
Parallel Processing Letters, Vol. 11, Nos. 2 & 3 (2001) 187-202 
© World Scientific Publishing Company 

ON THE CONVERGENCE OF COMPUTATIONAL 
A N D DATA GRIDS 

DORIAN C. ARNOLD, SATHISH S. VAHDIYAR and JACK J. DONGARRA 

Computer Science Department, University of Tennessee, 1122 Volunteer Boulevard, 
Knoxville, TN 37923-3450, USA 

E-mail: [darnold, vss, dongarra] ©cs.utk.edu 

Received March 2001 
Revised June 2001 

Accepted by B. Tourancheau Sz 3. Dongarra 

ABSTRACT 

Great advances in high-performance computing have given rise to scien­
tific applications that place large demands on software and hardware infras­
tructures for both computational and data services. With these trends the 
necessity has emerged for distributed systems developers that once distin­
guished between these elements to acknowledge that indeed computational 
and data services are tightly coupled and need to be addressed simultaneously. 
In this article, we compile and discuss several strategies and techniques, like 
co-scheduling and co-allocation of computational and data services, dynamic 
storage capabilities, and quality-of-service, that can be used to help resolve 
some of the aforementioned issues. We present our interactions with a dis­
tributed computing system, NetSolve, and a Distributed Storage Infrastruc­
ture, IBP, as a case study of how some of these techniques can be effectively 
deployed and offer experimental evidence from early prototypes that validate 
our motivation and direction. 

Keywords: Computational Grid, Data Grid, Problem Solving Environments, 
Distributed Computing, Heterogeneous Network Computing. 

1 Introduction 

In recent years, computational scientists have been afforded tremendous advances 
in their research, studying increasingly larger and more complex models within 
their scientific domain. Simulations ranging from that of the electromagnetic field 
of a defribillator in a virtual human to warfare scenarios with tens of thousands 
of components interacting with each other are now possible due in large part to 
significant technological advancements in parallel machine architectures and the 
constant, rapid increase of microprocessor performance. Scientists have been liber­
ated with the emergence of boundary-less collaborations of geographically dispersed 
researchers, computational hardware, software and data. This vision of global sci­
entific computing poses many challenges to computer scientists, whose role it is 
to provide tools that effectively and efficiently solve the problems of working with 
very large datasets - tens or hundreds of gigabytes - on this globally distributed 
computational fabric that has come to be known as the Grid [1]. 

Grid Computing systems (defined and discussed in section 3) have mainly fo­
cused on the issue of harnessing computational cycles and seamlessly bringing them 

187 

http://�cs.utk.edu


188 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

to effective use by scientists and researchers. Until recently, little attention has 
been focused on techniques that exploit the relative cheapness of storage, as com­
pared to network fabrics, to achieve high levels of computational throughput in the 
presence of large datasets. Moreover, the Grid community is progressing toward 
the realization that there can no longer be a decoupling of data and computational 
services. In effect, there is a single, compound question that needs to be answered 
time and time again, "Where is the data, and where will it be processed?" From this 
question stem all the other issues that need to be resolved like data size, ownership 
of resources, choices in resources, etc. The richness of the issues to be addressed 
will lead to complex solutions, some more effective than others. 

It is our belief that an infrastructure designed to efficiently and effortlessly sup­
port complex interactions between computational and data resources can bear re­
markable impact and improvement on the way scientists, engineers, and even the 
business community, use computers. Our hope is that this article will help to mo­
tivate and encourage research avenues pointed in this direction. In this article, we 
explore various techniques for accommodating large, distributed datasets on the 
Grid. We begin by mentioning related efforts in section 2. We then continue our 
discussion by providing a more precise definition of the Grid in section 3, after 
which we discuss various approaches to addressing the cooperation of data manage­
ment and computations on the Grid in section 4. We then present our case study, 
NetSolve and IBP, in section 5 along with experimental results that validate our 
research direction. We spend some time discussing algorithms and techniques and 
end with a discussion of a concrete environment where some of these strategies are 
being employed. 

2 Related Work 

Mentioning every system or project that implements some form of the various 
techniques described below is infeasible and unnecessary for our discussions. The 
techniques are numerous and are motivated from various computing areas including 
Grid Computing, Web/Internet Programming and Database Management. Instead, 
we note of a few projects of particular interest that we have studied while investi­
gating our ideas. Throughout the discussion, we also point to other on-going work 
in specific areas. 

