W. Wallace McDowell Award, the highest
research award of the IEEE Computer Society. In 1999, he was
named the third recipient of the ACM SIGPLAN Programming
Languages Achievement Award.

Carl Kesselman is a senior project leader at the Information
Sciences Institute and a research associate professor of com-
puter science, both at the University of Southern California. He
is also a visiting associate in computer science at the California
Institute of Technology. He received a Ph.D. in computer sci-
ence from the University of California, Los Angeles, in 1991.
He currently coleads the Globus project with Ian Foster of
Argonne National Laboratory/University of Chicago, which
won the 1997 Global Information Infrastructure Next Genera-

GrADS PROJECT 341

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


tion Award and provides protocols and services used by many
distributed computing projects worldwide. He recently coedited
a book on this topic, published by Morgan-Kaufmann, titled The
Grid: Blueprint for a New Computing Infrastructure.

John Mellor-Crummey earned a B.S.E. degree magna cum
laude in electrical engineering and computer science from
Princeton University in 1984, and M.S. (1986) and Ph.D. (1989)
degrees in computer science from the University of Rochester.
In 1989, he joined the Department of Computer Science and the
Center for Research on Parallel Computation (CRPC) at Rice
University, where he currently holds the rank of senior faculty
fellow. He was a member of the technical steering committee of
the CRPC, a National Science Foundation Science and Technol-
ogy Center, and is currently a member of the executive commit-
tee for the Los Alamos Science Institute—a joint venture be-
tween Los Alamos National Laboratory and Rice University. In
recent years, his research has focused on compilers, runtime li-
braries, and programming environments for parallel processing.
He is most widely known for multiprocessor synchronization al-
gorithms he developed with Michael Scott (University of Roch-
ester). Over the past several years, he has led the dHPF compiler
project, a long-term research effort that has focused on develop-
ing compiler and tool technology to support construction of effi-
cient data-parallel scientific applications. He is a member of Tau
Beta Pi and Phi Beta Kappa.

Dan Reed is director of the National Center for Super-
computing Applications and the National Computational Sci-
ence Alliance, one of two National Science Foundation PACI
partnerships. He is also an Edward William Gutgsell and Jane
Marr Gutgsell professor at the University of Illinois at Urbana-
Champaign. He received a B.S. (summa cum laude) in computer
science from the University of Missouri at Rolla in 1978 and an
M.S. and a Ph.D., also in computer science, from Purdue Uni-
versity in 1980 and 1983, respectively. He is a member of several
national collaborations, including the Center for Grid Applica-
tion Development Software, the Department of Energy Acceler-
ated Strategic Computing Initiative and the Scientific Discovery
through Scientific Computing program, and the Los Alamos
Computer Science Institute. He also serves on the board of di-
rectors of the Computing Research Association.

Linda Torczon is a research scientist in the Department of
Computer Science at Rice University. She is the executive direc-
tor of the Los Alamos Computer Science Institute and the Grid
Application Development Software project funded by the Na-
tional Science Foundation (NSF). She also served as executive
director of the Center for Research on Parallel Computation, an
NSF Science and Technology Center, from 1990 to 2000. Her
research interests include code generation, adaptive compila-
tion, interprocedural data flow analysis and optimization, and
programming environments. Techniques that she developed are
widely used in industrial and research compilers. She is the co-
author of Engineering a Compiler (with Keith Cooper), which
will be published in 2002 by Morgan-Kaufmann.

Rich Wolski is an assistant professor of computer science at
the University of California, Santa Barbara. His research inter-
ests include computational grid computing, distributed comput-
ing, scheduling, and resource allocation. In addition to the
EveryWare project, he leads the Network Weather Service pro-
ject, which focuses on online prediction of resource perfor-
mance, and the G-Commerce project, which focuses on compu-
tational economies for the Grid.

REFERENCES

Aiken, R., Carey, M., Carpenter, B., Foster, I., Lynch, C.,
Mambretti, J., Moore, R., Strasnner, J., and Teitelbaum, B.
2000. Network Policy and Services: A Report of a Workshop
on Middleware. IETF RFC 2768. Available: http://
www.ietf.org/rfc/rfc2768.txt.

Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C.,
Radke, T., Seidel, E., and Shalf, J. 2001. The Cactus Worm:
Experiments with dynamic resource discovery and alloca-
tion in a grid environment. International Journal of High
Performance Computer Applications 15:345-358.

Allen, G., Benger, W., Goodale, T., Hege, H., Lanfermann, G.,
Merzky, A., Radke, T., and Seidel, E. 2000. The Cactus code:
A problem solving environment for the grid. In Proceedings
of the Ninth IEEE International Symposium on High Perfor-
mance Distributed Computing, 253-260. Pittsburgh, PA:
IEEE Computer Society Press.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., and Sorensen, D. 1999. LAPACK Users’
Guide. 3rd ed. Philadelphia: SIAM.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. 2001.
PETSc users’ manual. Technical Report ANL-95/11, Revi-
sion 2.1.0, Argonne National Laboratory.

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.,
Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A.,
Stanley, K., Walker, D., and Whaley, R. 1997. ScaLAPACK
Users’ Guide. Philadelphia: SIAM.

Casanova, H., and Dongarra, J. 1997. NetSolve: A network-en-
abled server for solving computational science problems. In-
ternational Journal of High Performance Computing Appli-
cations 11:212-223.

Casanova, H., Dongarra, J., Johnson, C., and Miller, M. 1999.
Application-specific tools. In The Grid: Blueprint for a New
Computing Infrastructure, edited by I. Foster and C. Kessel-
man, 159-180. San Francisco: Morgan Kaufmann.

Chauveau, S., and Bodin, F. 1999. Menhir: An environment for
high performance Matlab. Scientific Programming 7:303-
312.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and
Tuecke, S. 2000. The Data Grid: Towards an architecture for
the distributed management and analysis of large scientific
data sets. Journal of Network and Computer Applications
23:187-200.

Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C.
2001. Grid information services for distributed resource

342 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


sharing. In Proceedings of the 10th IEEE Symposium on
High-Performance Distributed Computing (HPDC). IEEE
Computer Society Press.

Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin,
S., Smith, W., and Tuecke, S. 1998. A resource management
architecture for metacomputing systems. In Proceedings of
the Fourth Workshop on Job Scheduling Strategies for Paral-
lel Processing.

Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., and
Katz, R. H. 1999. An architecture for a secure service discov-
ery service. In Mobicom ’99. ACM Press.

DeFanti, T., Foster, I., Papka, M., Stevens, R., and Kuhfuss, T.
1996. Overview of the I-WAY: Wide-area visual super-
computing. International Journal of High Performance
Computing Applications 10:123-130.

DeRose, L., and Padua, D. 1996. A MATLAB to Fortran 90
translator and its effectiveness. In Proceedings of the 10th In-
ternational Conference on Supercomputing, May.

Dinda, P., and O’Hallaron, D. 1999. An evaluation of linear
models for host load prediction. In Proceedings of the 8th
IEEE Symposium on High-Performance Distributed Com-
puting (HPDC). IEEE Computer Society Press.

Downey, A. 1997. Predicting Queue Times on Space-Sharing
Parallel Computers. In Proceedings of the International Par-
allel Processing Symposium.

Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G.,
Smith, W., and Tuecke, S. 1997. A directory service for con-
figuring high-performance distributed computations. In Pro-
ceedings of the Sixth IEEE Symposium on High-Perfor-
mance Distributed Computing, pp. 365-375.

Foster, I., Geisler, J., Nickless, W., Smith, W., and Tuecke, S.
1998. Software infrastructure for the I-WAY metacomputing
experiment. Concurrency: Practice and Experience
10(7):567-581.

Foster, I., and Kesselman, C. 1999a. The Globus Toolkit. In The
Grid: Blueprint for a New Computing Infrastructure, edited
by I. Foster and C. Kesselman, 259-278. San Francisco:
Morgan Kaufmann.

Foster, I., and Kesselman, C. 1999b. The Grid: Blueprint for a
New Computing Infrastructure. San Francisco: Morgan
Kaufmann.

Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., and
Roy, A. 1999. A distributed resource management architec-
ture that supports advance reservations and co-allocation. In
Proceedings of the International Workshop on Quality of
Service, pp. 27-36.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of
the Grid: Enabling scalable virtual organizations. Interna-
tional Journal of High-Performance Computing Applica-
tions 15:200-220.

Gabriel, E., Resch, M., Beisel, T., and Keller, R. 1998. Distrib-
uted computing in a heterogenous computing environment.
In Proceedings of EuroPVMMPI’98.

Gannon, D., Bramley, R., Govindaraju, M., Mukhi, N., Yechuri,
M., and Temko, B. 2000. A componentized services archi-
tecture for building distributed grid applications. In Proceed-

ings of Ninth IEEE International Symposium on High Per-
formance Distributed Computing, Pittsburgh, PA.

Gannon, D., and Grimshaw, A. 1999. Object-based approaches.
The Grid: Blueprint for a New Computing Infrastructure, ed-
ited by I. Foster and C. Kesselman, 205-236. San Francisco:
Morgan Kaufmann.

Grimshaw, A. S., Wulf, W. A., and the Legion Team. 1997. The
legion vision of a worldwide virtual computer. Communica-
tions of the ACM 40(1):39-45.

Guttman, E., Perkins, C., Veizades, J., and Day, M. 1998. Ser-
vice Location Protocol Version 2. IETF RFC 2165. Avail-
able: http://www.ietf.org/rfc/rfc2165.txt.

Guyer, S., and Lin, C. 1999. An annotation language for opti-
mizing software libraries. In Proceedings of the Second Con-
ference on Domain-Specific Languages, October.

Hahn, B. 1997. Essential MATLAB for Scientists and Engineers.
London: Arnold.

Houstis, E., and Rice, J. 1990. Ellpack: An expert system for
parallel processing of partial differential equations. In Intel-
ligent Mathematical Software Systems, E. N. Houstis et al.,
eds., 253-260. Holland: Elsevier Science Publishers.

Howes, T. A., and Smith, M. 1995. A scalable, deployable direc-
tory service framework for the Internet. Technical Report 95-
7, Center for Information Technology Integration, Univer-
sity of Michigan.

Johnston, W. E., Gannon, D., and Nitzberg, B. 1999. Grids as
production computing environments: The engineering as-
pects of NASA’s Information Power Grid. In Proceedings of
the 8th IEEE Symposium on High-Performance Distributed
Computing (HPDC). IEEE Computer Society Press.

Kapadia, N. H., Fortes, J.A.B., and Brodley, C. E. 1999. Predic-
tive application-performance modeling in a computational
grid environment. In Proceedings of the 8th IEEE Sympo-
sium on High-Performance Distributed Computing
(HPDC), August.

Kennedy, K., Broom, B., Cooper, K., Dongarra, J., Fowler, R.,
Gannon, D., Johnsson, L., Mellor-Crummey, J., and
Torczon, L. 2001. Telescoping languages: A strategy for au-
tomatic generation of scientific problem-solving systems
from annotated libraries. Journal of Parallel and Distributed
Computing.

Khoros Pro Version 2.2. 1998. Khoral Software.
Kimura, T., and Takemiya, H. 1998. Local area metacomputing

for multidisciplinary problems: A case study for fluid/struc-
ture coupled simulation. In Proceedings of the International
Conference on Supercomputing, pp. 145-156.

Livny, M. 1998. Matchmaking: Distributed resource manage-
ment for high throughput computing. In Proceedings of the
Seventh IEEE International Symposium on High Perfor-
mance Distributed Computing.

Livny, M. 1999. High-throughput resource management. In The
Grid: Blueprint for a New Computing Infrastructure, edited
by I. Foster and C. Kesselman, 311-337. San Francisco:
Morgan Kaufmann.

Lutz, M. 1996. Programming Python. Sebastopol, CA: O’Reilly &
Associates.

GrADS PROJECT 343

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Lyster, P., Bergman, L., Li, P., Stanfill, D., Crippe, B., Blom, R.,
Pardo, C., and Okaya, D. 1992. CASA gigabit super-
computing network: CALCRUST three-dimensional real-
time multi-dataset rendering. In Proceedings of Super-
computing ’92, Minneapolis, MN, November (poster
session).

