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Abstract

Computational power grids are computing environments with massive resources for processing and storage. While these
resources may be pervasive, harnessing them is a major challenge for the average user. NetSolve is a software environment
that addresses this concern. A fundamental feature of NetSolve is its integration of fault-tolerance and task migration in a way
that is transparent to the end user. In this paper, we discuss how NetSolve’s structure allows for the seamless integration of
fault-tolerance and migration in grid applications, and present the specific approaches that have been and are currently being
implemented within NetSolve. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The advances in computer and network technologies
that are shaping the global information infrastructure
are also producing a new vision of how that infras-
tructure will be used. The concept of aComputational
Power Gridhas emerged to capture the vision of a net-
work computing system that provides broad access not
only to massive information resources, but to massive
computational resources as well. Such computational
grids will use high-performance network technology
to connect hardware, software, instruments, databases,
and people into a seamless web that supports a new
generation of computation-rich problem solving envi-
ronments for scientists and engineers.

Grid resources will be ubiquitous. However, for the
average scientific user, harnessing their power will
present a challenge. Consider such a user. In the world
of uniprocessor workstations, his life is relatively sim-
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ple. Software packages such asmatlab [1] andmath-
ematica [2] enable him to solve a wide variety of nu-
merical problems with a convenient and flexible user
interface. For less standard problems, he may obtain
software solutions from a repository like Netlib. These
are typically rather simple to incorporate into his pro-
gramming platform. However, when his computational
needs grow beyond the capability of a workstation, he
must turn to parallel computing platforms. He will be
driven to employ computational grids.

While computational grids offer tremendous com-
puting power, they also combine and amplify all the
well-known complexities of distributed and parallel
computing environments. Moreover, they deprive the
programmer of convenient and flexible user interfaces.
The obstacles and difficulties standing in the way of
routine and effective use of such environments include
the following:
• Distributed ownership– Often multiple machines

are available to perform computation, but each is
owned by a different person or group, which may
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need exclusive use of the machine periodically.
Some machines have shared ownership, making the
machines available on set schedules. Alternatively,
a machine may never be available for exclusive
use, having the capacity to perform computations
in one minute, and to be loaded by other com-
putations in the next minute. Finally, distributed
ownership implies that each resource must be con-
sidered transient as there is no single administrative
authority. All of these characteristics make the task
of managing the collection of machines as a single
resource very difficult.

• Platform heterogeneity– While the processing
power of a set of machines may be large, it may be
hard to harness because each machine is a different
type. This makes the task of partitioning a program
among the available machines difficult. Moreover,
it makes porting software difficult because differ-
ent machines may have different compilers and
libraries.

• Network reliability and performance– When ma-
chines are geographically separated, proximity be-
comes an important issue, because communication
times are not uniform between all machines in the
collection. Moreover, as larger distances separate
machines, the chance of network disconnections
increases.

• Storage availability– Like CPU capacity, both pri-
mary and secondary storage may exist in abundance
on a grid, but their availability may be transient and
hard to predict.
Thus, while the sheer processing power and storage

capacity of computational grids make them attrac-
tive, their usability is a major concern. NetSolve,
developed at the University of Tennessee and Oak
Ridge National Laboratory, is a software environ-
ment for network computing that addresses this con-
cern. Its central purpose is to enable the creation of
complex applications that can deliver the immense
power of computational grids to the desktops of users
without being complicated to use or difficult to de-
ploy. To achieve this aim, NetSolve uses a modular,
client–agent–serverarchitecture that composes a sys-
tem in which processing platforms and computational
software of arbitrary complexity become accessible
to users through programming and problem solv-
ing interfaces that are already familiar and easy to
use.

Fig. 1. NetSolve’s organization.

In this paper, we present the general structure of
NetSolve, and how that structure accommodates grid
computing. We then elaborate on how NetSolve inte-
grates fault-tolerance and migration into its architec-
ture so that it may harness the power of dynamically
changing grid resources in ways that are transparent
to the end user. This integration is split into two re-
search directions. The first focuses on how NetSolve’s
design and implementation can enable fault-tolerance
and migration, while the second simply uses NetSolve
to explore a variety of approaches to fault-tolerance
and migration. We will mention early results and
design decisions throughout.