The Grid Physics Network or GriPhyN [2] represents a collaboration of scien­
tists, from several institutions, focused to research, prototype and then develop 
a production environment targeted primarily at four successful physics projects. 
Their research agenda is to "enable groups of scientists distributed worldwide to 
harness Petascale processing, communication, and data resources to transform raw 
experimental data into scientific discoveries." By the year 2005, the project en­
visions a computational environment that can accommodate on the order of 5000 
terabytes of data per year at a sustained aggregate access rate around 100 gigabytes 
per second. 

The Data Grid [3] aims at identifying and satisfying the requirements and com­
ponents of an integrating architecture that efficiently manages large data reposito-



Convergence of Computational and Data Grids 189 

ries, maintains high network transfer rates and schedules supercomputer-class com­
putations on geographically distributed resources. A primary focus of the project 
is replica management and selection. 

Much of our discussion is also motivated by various techniques that have been 
established in Web technologies for caching, cache cooperation, content distribu­
tion networks, mobile agents, etc. We discuss the applicability of these services 
and strategies to the Grid (which from this point we will use to refer not to the 
traditional Computational Grids, but to a fabric that is meant to accommodate 
both computational and data services.) 

3 Grid Overview 

Before we initiate the discussion of techniques that consolidate computational and 
data services, we define more precisely these target infrastructures. The term Grid 
was borrowed from the electrical power grid where electrical power is uniformly 
interfaced and ubiquitously available from distributed sources. Electrical power is 
easily obtained by plugging into electrical sockets that outlet electricity usable for 
services from powering toasters to supercomputers. Computer scientist envision 
an analogous infrastructure that will be able to uniformly and seamlessly channel 
computational services to clients who "plug in" to the Grid. 

Figure 1 layers the services and protocols that typically comprise Grid-enabling 
infrastructures. The major functionalities of Grid systems occur in the middle layer 
and are often referred to as middleware components. Within this layer are the 
technologies that allow for resource discovery, resource scheduling and allocation, 
fault-tolerance, security mechanisms, and load-balancing. This layer also houses 
the resource management and information services. Above the middleware is a thin 
layer that typically implements an interface and protocols allowing applications and 
users to access the middleware services. The layer below the middleware layer is 
the resource layer that typically provides local (usually system level) services that 
render computational resources like CPU cycles, network infrastructure, storage, 
software, etc. A popular model for Grid systems is the client-server model where 
daemon processes act as access points to either middleware or resource level services, 
and client tools or application programming interfaces are used to instantiate service 
requests to the system. Globus [4], Legion [5], Condor [6], and NetSolve [7] represent 
a few of the more visible projects in Grid computing. This handful of projects help 
to show the richness of Grid research as each project has a unique perspective on 
how resources should be represented, managed and accessed. 

4 Data on the Grid 

As stated above, the goal of this article is to identify technologies that can be 
applied to Grid infrastructures like those described in this section. With this in 
mind, we now discuss various strategies that will assist in the realization of a Grid 
fabric that can accommodate high-performance computing applications with large 
data requirements. 



190 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

User 
Level 

Chemistry 
Neurosclence 

• • • P'BIS BliP 
Appl icat ions Engineering 

Portals Problem Salving „ . « ", , v . Computational 
Environments High4evel htor&ces Workbenches 

Grid System APIs 

Middleware 
Level 

S8£Ur% 

Resource Discovery 
information Services 

G r i d Services 

Monitoring Services 

Resource Allocation 

Scheduling Fauit-tplarance 
Distributed Storage Infrastructures 

Resource 
Level LBF 

mftmm Modules 

MPi Local Servicer 

OS Services 

Process Creation 
PBS 

Dat&oases 

Fig. 1: A layered representation of the major components of typical Grid Computing systems. 

4>1 Caching 

Caching refers to the process of maintaining data as persistent at some convenient 
location with the hope that there will be subsequent use(s) of this data while it is 
being cached. Current web technology accomplishes this caching via the use of a 
proxy cache server. This server sits between the component requesting the data, 
the client, and the data provider's server intercepting client requests. Objects found 
in the cache are returned to the user, while if an object is not found in the cache, 
the proxy retrieves the object from the originating server on behalf of the user, 
returning it to the user and possibly depositing it into the cache at the same time. 
The network literature distinguishes two main types of caching, demand-side and 
supply-side. We discuss how these and other caching schemes can be employed in 
the Grid. 