Menon, V., and Pingali, K. 1999a. A case for source-level trans-
formations in MATLAB. In Proceedings of the Second Con-
ference on Domain-Specific Languages, October, pp. 53-65.

Menon, V., and Pingali, K. 1999b. High-level semantic optimi-
zation of numerical codes. In Proceedings of the Interna-
tional Conference on Supercomputing, pp. 434-443.

Narayanan, D., Flinn, J., and Satyanarayanan, M. 2000. Using
history to improve mobile application adaptation. In Pro-
ceedings of the Third Workshop on Mobile Computing Sys-
tems and Applications, December.

Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G.,
Roche, K., and Vadhiyar, S. 2001. Numerical libraries and
the Grid. International Journal of Supercomputer Applica-
tions 15:359-374.

Reed, D., Elford, C., Madhyastha, T., Smirni, E., and Lamm, S.
1996. The next frontier: Interactive and closed loop perfor-
mance steering. In Proceedings of the 1996 International
Conference on Parallel Processing Workshop, August,
pp. 20-31.

Reed, D., and Ribler, R. L. 1999. Performance analysis and visu-
alization. In The Grid: Blueprint for a New Computing Infra-
structure, edited by I. Foster and C. Kesselman, 367-394.
San Francisco: Morgan Kaufmann.

Ribler, R., and Reed, D. 1997. The Autopilot performance-
directed adaptive control system. In Proceedings of the 11th
ACM International Conference on Supercomputing—
Workshop on Performance Data Mining: Automated Diag-
nosis, Adaption and Optimization, Vienna, Austria, July.

Ripeanu, M., Iamnitchi, A., and Foster, I. 2001. Performance
predictions for a numerical relativity package in grid envi-
ronments. International Journal of High Performance Com-
puting Applications 15:375-387.

Sheehan, T., Shelton, W., Pratt, T., Papadopoulos, P., LoCascio,
P., and Dunigan, T. 1998. Locally self consistent multiple

scattering method in a geographically distributed linked
MPP environment. Parallel Computing 24:1827-1846.

Smale, S. 1976. Dynamics in general equilibrium theory. Amer-
ican Economic Review 66:284-294.

Smith, W., Foster, I., and Taylor, V. 1998. Predicting application
run times using historical information. In 4th Workshop on
Job Scheduling Strategies for Parallel Processing.

Song, H. J., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X.,
Taura, K., and Chien, A. 2000. The MicroGrid: A scientific
tool for modeling computational grids. In SC2000.

Stevens, R., Woodward, P., DeFanti, T., and Catlett, C. 1997.
From the I-WAY to the national technology Grid. Communi-
cations of the ACM 40 (11): 50-60.

Subhlok, J., Lieu, P., and Lowekamp, B. 1999. Automatic node
selection for high performance applications on networks. In
Proceedings of the Seventh ACM SIGPLAN Symposium on
the Principles and Practice of Parallel Programming
(PPoPP’99), 163-172. ACM Press.

van Steen, M., Hauck, F., Homburg, P., and Tanenbaum, A.
1998. Location objects in wide-area systems. IEEE Commu-
nications Magazine, pp. 104-109.

Vraalsen, F., Aydt, R., Mendes, C., and Reed, D. 2001. Perfor-
mance contracts: Predicting and monitoring grid application
behavior. In Proceedings of the Second IEEE/ACM Interna-
tional Workshop on Grid Computing, November.

Waldo, J. 1999. The Jini architecture for network-centric com-
puting. Communications of the ACM 42 (7): 76-82.

Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J. O.,
and Stornetta, W. S. 1992. Spawn: A distributed computa-
tional economy. IEEE Transactions on Software Engi-
neering 18:103-117.

Weaver, G. E., McKinley, K. S., and Weems, C. C. 1996. Score:
A compiler representation for heterogeneous systems. In
Proceedings of the 1996 Heterogeneous Computing Work-
shop, Honolulu, HI, April.

Wolski, R. 1997. Dynamically forecasting network perfor-
mance to support dynamic scheduling using the Network
Weather Service. In Proceedings of the Sixth IEEE Sympo-
sium on High-Performance Distributed Computing, August.

344 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/

