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Summary

The purpose of the PAPI project is to specify a standard
application programming interface (API) for accessing
hardware performance counters available on most mod-
ern microprocessors. These counters exist as a small set
of registers that count events, which are occurrences of
specific signals and states related to the processor’s func-
tion. Monitoring these events facilitates correlation
between the structure of source/object code and the
efficiency of the mapping of that code to the underlying
architecture. This correlation has a variety of uses in
performance analysis, including hand tuning, compiler op-
timization, debugging, benchmarking, monitoring, and
performance modeling. In addition, it is hoped that this
information will prove useful in the development of new
compilation technology as well as in steering architectural
development toward alleviating commonly occurring bot-
tlenecks in high performance computing.

1 Introduction

For years, collecting performance data on applications
programs has been an imprecise art. The user has had to
rely on timers with poor resolution or granularity, impre-
cise empirical information on the number of operations
performed in the program in question, vague information
on the effects of the memory hierarchy, and so on. Today,
hardware counters exist on every major processor plat-
form. These counters can provide application developers
valuable information about the performance of critical
parts of the application and point to ways for improving
the performance. Performance tool developers can use
these hardware counters to develop tools and interfaces
that users can insert into their applications. The current
problem facing tool developers is that access to these
counters is poorly documented, unstable, or unavailable
to the user-level program. The focus of PAPI is to provide
an easy-to-use, common set of interfaces that will gain ac-
cess to these performance counters on all major processor
platforms, thereby providing application developers the
information they may need to tune their software on dif-
ferent platforms. Our goals are to make it easy for users to
gain access to the counters to aid in performance analysis,
modeling, and tuning.

PAPI provides two interfaces to the underlying counter
hardware: a simple, high-level interface for the acquisi-
tion of simple measurements and a fully programmable,
thread-safe, low-level interface directed toward users
with more sophisticated needs. The low-level interface
manages hardware events in user-defined groups called
EventSet. The high-level interface simply provides the
ability to start, stop, and read the counters for a specified
list of events. PAPI attempts to provide portability across
operating systems and architectures wherever possible
and whenever reasonable to do so. PAPI includes a prede-
fined set of events meant to represent a lowest common
denominator of a “good” counter implementation, the in-
tent being that the same tool would count similar and pos-
sibly comparable events when run on different platforms.
If the programmer chooses to use this set of standardized
events, then the source code need not be changed, and
only a recompile is necessary. However, should the devel-
oper wish to access machine-specific events, the
low-level application programming interface (API) pro-
vides access to all available native events and counting
modes.

In addition to raw counter access, PAPI provides the
more sophisticated functionality of user callbacks on
counter overflow and hardware-based SVR4 compatible
profiling, regardless of whether the operating system sup-
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ports it. These features provide the necessary basis for any
source-level performance analysis software. Thus, for any
architecture with even the most rudimentary access to
hardware performance counters, PAPI provides the foun-
dation for truly portable, source-level performance analy-
sis tools based on real processor statistics.

2 Discussion of PAPI Metrics

Through interaction with the high performance computing
community, including vendors and users, the PAPI devel-
opers have chosen a set of hardware events deemed rele-
vant and useful in tuning application performance. This
section provides justification for the choice of the PAPI
predefined events and discusses how performance data
collected about these events can be used to optimize the
performance of applications. The complete list of PAPI
predefined events can be found in the appendix. These
events may differ in their actual semantics on different
platforms, and all events may not be present on all plat-
forms. However, it is hoped that most of these events will
be made available in the future on all major HPC platforms
to improve the capability for tuning applications across
multiple platforms. The predefined events include access
to the memory hierarchy, cache coherence protocol events,
cycle and instruction counts, and functional unit and pipe-
line status. Each of these areas is discussed in greater detail
below, along with a discussion of how the metrics in each
area relate to application performance tuning. Background
on architectural issues discussed in this section can be
found in Brehob et al. (1996) and Hennessy and Patterson
(1996).