4.1.1 Demand-side caching 

Demand-side caching refers to the traditional caching mechanism where the cache 
is an agent of the client application or data consumer. Data is stored on (or near) 
the client host. Demand-side caches, or any cache for that matter, can only be 
helpful to the extent that they are able to accurately model the usage pattern of 
data. This is a difficult task. In fact, a simple cache content replacement strategy 
like "least recently used" is often a good choice. In the Grid, there is opportunity to 
reduce some of the guesswork by doing some analysis of requests for Grid services. 
In [8], a strategy is suggested of batching together requests from a client and doing 
parametric analysis to construct a data-dependence graph where the nodes are 



Convergence of Computational and Data Grids 191 

computational modules and the arcs are data dependencies. This graph can then 
be used to place data in storage locales or caches that will minimize overall network 
traffic amongst the client and potentially many server components used to service 
the requests. Though this may seem like supply-side caching (see next section) as 
the client pushes data near the server that consumes it, the authors choose to view 
the entire client-server system as the consumer of data supplied by some third party 
data source. This strategy entails computational overhead for the analysis phases 
and yet may produce sub-optimal results, or become intractable as the number 
of components and parameters involved becomes large. Another method is for the 
human user of the application to manually pre-stage data at or near server resources 
and dictate to the Grid system computational and storage resources of choice. This 
strategy can yield very good results, but forces the user to be bothered with decisions 
that he may prefer to leave to the system being employed. 

An important aspect of the demand-side caching is the placement of the cache 
itself. In the World Wide Web, where network caches are most commonly employed, 
proxy cache servers are often deployed at the edges of a network (i.e. at company 
or institutional gateway/firewall hosts) to serve a large number of internal users. 
Web browsers also have the capability to cache to the local file system on a per­
user basis. In Grid collaborations where it is atypical for more than one or two 
local researchers to be interested in a particular dataset at the same time, it is not 
immediately evident how effective community-based caching would be. Individual 
users, on the other hand, could experience tremendous benefits by the bandwidth 
savings that result in improved response time and increased availability of data 
objects. 

4.1.2 Supply-side caching 

In supply-side caching, the cache is an agent of the supplier, not the client. Supply-
side caches are increasing in popularity, as Web sites receive increasing traffic, and 
the trend toward outsourcing content distribution continues to develop. A large 
market demand has evolved for content distribution networks that cache or replicate 
data across a wide area according to dictating demands. Primarily in content 
distribution networks, data access statistics are collected or modeled and used to 
distinguish usage patterns and determine logistics that will yield data consumers 
better accessibility (primarily quantified as data bandwidth.) The Data Grid project 
mentioned in section 2 offers a notion of user-asserted replication management. The 
user also asserts replication selection - presumably based on network performance 
measures. Another strategy might be an "on-demand" supply-side cache where the 
user asserts nothing more than a need for a specific data item. A storage service 
utility that manages distributed storage depots is able to automate the replication 
of the appropriate data to the most appropriate storage server, or direct the request 
to an efficient, pre-replicated version of the requested data. A system like this can be 
implemented on top of the replication management and selection services provided 
by the Data Grid project. The motivation behind supply-side caching, whether 
dynamic or static in implementation, is to have content providers put data as far 



192 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

toward the edges of the network as possible so that anyone desiring access will have 
high degrees of accessibility. 

4.1.3 Cache-cooperation 

In some situations, replication of data among the various individual caches is not 
desired due to constraints in the storage capacity of the caches, data sizes, network 
traffic etc. In these situations, one may consider migrating the data between caches 
belonging to different domains. Intelligence can be added to the caches, and caches 
can be made to operate in a cooperative manner, where each cache "knows" the 
location of the data that previously existed in it. Thus data accesses directed to the 
original cache will be redirected to the new cache where the data currently resides. 
This situation is similar to the Personal Communication Service (PCS) environment 
of wireless telephony where one can imagine the different domains as the individual 
cells, the data as the mobile phones and the intelligent caches as the control towers. 

Inter-cache communication can also improve system scalability and availability, 
and also allows for load balancing. In [10], several protocols for inter-cache commu­
nication are discussed. ICP, one of the more mature of these protocols, allows caches 
to query each other to determine the best location from which to retrieve requested 
objects. Microsoft's CARP [11] uses a deterministic hashing scheme to identify 
where requested information is located. This method avoids the overhead and scal­
ability issues associated with inter-cache communication. Finally, we mention the 
notion of cache-digests that are also used to reduce inter-cache communications by 
summarizing the objects contained in peer caches. An example of cache-digests is 
implemented in the Squid Project [12] where ICP was also deployed and investi­
gated. 

Within the context of the Grid, caching technologies can be leveraged in a 
wide range of applications from scientific applications with large datasets to col­
laborations where relevant data can be distributed even across continents. As the 
notion of the Grid becomes more prevalent and Grid systems become ubiquitous, 
community-based caching schemes will become more useful and practical. 

4-2 Active Data Repositories 

In [13], it is pointed out that an important characteristic of many scientific applica­
tions that make use of large data sets is that such applications only wish to retrieve 
a subset of the dataset. Additionally, [2] makes the claim that (in high-energy 
physics) over 90% of data access is to derived data - data that can be derived from 
the reproducible, raw experimental data. This has motivated research in active data 
repositories where users assert operations upon stored datasets to dynamically cre­
ate or extract only data that is relevant to their particular analyses. [13] introduces 
the Active Data Repository (ADR) an infrastructure for building databases that en­
able the storage, retrieval and processing of multidimensional datasets. It does this 
by providing run-time support for an object-relational database management sys­
tem for managing scientific multidimensional datasets and applications that make 
use of these datasets. Within the Grid, we can employ similar strategies to create 



Convergence of Computational and Data Grids 193 

storage or database infrastructures that allow users to fine-tune data queries at the 
storage depot. This is accomplished by executing functional modules on datasets 
thereby preventing the transmission of unnecessarily large datasets only to filter 
them elsewhere for the possibly small subsets of interest. Since the ultimate goal is 
increasing throughput, and not just reducing network traffic, performance measures 
of the network as well as those of the computational units at the client and storage 
facility should be considered to see whether it is more efficient to transmit a large, 
unfiltered dataset and refine it locally or to do the filtration remotely in order to 
reduce network latencies. 

4.3 Mobile Agents 

A mobile agent [14] is a piece of executable software that is dispatched from a 
client computer to a remote server for execution. This is somewhat akin to the 
concept of the active data repository in the previous section, and the differences lie 
perhaps in philosophy and spirit. The idea behind active data repositories is mainly 
to execute a refinement or filtration process on data that is then transported to 
some other resource component for additional computational processing. In Grid 
Computing, a mobile agent's job is to dispatch a module that will actually perform a 
computational analysis remotely, quite similar to remote job submission. It inverses 
the procedure of sending data to a compute server; it sends computations to a data 
server. Security concerns are obvious when server or repository hosts accept code 
for execution on behalf of clients. 

4.4 Co-scheduling 

In the literature, the term co-scheduling usually defines the scheduling of a many-
to-one or many-to-many relationship of requests for computational services to com­
putational units. Here we use the term to mean the cooperative scheduling of the 
computational and data network demands of a request for a computational ser­
vice. The Condor system [15] suggests a matchmaker service that matches resource 
requests with resource offerings. In Condor, a resource request includes size and 
location information of a requesting application's executable. Matchmaker then 
uses network resource limits and topology information in algorithms like "first-fit" 
to allocate CPU and bandwidth to requests. [15] also discusses provisions for 
priority-based allocation of resources to increase CPU utilization by prioritizing ap­
plications with small network demands. The Net Solve project is currently active in 
the research of co-scheduling data and computations and a discussion of this thrust 
is in section 5. This area of Grid scheduling encompasses a large body of current and 
future research endeavors to explore the measurement and prediction of resource 
performance, [16], for scheduling purposes as exemplified by the application level 
scheduler project, AppLeS [17]. 



194 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

4.5 Reservation Systems 

In conjunction with the scheduling of network-based applications, researchers also 
investigate the effects that immediate and advance reservation policies can have on 
quality of service (QoS) determination. Immediate reservations are made at the 
establishment of a service request where available resources are allocated to meet 
user demands. Advance reservations allow users to "book" resources in advance 
yielding a higher expectation of getting the requested resources. There has been 
work done in reservation schemes for computational resources (e.g. GARA [18]), and 
the network community has extensively studied bandwidth reservation (e.g. RSVP 
and ST-2 [19]) but no integrating Grid architecture exists that combines both these 
approaches. When the reservation of both data and computational services are 
combined, the value added to the Grid is the ability to use a Threshold QoS that 
states a user's worst-case measures of acceptable resource performance or a stronger 
Guaranteed QoS where the system guarantees a performance value to the user and 
commits itself to provide that performance at all costs. Grid reservation systems 
must also appropriately increase the efficiency and predictably of performance of 
Grid applications while keeping starvation to a minimum, utilization to a maximum 
and render deadlock non-existent. 