Because modern microprocessors have multiple levels
in the memory hierarchy, optimizations that improve
memory use can have major effects on performance.
Levels of the memory hierarchy range from small, fast reg-
ister memory to larger, slower levels of cache memory to
still larger and slower main memory. Different levels of
cache memory may have separate instruction and data
caches or may consist of a unified cache that buffers both
instructions and data in the same cache. Most modern mi-
croprocessors have two levels of cache, although some
now have three levels (e.g., three levels are optional with
the Compaq EV5 and EV6 architectures). A load or store
instruction generates a memory-addressing process that
first attempts to locate the addressed memory item in the
L1 cache. If the item is present in the L1 cache, the result is
an L1 cache hit. If the item is not present, the result is an L1
cache miss, and an attempt is next made to locate the item
in the L2 cache, with the result being an L2 cache hit or
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miss. The operating system uses main memory as a cache
for a larger virtual address space for each process and
translates between virtual addresses used by a program and
the physical addresses required by the hardware. Memory
is divided into blocks called pages. To keep the overhead of
address translation low, the most recently used page ad-
dresses are cached in a translation lookaside buffer (TLB).
When a program references a virtual address that is not
cached in the TLB, a TLB miss occurs. If, in addition, the
referenced page is not present in main memory, a page fault
occurs. The latency of data access becomes greater with
each level of the memory hierarchy, with a miss at each
level multiplying the latency by an order of magnitude or
more. For example, the latencies to different levels of the
memory hierarchy for the MIPS R10000 process in the
SGI/Cray Origin 2000 are shown in Table 1 (Cortesi,
1998).

The L1 and L2 cache hit rates indicate how cache-
friendly a program is, and these rates can be derived from
PAPI metrics. The L1 data cache hit rate is calculated as

1.0 – (PAPI_L1_DCM/(PAPI_LD_INS + PAPI_SR_INS)).

The L2 data cache hit rate is calculated as

1.0 – (PAPI_L2_DCM/PAPI_L1_DCM).

Values of 0.95 or better for these hit rates indicate good
cache performance.

The PAPI metrics for level 1 and level 2 load-and-store
misses (PAPI_L1_LDM, PAPI_L1_STM, PAPI_L2_LDM,
PAPI_L2_STM) can provide information on the relative
read-and-write cache performance.

A large number of data TLB misses (PAPI_TLB_DM)
indicates TLB thrashing, which occurs when data being
accessed are spread over too many pages and TLB cache
reuse is poor. TLB thrashing can be fixed by using cache
blocking or data copying or, when supported by the operat-
ing system, telling the operating system to use larger page
sizes.

For SMP environments, PAPI assumes a four-state
MESI cache coherence protocol (possible states: modi-
fied, exclusive, shared, and invalid). In a cache-coherent
SMP, the system signals to a CPU when the CPU needs to
maintain the coherence of cache data. An intervention is a
signal stating that some other CPU wants to use data from a
cache line that the CPU receiving the signal has a copy of.
The other CPU requests the status of the cache line and re-
quests a copy of the line if it is not the same as memory. An
invalidation is a signal that another CPU has modified a
cache line that this CPU has in its cache and that this CPU
needs to discard its copy. A high number of cache line in-
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Table 1

Latencies to Different Levels of the

Memory Hierarchy for the MIPS R10000

Processor in the SGI/Cray Origin 2000

CPU register 0 cycles
L1 cache hit 2 or 3 cycles
L1 cache miss satisfied 8 to 10 cycles
by L2 cache hit

L2 cache miss satisfied 75 to 250 cycles
from main memory, no
translation lookaside
buffer (TLB) miss

TLB miss requiring only 2000 cycles
reload of TLB

TLB miss requiring virtual Hundreds of millions
page to be loaded from of cycles
backing store
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validations (PAPI_CA_INV) is an indicator of cache con-
tention. The CPU that produces the high count is being
slowed because it is using data being updated by a differ-
ent CPU. The CPU doing the updating will be generating
a high number of PAPI_CA_SHR events. Thus, a large
number of PAPI_CA_SHR events also indicates that the
program is being slowed by memory contention for
shared cache lines. In an SMP, each processor has its own
TLB, but page tables may be shared. If a processor
changes a page table entry that another processor may be
using, the first processor must force the second processor
to flush its TLB. This notification that a page table entry
has changed is called a translation lookaside buffer
shootdown (PAPI_TLB_SD). A large number of
PAPI_TLB_SD events indicates memory contention for
the same page table entries.