5 Enabling NetSolve with Data Grid Services 

We now transition from abstractions and theoretical methodologies to show how 
some of these techniques might be employed in an actual Grid System. We present 
the NetSolve system and its interactions with the Internet Backplane Protocol (IBP) 
to create an infrastructure that enables the efficient and robust servicing of dis­
tributed computational requests with large data requirements. 

5.1 NetSolve Overview 

The NetSolve project at the University of Tennessee provides remote access to 
computational resources, both hardware and software. The major components of 
the NetSolve system are: 

• The NetSolve agent, an information service that maintains a database of 
NetSolve resources along with their capabilities (hardware performance and 
allocated software) and dynamic usage statistics in order to allocate server 
resources for client requests. 

• The NetSolve server , a networked resource that serves up computational 
hardware and software resources, and 

• The NetSolve c l i e n t libraries, that allow users to instrument their application 
code with requests for remote computational services. 

Figure 2 shows the infrastructure of the NetSolve system and its relation to the 
applications that use it. The shaded parts of the figure represent the NetSolve sys­
tem. It can be seen that NetSolve acts as a glue layer that brings the application 



Convergence of Computational and Data Grids 195 

or user together with the hardware and/or software needed. The reader is encour­
aged to compare this diagram to figure 1 that shows a generic Grid architecture. 
Further documentation along with source code for the full product are available at 
http://icl.cs.utk.edu/netsolve. 

Middleware 

Fig. 2: An architectural overview of the NetSolve system. 

5.2 The Internet Backplane Protocol 

IBP [20] is a Distributed Storage Infrastructure (DSI) for managing and using 
remote storage. This Grid service tool's motivation is to support logistical network­
ing in large scale, distributed systems and applications, like NetSolve. IBP provides 
mechanisms for using distributed storage for logistical purposes. 

By providing a uniform, application-independent interface to storage in the net­
work, IBP makes it possible for applications of all kinds to use logistical networking 
to exploit data locality and more effectively manage buffer resources. It allows ap­
plications that need to manage distributed state to benefit from standardization, 
interoperability, and scalability. 

IBP storage servers run a daemon process that interacts with storage client ap­
plications that have integrated IBP's API. Clients use this API to store and manage 
data for later retrieval (not necessarily from the same host). IBP uses a capability 
or handle to encapsulate remote data location and accessibility restrictions. 

5.3 The NetSolve/IBP Integration 

The motivation for this integration was to enhance the NetSolve Grid Computing 
System with some of the features described in section 4, mainly caching. Our hope 
is to eventually implement a system like that depicted in figure 3 where globally 
distributed caches cooperate to move data near consuming resources. Careful at­
tention was paid to ensure that our design, implementation and interface was not 
dependent upon the underlying DSI. We have intentions to experiment with other 
DSIs like GASS [21], but initial development has been focused on IBP. Below, we 
describe the implementation, interface and results of our work where references to 

http://icl.cs.utk.edu/netsolve


196 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

DSI specifically mean IBP facilities. 

Client Host 

Di stri buted Storage Infrastructure 
caches co-operate 

to optimize throughpyt of 
computations with large data sets 

Server Pool 

Fig. 3: An architectural overview of the NetSolve system. 