PAPI metrics include counts of the various types of in-
structions completed, including integer, floating point,
load, and store instructions. Because floating-point oper-
ations may be undercounted due to counting a float-
ing-point multiply add (FMA) as a single instruction, a
separate count of FMA instructions completed (PAPI_
FMA_INS) has been included so that the floating-point
operation count can be adjusted accordingly if necessary.

The store-conditional instruction is used to implement
various kinds of mutual exclusion, such as locks and
semaphores. Store conditionals (PAPI_CSR_TOT)
should never be a significant portion of program execu-
tion time. A small proportion of failed store-conditional
instructions (PAPI_CSR_FAL) is to be expected when
asynchronous threads use mutual exclusion. However,
more than a small proportion indicates some kind of con-
tention or false sharing involving mutual exclusion be-
tween asynchronous threads. Other types of synchroniza-
tion instructions, such as fetch and increment, are
included under the count for synchronization instructions
completed (PAPI_SYC_INS).

A high number of synchronization instructions may in-
dicate an inefficient algorithm.

Pipelining is used to make CPUs faster by overlapping
the execution of multiple instructions, thus reducing the
number of clock cycles per instruction. The overlap
among instructions is called instruction-level parallelism.
Superscalar processors can issue multiple instructions per
clock cycle and thus depend on a variety of static and dy-
namic instruction scheduling techniques to maximize
processor throughput. These techniques include software
optimizations such as software pipelining, loop unrolling,
and intraprocedural analysis in addition to post-RISC ar-
chitectural changes such as speculative execution, branch

prediction, and VLIW with predication. The net result is
that while pipelining is implemented in hardware, its full
benefit can only be realized through appropriately de-
signed software. A stall occurs when an instruction in the
pipeline is prevented from executing during its desig-
nated clock cycle. Stalls cause the pipeline performance
to degrade from the ideal performance. Stalls may occur
because of resource conflicts when the hardware cannot
support all possible combinations of instructions in the
overlapped execution, because of data or control depend-
encies, or because of waiting for access to memory.

PAPI includes events for measuring how heavily the
different functional units are being used (PAPI_BRU_
IDL, PAPI_FXU_IDL, PAPI_FPU_IDL, PAPI_LSU_
IDL). A functional unit is idle if it has no work to do, as
opposed to being stalled if it has work to do but cannot be-
cause of any variety of reasons. Data for these events pro-
vide information about the “mix” of operations in the
code. Several of the PAPI metrics allow detection of when
and why pipeline stalls are occurring (PAPI_MEM_SCY,
PAPI_STL_CYC, PAPI_STL_CCY, PAPI_FP_STAL).
Because pipelining is, for the most part, beyond the con-
trol of the application programmer, the PAPI metrics rele-
vant to pipelining are mainly intended to provide perfor-
mance data relevant to compiler writers (e.g., for use in
compiler feedback loops). However, the application pro-
grammer may be able to use pipeline performance data,
together with compiler output files, to restructure code
application code so as to allow the compiler to do a better
job of software pipelining. The application programmer
may also find it useful to look at pipelining performance
data when experimenting with different compiler options.

Letting an instruction move from the instruction de-
code stage of the pipeline into the execution stage is called
instruction issue. An instruction is completed once all
logically previous instructions have completed, and only
then is its result added to the visible state of the CPU. Be-
cause of speculative execution, a mispredicted branch can
cause instructions that have been executed, but not com-
pleted, to be discarded. Resource contention can cause in-
structions to be issued more than once before being com-
pleted. Normally, branch mispredictions and reissues are
rare, and the number of issued instructions (PAPI_TOT_
IIS) should correspond fairly closely to the number com-
pleted (PAPI_TOT_INS). A high number of mispredicted
branches (PAPI_BR_MSP) indicates that something is
wrong with the compiler options or that something is un-
usual about the algorithm. If the number of issued instruc-
tions greatly exceeds the number completed, and the
count of mispredicted branches remains low, then the
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load/store pipeline is likely experiencing resource conten-
tion, causing load-and-store instructions to be issued re-
peatedly.

Ratios derived from a combination of hardware events
can sometimes provide more useful information than raw
metrics. Two ratios, defined as PAPI metrics, are floating-
point operations completed per second (PAPI_FLOPS)
and total instructions completed per second (PAPI_IPS).
Another useful ratio is completed operations per cycle
(PAPI_TOT_INS/PAPI_TOT_CYC). A low value for this
ratio indicates that the processor is stalling frequently. The
typical value for this ratio will depend on the underlying
processor architecture. The ratio of completed loads and
stores per cycle (PAPI_LST_INS/ PAPI_TOT_CYC) indi-
cates the relative density of memory access in the program.
The ratio of floating operations completed per cycle
(PAPI_FP_INS/PAPI_TOT_CYC) indicates the relative
density of floating-point operations.

3 Design

3.1 LAYERED ARCHITECTURE

The PAPI architecture uses a layered approach, as shown
in Figure 1. Internally, the PAPI implementation is split
into portable and machine-dependent layers. The topmost
portable layer consists of the high- and low-level PAPI in-
terfaces. This layer is completely machine independent
and requires little porting effort. It contains all of the API
functions as well as numerous utility functions that per-
form state handling, memory management, data structure
manipulation, and thread safety. In addition, this layer pro-
vides advanced functionality not always provided by the
operating system—namely, event profiling and overflow
handling. On the other hand, the high-level interface pro-
vides a very simple and primitive interface to control and
access the hardware counters. The target audience for the
high-level interface is application engineers and bench-
marking teams looking to quickly and simply acquire
some rudimentary application metrics. The tool designer
will likely find the high-level interface too restrictive. The
portable layer calls the substrate, the internal PAPI layer
that handles the machine-dependent portions of accessing
the counters. The substrate is free to use whatever methods
deemed appropriate to facilitate counter access, whether
that be register-level operations (T3E), customized system
calls (Linux/x86), or calls to another library (AIX 4.3). The
substrate interface and functionality are well defined, leav-
ing most of the code free from conditional compilation di-
rectives. For each architecture/operating system pair, only
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Fig. 1 PAPI architecture
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a new substrate layer needs to be written. Experience indi-
cates that no more than a week is required to generate a
fully functional substrate for a new platform, if the operat-
ing system provides the necessary support for accessing
the hardware counters.

3.2 PORTABILITY

While the API addresses source code portability through
an interface, it does nothing to address the difficulty in de-
coding the machine-specific settings for the performance
monitor control hardware. As a proposed solution, PAPI
includes 64 predefined events, called presets, that are rep-
resentative of most major RISC-like events. The complete
list of presets can be found in the appendix. PAPI imple-
ments as many presets as possible on a given platform
without providing misleading or erroneous results. Pro-
viding such a classification can cause problems for the na-
ive user, especially when results for the same event are
compared between systems. Direct comparison between
systems is not the intention of the PAPI presets. Rather, the
intention is to standardize the names for the metrics, not
the semantics of those names. Thus, the user must still have
a working knowledge about the processor under study to
make sense of the performance data.

3.3 EVENTSETS

PAPI provides an abstraction from particular hardware
events called EventSets. An EventSet consists of events
that the user wishes to count as a group. There are two rea-
sons for this abstraction. The first reason is efficiency in ac-
cessing the counters through the operating system. Most
operating systems allow the programmer to move the
counter values in bulk without having to make a separate
system call for each counter. By exposing this grouping to
the user, the PAPI library can greatly reduce its overhead
when accessing the counters. This efficiency is especially
important when PAPI is used to measure small regions of
code inside loops with large iteration counts. The second
reason for EventSets is that users can evolve their own spe-
cialized counter groupings specific to their application ar-
eas. In practice, most users have an understandably diffi-
cult time relating a single counter value to the performance
of the region of code under study. More often than not, the
relevant performance information is obtained by relating
different metrics to one another. For example, the ratio of
loads to level 1 cache misses is often the dominant perfor-
mance indicator in dense numerical kernels.

EventSets are managed by the user through the use of
integer handles, which helps simplify interlanguage-calling
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interfaces. The use of EventSets has been freed from as
many programming restrictions as possible. The user is
free to allocate and use any number of them as long as the
substrate can provide the required resources. Multiple
EventSets may be used simultaneously and may share
counters. If the user tries to add more events to an
EventSet than are simultaneously countable on the under-
lying platform, PAPI returns an appropriate error code,
unless the user has explicitly enabled software multi-
plexing. PAPI also returns an error code if the user at-
tempts to use an EventSet that is not in the proper state.