5.3.1 The interface 

We extended the NetSolve API with a set of functions to create, destroy, open, 
close, read and write DSI storage. We modeled the API after the ' C STDIO library. 
However, we did tune the read and write calls to take advantage of NetSolve system-
specific characteristics. Though not an object-oriented system, NetSolve maintains 
all its components in object data-structures. Accordingly, NetSolve views data 
as objects of primitive data types, as in MATRICES, VECTORS, SCALARS, STRINGS 
and FILES of INTEGERS, FLOATS, DOUBLES, CHARS, etc. The read and write calls 
are designed to deposit and extract these objects from DSI storage. Figure 5.3.1 
shows a sample programming code that makes calls to a version of the interface 
(simplified for this document.) The ' C struct NS_DSI_FILE encapsulates informa­
tion about the remote storage server and remote file object being allocated, while 
NSJDSI_OBJECT contains information about specific objects present within these re­
mote files. In essence, a call to ns_dsi_open() allocates a remote file returning a 
handle or NS_DSI_FILE *. A call to any of the ns_dsi_write_* () variants will trans­
fer data to the remote storage specified by the given handle. These handles can then 
be used directly in NetSolve requests or by corresponding calls to ns_dsi_read_*() 
variants. When used in NetSolve requests, the NetSolve system resolves the handles 
to appropriate datasets and uses them either to locate input on which to perform 
computational analysis or to store the results of computation. 



Convergence of Computational and Data Grids 197 

int client .program (){ 

NS_DSI_FILE * rfile; 

NS_DSI_OBJECT * robject; 

int *datal , size_datal, status; 

rfile = ns_dsi_open("machine.domain.edu", "write"); 

robject = ns_dsi_write_matrix(rfile, da ta l , size_datal); 

status = netsolve("solve_matrix", robject, rhs); 

} 

Fig. 4: Sample ' C code program shows details of NetSolve's DSI interface. 

5.3.2 The implementation 

The primary technique used in this first iteration of development is an instance of 
supply-side caching where the application at the client layer of the system is the 
supplier of data to the server which acts as the data consumer. The system is man­
ually configured to strategically place storage servers near pools of computational 
servers as in the experiments of the next section. We also export to the user-layer 
the low-level interface described above that the user must use to dictate where data 
should be stored and where computations should be performed. Section 5.4 ex­
plains that this is not the extent of our efforts and discusses our plans to provide 
an architecture that automates the scheduling and allocation policies on behalf of 
the user. 

The major modifications made to the NetSolve system involve the expansion of 
NetSolve's object model to include representations for remote data objects and files. 
The API functions described above in section 5.3.1, apart from the obvious, also put 
and later extract information to and from of these structures. NetSolve maintains 
a File Allocation Table (FAT) that records the status of allocated remote files and 
objects much like that used by operating systems to keep track of STDIO files. The 
reference values of the NS_DSI_OBJECTs and NS_DSI_FILEs are used as the keys by 
which these objects are cataloged in the FAT. When NetSolve requests are made, 
input and output references in the calling sequence are checked against the keys of 
the FAT to see if they represent a remote object. (If not found, they are assumed 
to be referring to local data, in-core or on disk). The NetSolve system protocols 
accommodate remote data by sending data handles to servers which the servers use 
to obtain data from their stored locations. This implementation allows the NetSolve 
system to leverage DSI storage without modifying the standard NetSolve functions 
for computational requests. 

http://domain.edu


198 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

5.3.3 Preliminary results 

For our experiments, we wanted to show how this relatively simple use of DSI fa­
cilities could yield benefits and help motivate the investigation of more complicated 
techniques that either make the system easier to use or give even better perfor­
mance. To mimic the geographical expanse of the Grid, we placed a NetSolve client 
application at the University of California, San Diego and experimented with re­
quests to a pool of computational and DSI servers at the University of Tennessee. 
We used a set of matrices from the Harwell-Boeing collection of the Matrix Market 
repository [22] to solve systems of equations using the MA28 [23] solver library. 

Figure 5 shows the results we obtained when varying the number of accesses 
(cache hits) made to the data from the Harwell-Boeing set. For various data sizes, we 
found the average times of 10 runs using traditional calls to NetSolve transmitting 
data over the network. We then made another set of runs with the same dataset, this 
time storing the data in DSI storage and having the server retrieve the data from the 
storage server. During these runs we collected the time expended for compute cycles, 
NetSolve overhead, network transmissions and DSI overhead. We used this collected 
data to deduce what the turn-around time would be as we increased the number of 
times the client application requested the computation. The two graphs of figure 5 
show the results for datasets of size 16.1KB and 2.68 MB, respectively. These 
represent both the smallest and largest data sizes with which we experimented. We 
also collected data for a range of sizes in between these points (21.4KB, 35.7KB, 
55.4KB, 247KB, 302.4KB, 995KB, and 1.01MB) and testify that they bear similar 
results. The presented graphs show a worst case of 7 accesses (in the 16.KB case) 
and 2 accesses (in the 2.68MB) needed before the overhead added by the DSI is 
outweighed by the reduction of network activity caused by cache reuse. The graphs 
reach an asymptotic level that represent the points at which computational capacity, 
and not network bandwidth and latency, becomes the system bottleneck. For the 
2.68MB sample, this occurs at a point when the enhanced system is operating at 
more than three times (3x) faster than the unenhanced system. These results lead 
us to a great anticipation for some of the future developments described below. 

5.4 Other Research Issues 

In addition to the data staging that DSI facilities currently provide to NetSolve, 
we anticipate several areas for additional research: 

• Request Sequencing - This technique mentioned briefly in section 4.1.1 uses 
graph-scheduling techniques to co-allocate resources for a sequence of requests 
for Grid services [8]. In NetSolve, data persistence is used so that parameters 
that re-occur in the sequence can be staged near the compute servers that will 
use them. Current implementations keep data persistent on a single server 
that must service all compute modules in the sequence. DSI infrastructures 
can be leveraged to logistically store data conveniently accessible to multi­
ple servers so that throughput can be increased due to the use of additional 
computational units. 



Convergence of Computational and Data Grids 199 

Unenhanced NetSolve vs. NetSolve Enhanced w/ IBP caching (16.1 KB) Unenhanced NetSolve vs. NetSolve Enhanced w/ IBP caching (2.68 MB) 

3.5 r 

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 

Number of accesses Number of accesses 

Fig. 5: Encouraging results of improved computational efficiency when IBP caching is used to 

service NetSolve requests between components in California and Tennessee. 

• Incremental Programming - This is a technique used in software design where 
an application is processed in several modular phases. One way this can be 
useful in a Grid setting is to implement computational steering: the online 
management and modification of the data parameters of a computation either 
to investigate performance enhancement or to directly control and manipulate 
scientific discovery during (instead of after) the compute phase. Breaking the 
programs into finer-grained modules allows a user to perform an analysis of 
partial results mid-execution to determine if a phase needs to be repeated with 
new parameters or computation can proceed to a subsequent phase. Often 
in these scenarios the parameters that are modified are quite small, perhaps 
the value of initial water concentration in an oil reservoir simulation or the 
far-field pressure values in a structural acoustic finite element experiment. 
DSI infrastructures can be used to keep the invariable data housed near the 
compute servers as the user studies partial results to determine the direction 
of further computation. 

• Data Repositories - DSI infrastructures can be used in NetSolve as data 
warehouses that can be used to store data from completed computations or 
even raw field data that can be expensive and difficult to come by. The 
National Weather Service, for instance, could house data concerning weather 
patterns and occurrences or satellite imagery allowing for access by University 
researchers that do not have the means to collect such data. An infrastruc­
ture like this greatly increases the number of scientists that can analyze what 
would otherwise be privileged collections of data - a fact that would poten­
tially increase the rate at which the boundaries of science, atmospheric or 
otherwise, can be expanded. We already have a prototype implementation, 
within NetSolve, of the ability to store "named" DSI handles at the agent so 



200 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

that clients can access data by referring to some globally unique identifier. 
This allows clients to interact with and perform computations on third party 
datasets that they do not, and will not ever, possess. 

• Scientific Collaborations - DSIs can also be leveraged in large, multi-institutional, 
geographically distributed scientific collaborations where different scientists 
are responsible for the development and execution of inter-dependent mod­
ules. Again, the DSIs can serve as globally accessible warehouses allowing all 
scientists to store and retrieve their own scientific results as well as that of 
their colleagues. 

6 CONCLUSION 

In this article, we have explored a variety of techniques and models to show how they 
might be employed in a Grid infrastructure designed to accommodate the execution 
of computations on large, cumbersome datasets in a widely distributed environment. 
As Grid developers continue to investigate the easy and efficient deployment of large 
applications on their systems, they will render some of these techniques more useful 
than others. We have also presented the initial results or our experiments with 
one such system, NetSolve, and shown how deploying even the least complicated of 
these strategies can yield significant application performance improvements. There 
are also a variety of important managerial, social and policy-related issues with 
respect to the management and sharing of data that the discussion in this article 
does not address. These issues, which include the construction and management of 
metadata (or defining properties of data), cataloging and indexing, data protection 
and security, and the protection of intellectual property rights, on their own com­
prise a challenge to researchers to find satisfactory resolutions. We anticipate that 
the experiences obtained through continued research with computational and data 
grid infrastructures will eventually yield a practical and useful artifact. 