3.4 MULTIPLEXING

Most modern microprocessors have a very limited num-
ber of events that can be counted simultaneously. This
limitation severely restricts the amount of performance
information that the user can gather during a single run.
As a result, large applications with many hours of runtime
may require days or weeks of profiling to gather enough
information on which to base a performance analysis.
This limitation can be overcome by multiplexing the
counter hardware. By subdividing the usage of the coun-
ter hardware over time, multiplexing presents the user
with the view that many more hardware events are count-
able simultaneously. This unavoidably incurs a small
amount of overhead and can adversely affect the accuracy
of reported counter values. Nevertheless, multiplexing
has proven useful in commercial kernel-level perfor-
mance counter interfaces, such as SGI’s IRIX 6.x. Hence,
on platforms in which the operating system or kernel-
level counter interface does not support multiplexing,
PAPI plans to provide the capability to multiplex through
the use of a high-resolution interval timer. To prevent na-
ive use of multiplexing by the novice user, the high-level
API can only access those events countable simulta-
neously by the underlying hardware, unless a low-level
call has been used to explicitly enable multiplexing.

3.5 USER CALLBACKS ON THRESHOLD

One of the most significant features of PAPI for the tool
writer is its ability to call user-defined handlers when a
particular hardware event exceeds a specified threshold.

This is accomplished by setting up a high-resolution
interval timer and installing a timer interrupt handler. For
systems that do not support counter overflow at the oper-
ating system level, PAPI uses SIGPROF and ITIMER_
PROF. PAPI handles the signal by comparing the current
counter value against the threshold. If the current value

exceeds the threshold, then the user’s handler is called
from within the signal context with some additional argu-
ments. These arguments allow the user to determine
which event overflowed, how much it overflowed, and at
what location in the source code.

Using the same mechanism as for user-programmable
overflow handling, PAPI also guards against register
overflow of counter values. Each counter can potentially
be incremented multiple times during a single clock cy-
cle. This fact, combined with increasing clock speeds and
the small precision of some physical counters, means that
counter overflow is likely to occur on platforms in which
64-bit counters are not supported in hardware or by the
operating system. For such cases, PAPI implements
64-bit counters in software using the same mechanism as
for user-specified overflow dispatch.

3.6 STATISTICAL PROFILING

Statistical profiling is built on the above method of install-
ing and emulating arbitrary callbacks on overflow. Pro-
filing works as follows: when an event exceeds a thresh-
old, a signal is delivered with a number of arguments.
Among those arguments is the interrupted thread’s stack
pointer and register set. The register set contains the pro-
gram counter, the address at which the process was inter-
rupted when the signal was delivered. Performance tools
such as UNIX prof extract this address and hash the
value into a histogram. At program completion, the histo-
gram is analyzed and associated with symbolic informa-
tion contained in the executable. What results is a line-
by-line account of where counter overflow occurred in the
program. GNU prof, in conjunction with the -p option
of the GCC compiler, performs exactly this analysis using
process time as the overflow trigger. PAPI aims to gener-
alize this functionality so that a histogram can be gener-
ated using any countable event as the basis for analysis.

PAPI provides support for execution profiling based
on any counter event. The PAPI_profil() call creates a
histogram of overflow counts for a specified region of the
application code. In the exact manner of UNIX profil(),
the identified region is logically broken up into equal-size
subdivisions. Each time the counter reaches the specified
threshold, the current subdivision is identified, and its
corresponding hash bucket is incremented.

Because the overflow process is emulated at a rela-
tively coarse grain, PAPI runs the risk of falsely identify-
ing regions of code as the cause of large numbers of over-
flows. To alleviate some of these problems, the
developers of PAPI are experimenting with a variety of
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statistical methods to recover additional useful data, in-
cluding range compression of the histogram, randomiza-
tion of the timer interval, and weighting of the increments.