Acknowledgments 

This research work is supported in part by Department of Energy Award #DE-
FC02-99ER25396 titled "Optimizing Distributed Application Performance Using 
Logistical Networking" and National Science Foundation Award #EIA-9975015 ti­
tled "Next Generation Software: Logistical QoS through Application-driven Schedul­
ing of Remote Storage." The authors are also grateful to Susan Blackford and Victor 
Eijkhout of the Computer Science Department at the University of Tennessee for 
their constructive comments and critiques on earlier drafts of this article. 

References 

1. I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New computing 
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998. 

2. The Grid Physics Network. Petascale Virtual-Data Grids for Data Intensive Science. 
http://www.griphyn.org/info/white_paper_print.html. 

http://www.griphyn.org/info/white_paper_print.html


Convergence of Computational and Data Grids 201 

3. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data 
Grid: Towards an Architecture for the Distributed Management and Analysis of 
Large Scientific Datasets. 

4. I. Foster and K Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In 
Proc. Workshop on Environments and Tools. SIAM, to appear. 

5. A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Jr. Reynolds. A Synopsis of 
the Legion Project. Technical Report CS-94-20, Department of Computer Science, 
University of Virginia, 1994. 

6. M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In 
Proc. of the 8th International Conference of Distributed Computing Systems, San 
Jose, CA, pages 104-111, June 1988. 

7. H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computa­
tional Science Problems. The International Journal of Supercomputer Applications 
and High Performance Computing, 1997. 

8. D. C. Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Optimizing 
Communication for the Grid. In A. Bode, T. Ludwig, W. Karl, and R. Wismuller, 
editors, Euro-Par 2000 - Parallel Processing, pages 1213-1222. Springer-Verlag, 
August 2000. 

9. G. Barish and K. Obraczka. World wide web caching: Trends and techniques. IEEE 
Communications Magazine Internet Technology Series, May 2000. 

10. I. Melve. Inter-cache Communication Protocols, 1999. IETF WREC Working Group 
Draft. 

11. K. Ross and V. Valloppillil. Cache Array Routing Protocol v l . l , 1998. IETF WREC 
Working Group Draft. 

12. K. Claffy and D. Wessels. ICP and the Squid Web Cache, 1997. 

13. R. Ferreira, T. Kurc, M. Beynon, C. Chang, A. Sussman, and J. Saltz. Object-
relational queries into multidimensional databases with the Active Data Repository. 
International Journal of Supercomputer Applications and High Performance Com­
puting (USA), 1996. 

14. D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents: Are They a Good Idea. 
Technical report, IBM Research Division, T.J. Watson Research Center, Yorktown 
Heights, New York, March 1995. 

15. J. Basney and M. Livny. Improving goodput by co-scheduling cpu and network ca­
pacity. International Journal of Supercomputer Applications and High-Performance 
Computing (USA), 1999. 

16. R. Wolski. Dynamically Forecasting Network Performance Using the Network 
Weather Service. Technical Report TR-CS96-494, U.C. San Diego, October 1996. 

17. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level 
Scheduling on Distributed Heterogeneous Networks. In Proc. of Supercomputing'96, 
Pittsburgh, PA, November 1996. 

18. I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis­
tributed resource management architecture that supports advance reservations and 
co-allocation. 1999. 

19. D. Mitzel, D. Estrin, S. Shenker, and L. Zhang. An Architectural Comparison of 
ST-II and RSVP. In Proceedings of Infocom, 1994. 

20. J. Plank, M. Beck, W. Elwasif, , T. Moore, M. Swany, and R. Wolski. IBP - The 
Internet Backplane Protocol: Storage in the Network. In NetStore '99: Network 
Storage Symposium, Seatle, WA, October 1999. 



202 D. C. Arnold, S. S. Vahdiyar & J. J. Dongarra 

21. J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data Move­
ment and Access Service for Wide Area Computing Systems. In Sixth Workshop on 
I/O in Parallel and Distributed Systems, Atlanta, GA, May 1999. 

22. Mathematical & Computational Sciences Division of the Information Technology 
Laboratory of the National Institute of Standards and Technology. Matrix Market 
Website. http://math.nist.gov/MatrixMarket/index.html. 

23. I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matices. Claren­
don Press, Oxford, 1986. 

http://math.nist.gov/MatrixMarket/index.html