3.7 THREAD SUPPORT

As very large SMPs become ever more popular in the
HPC community, fully thread-aware performance tools
are becoming a necessity. This necessity presents a signif-
icant challenge to the PAPI development team, due
largely to the variety of thread packages. As with any API,
the interface must be reentrant because any number of
threads may simultaneously call the same PAPI function.
This means that any globally writeable structures must be
locked while in use. This requirement has the potential of
increasing overhead and introducing large sections of ma-
chine-dependent code to the top layer. PAPI has only one
global data structure, which keeps track of processwide
PAPI options and thread-specific pointer maps. Fortu-
nately, this structure is only written by two API calls that
are almost exclusively used during the initialization and
termination of threads and the PAPI library.

A second problem is the accuracy of event counts as re-
turned by threads calling the API. To support threaded op-
eration, the operating system must save and restore the
counter hardware on context switches among different
threads or processes. The PAPI library must keep
thread-specific copies of the counter data structures and
values. In addition, the PAPI library detects existing or
new threads when they call a PAPI function and initializes
the necessary thread-specific data structures at that time.
There are some threading APIs that hide the concept of
user- and kernel-level threads from the user. Pthreads and
OpenMP are the most striking examples. As a result, un-
less the user explicitly binds his or her thread to a kernel
thread (sometimes called a lightweight process, or LWP),
the counts returned by PAPI may not necessarily be accu-
rate. Pthreads permit any “Pthread” to run on any LWP
unless previously bound. Unbound user-level threads that
call PAPI will most likely return unreliable or inaccurate
event counts. Fortunately, in the batch environments of
the HPC community, there is no significant advantage to
user-level threads, and thus kernel-level threads are the
default. For situations in which this is not the case, PAPI
developers have plans to incorporate simple routines to
facilitate binding by the user.

3.8 ACCURACY OF

PERFORMANCE COUNTER DATA

Although PAPI attempts to introduce as little overhead as
possible and thus perturb application performance to only

a minor degree, some perturbation is inevitable and has
yet to be measured. Counts produced for various PAPI
metrics may vary from one run to another of the same pro-
gram on the same inputs on some architectures, due to
contention for resources with other applications or the op-
erating system. The vendor-provided counter interfaces
may occasionally have bugs that cause inaccurate report-
ing of hardware counter data. More study is needed to de-
termine the accuracy of performance counter data mea-
sured by PAPI. With its portable interface to hardware
counters, PAPI actually provides a good framework for
conducting statistical studies of the reliability and consis-
tency of these data.

4 Performance

Counter Implementations

4.1 PENTIUM PRO/II/III ON LINUX v2.0, v2.2

This platform was the first one targeted for a variety of
reasons, including access to the kernel source code and
the simplicity of the counters. The counters on the
Pentium Pro and Pentium II/III are one 64-bit cycle coun-
ter and two 40-bit general-purpose counters. The Pentium
Pro and Pentium II/III have identical counter sizes and
event codes.

Erik Hendriks had written a performance counter ker-
nel extension for Beowulf that provided an excellent
framework on which to hang additional functionality.
Some of the features added to the kernel patch include the
ability to reset the cycle counter, faster configuration and
access, process/thread inheritance, and support for Linux
kernel versions outside the main tree.

4.2 SGI/MIPS R10000/R12000 ON IRIX 6.x

This platform has one of the best vendor-provided coun-
ter interfaces, and the counter interface is well docu-
mented. PAPI chose to implement the IRIX substrate us-
ing the ioctl() interface to the /proc file system. There are
several advantages to the SGI platform that made some
aspects of PAPI easier to implement, such as kernel-level
multiplexing and internally supported overflow handling.
The MIPS R10000 and R12000 have two 32-bit counters
that support a total of 31 different events. For PAPI, there
were two main problems with this platform. The first
problem was that there is no way to write to the counters,
which means that PAPI cannot reset the counters by zero-
ing them. This API routine was therefore implemented in
the substrate by emulating zeroing of the counters
through bookkeeping. The second problem is that a pro-
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cess may have access to the counters taken from it by the
kernel. Once a process has acquired the counters, the
same process may not reacquire them. When access to the
counters has been given to another process, the values
cannot be trusted, and the process should be restarted.
PAPI will detect a change in counter ownership and will
exit with an error message.

4.3 IBM POWER 604/604e/630 ON AIX 4.3

The IBM 604/604e/630 substrate is built over the
pmtoolkit, which is a proprietary kernel extension for AIX
4.3 that supports a system and kernel thread performance
monitor API (Smolders, 1999). pmtoolkit adds support to
AIX for optional performance monitor (PM) contexts that
are extensions of the regular processor and thread con-
texts and include one 64-bit counter per hardware counter
and a set of control words. The control words define what
events get counted and when counting is on or off. The
November 1999 release of the pmtoolkit includes event
tables for the 604, 604e, 630, and 630+. The 604 has two
counters, the 604e has four counters, and the 630 and
630+ processors both have eight counters. Architectural
issues for the IBM POWER3, which uses the 630 proces-
sor, may be found in Andersson et al. (1998).

4.4 COMPAQ ALPHA EV4/5/6

ON TRU64 UNIX

The pfm pseudo-device is the interface to the Alpha
on-chip performance counters under Tru64 Unix. The in-
terface consists of a set of ioctl() calls. The Tru64 kernel
must be rebuilt to configure the pfm pseudo-device into it.
The EV4 CPU (21064, 21064A, 21066, and 21068 pro-
cessors) has two counters. The EV5 (21164, 21164A,
21164PC) has three counters. The EV6 (21164) has two
counters. The EV4, EV5, and EV6 counters can be inde-
pendently programmed. The EV67 counters are not com-
pletely independent. Any one statistic may be selected, or
one of the following pairs may be selected: (cycles0, re-
play), (retinst, cycles1), or (retinst, bcachemisses).

4.5 CRAY T3E, EV5 ON UNICOS/MK

The T3E contains a large number of modified EV5 pro-
cessors arranged in a three-dimensional torus. Each pro-
cessor in the system runs a slimmed-down version of the
operating system Unicos/mk, a derivative of the Mach
microkernel. Access to the EV5’s three performance
counters is achieved through customized assembly rou-
tines provided by SGI/Cray. These routines make calls to
the PAL code, microcode set up by the manufacturer to

handle low-level operations. While this interface is very
small, it is programmable enough to support the neces-
sary functionality in PAPI. The main problem on the T3E
is that the performance registers are not accumulated by
the PAL code into 64-bit quantities, and thus this accumu-
lation must be performed by PAPI. Furthermore, the
Unicos/mk scheduler may migrate a job to another CPU.
In that case, PAPI’s only valid course of action is to detect
the fault and inform the user.

5 Tools

5.1 DISPLAY OF PAPI PERFORMANCE DATA

The PAPI project has developed two tools that demon-
strate graphical display of PAPI performance data in a
manner useful to the application developer. These tools
are meant to demonstrate the capabilities of PAPI rather
than as production quality tools. The tool front ends are
written in Java and can be run on a separate machine from
the program being monitored. All that is required for
real-time monitoring and display of application perfor-
mance is a socket connection between the machines.

The first tool, called the perfometer, provides a runtime
trace of a chosen PAPI metric, as shown in Figure 2 for
floating operations per second (PAPI_FLOPS). This par-
ticular example illustrates how calls to PAPI routines at
the beginnings and ends of procedures can provide infor-
mation about the relative floating-point performance of
those procedures. The same display can be generated for
any of the PAPI metrics. For example, Figure 3 shows a
display of the L1 cache hit rate.

The second tool, called the profometer, provides a his-
togram that relates the occurrences of a chosen PAPI event
to text addresses in the program, as shown in Figure 4 for
L1 data cache misses. Again, the same display can be gen-
erated for any of the PAPI metrics. Future plans are to de-
velop the capability of relating the frequency of events to
source code locations, allowing the application developer
to quickly locate portions of the program that are the
source of performance problems.

5.2 INTEGRATION WITH OTHER TOOLS

Visual Profiler, or vprof, is a tool developed at Sandia Na-
tional Laboratory for collecting statistical program coun-
ter data and graphically viewing the results on Linux Intel
machines (Janssen, 1999). vprof uses statistical event
sampling to provide line-by-line execution profiling of
source code. vprof can sample clock ticks using the profil
system call. The vprof developer has added support for
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PAPI so that vprof can also sample the wide range of sys-
tem events supported by PAPI. A screenshot showing
vprof examination of both profil and PAPI_TOT_CYC
data is shown in Figure 5.
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Fig. 2 Perfometer displaying Mflops

Fig. 3 Perfometer displaying the L1 cache hit rate
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SvPablo is a graphical source code browser and perfor-
mance visualizer that has been developed as part of the
University of Illinois’s Pablo project (DeRose and Reed,
1999; DeRose, Zhang, and Reed, 1998). SvPablo supports
automatic instrumentation of HPF codes with Portland
Group’s HPF compiler and interactive instrumentation of
C and Fortran programs. During execution of an instru-
mented code, the SvPablo library maintains statistics on
the execution of each instrumented event on each proces-
sor and maps these statistics to constructs in the original
source code. The current version of SvPablo includes sup-
port for the MIPS R10000 hardware performance coun-
ters. The next version of SvPablo, being developed at the
IBM Advanced Computing Technology Center, has inte-
grated support for PAPI. Screenshots of SvPablo displays
of PAPI metrics are shown in Figures 6 and 7.

DEEP, from Pacific-Sierra Research, stands for devel-
opment environment for parallel programs. DEEP pro-
vides an integrated interactive GUI interface that binds
performance, analysis, and debugging tools back to the
original parallel source code. DEEP supports Fortran
77/90/95, C, and mixed Fortran and C in Unix and Win-
dows 95/98/NT environments. DEEP supports both
shared-memory (automatic parallelization, OpenMP) and
distributed-memory (MPI, HPF, Data Parallel C) parallel
program development. A special version of DEEP, called
DEEP/MPI, is aimed at support of MPI programs. DEEP
provides a graphical user interface for program structure
browsing, profiling analysis, and relating profiling results
to source code. DEEP developers are incorporating sup-
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Fig. 4 Profometer display L1 data cache misses

Fig. 5 vprof displaying profil and PAPI_TOT_CYC data

“During execution of an
instrumented code, the SvPablo
library maintains statistics on the
execution of each instrumented event
on each processor and maps these
statistics to constructs in the original
source code.”
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port for PAPI so that statistics for the standard PAPI met-
rics can be viewed and analyzed from the DEEP interface.
A screenshot of the DEEP/MPI interface displaying PAPI
data for L2 cache misses is shown in Figure 8.
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Fig. 6 SvPablo source code browser displaying PAPI metrics
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6 Related Work

6.1 PERFORMANCE COUNTER LIBRARY

The Performance Counter Library (PCL) is a common in-
terface for accessing performance counters built into mod-
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Fig. 7 SvPablo statistics displays showing PAPI data

Fig. 8 DEEP/MPI displaying PAPI data for L2 cache misses
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Cycle and instruction counts
PAPI_TOT_CYC Total cycles
PAPI_TOT_IIS Total instructions issued
PAPI_TOT_INS Total instruction completed
PAPI_INT_INS Integer instructions completed
PAPI_FP_INS Floating-point instructions completed
PAPI_LD_INS Load instructions completed
PAPI_SR_INS Store instructions completed
PAPI_LST_INS Total load/store instructions

completed
PAPI_FMA_INS Floating-point multiply add (FMA)

instructions completed
PAPI_VEC_INS Vector/SIMD instructions completed
PAPI_BR_UCN Unconditional branch instructions

completed
PAPI_BR_CN Conditional branch instructions

completed
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not

taken
PAPI_BR_MSP Conditional branch instructions

mispredicted
PAPI_BR_PRC Conditional branch instructions

correctly predicted
PAPI_BR_INS Total branch instructions completed
PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional

instructions
PAPI_CSR_TOT Total store conditional instructions
PAPI_SYC_INS Synchronization instructions

completed
PAPI_FLOPS Floating-point instructions completed

per second
PAPI_IPS Instructions completed per second

Functional unit and pipeline status events
PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating-point units are idle
PAPI_LSU_IDL Cycles load/store units are idle
PAPI_MEM_SCY Cycles stalled waiting for memory

access
PAPI_MEM_RCY Cycles stalled waiting for memory

read
PAPI_MEM_WCY Cycles stalled waiting for memory

write
PAPI_STL_CYC Cycles with no instruction issue

PAPI_FUL_ICY Cycles with maximum instruction
issue

PAPI_STL_CCY Cycles with no instruction completion
PAPI_FUL_CCY Cycles with maximum instruction

completion
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