2. NetSolve

2.1. Overview

NetSolve is a software environment for networked
computing designed to transform disparate computers
and software libraries into a unified, easy-to-access
computational service. It aggregates the hardware and
software resources of any number of computers that
are loosely connected across a network and offers
their combined power through client interfaces that
are familiar from the world of uniprocessor comput-
ing (e.g.matlab, simple procedure calls). It uses a
client–agent–server paradigm (Fig. 1) to deliver the
power while hiding the complexity of the underlying
system.

A NetSolve server may be arbitrarily complex, from
a uniprocessor to a Massively Parallel Processor
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(MPP) or a large networked cluster of machines;
moreover, there is no upper bound on the number of
servers that can be aggregated to form a NetSolve
resource pool, and new servers can be added with
little effort.

When a user wants a certain computational task to
be performed, he/she can use any one of the number
of conventional software clients to contact an agent
with the request. An agent keeps track of information
about all the servers in its resource pool, including
their availability, load, network accessibility, and the
range of computational tasks they can perform. It is
possible to start as many agents as necessary to man-
age the pool of servers in order to increase resilience
and decrease contention. An agent then selects a server
to perform the task, and the server responds to the
client’s request. The client’s computations are per-
formed remotely at the server. The client’s data is sent
to the server and the server uses its installed software
libraries to perform the computation. When the server
finishes the computation, it sends the result back to
the client and the agent is notified of the completion
of the task.

As shown in Fig. 1, there may be multiple in-
stances of NetSolve agents on the network, and dif-
ferent clients may contact different agents depending
on their locations. The agents exchange information
about their different servers, and may allow access
from any client to any server if desirable. In some
send though, NetSolve agents compete to run jobs on
the available resources. NetSolve can be used either
via the Internet or on an intranet, such as inside a
department of a university, without participating in
any Internet-based computation.

2.2. Strengths of Netsolve

The elements of the NetSolve architecture are for
the most part well understood. Depending on your per-
spective, NetSolve’s design can be viewed as an en-
hanced client-server architecture, or as an enhanced
RPC (remote procedure call) environment. However,
its three-tiered approach achieves a logical separation
that allows each part to do what it does best without
worrying about the details of the other parts. Specifi-
cally,

• The client simply specifies the problem. This sim-
plicity of use is not only exactly what users typi-
cally want, it’s what users actually get with unipro-
cessor packages such asmatlab or lapack [3]. In
the parallel world, however, even the simplest soft-
ware packages burden the user with setting up the
parallel environment, distributing data, specifying
block sizes and processor grids, and so on. And this
does not take into account heterogeneity, failures, or
load-balancing. With NetSolve, the user goes back
to the uniprocessor model, and lets the NetSolve
agent and pool of servers worry about the other
details.

• The servers can optimize computations for their
particular architectures. One of the biggest chal-
lenges in writing software for solving prob-
lems on parallel systems is making the software
general-purpose enough to work on a variety of
parallel platforms, yet customizable enough to take
advantage of the architectural features of each plat-
form. The typical result is that the software either
has sub-optimal performance and is easy to use, or
has optimal performance, but places a significant
burden on the user. ScaLAPACK [4], for instance,
achieves excellent performance on a variety of par-
allel and distributed computing platforms, but is
orders of magnitude more difficult to port and use
than its uniprocessor counterpart,lapack. With
NetSolve, every server can be set up with software
that performs optimally for that server, without any
end user’s involvement.

• The agents act as resource brokers. The agents per-
form the tasks that are not logical for the clients
or servers, such as monitoring and managing re-
sources, services and computations. The agent is
the ‘third part’ of the three-part design of NetSolve,
which liberates the other two parts. Namely, it en-
ables the clients to focus solely on specifying their
problems, and it enables the servers to focus solely
on solving their problems.

2.3. Current state of Netsolve development

At present NetSolve exists as a prototype that is be-
ing used in several research institutions. This prototype
implements NetSolve’s client–agent–server model in
the following way:
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• Clients may be C orfortran programs linked with
the NetSolve library,matlab sessions that use the
NetSolve .mex file, mathematica sessions that
use NetSolve viaMATHLINK, Java applications or
applets that call the NetSolve Java class library.
Additionally, NetSolve provides a Java GUI so that
users can directly interact with NetSolve without
writing any program (e.g. from the Web).

• Agents are C programs that run as stand-alone
daemons.

• Servers may be registered with one or more agents,
and may then be annotated with the software ser-
vices that they can perform. Servers may register or
unregister at any time.
Currently, the agents and servers run on all variety

of Unix machines, and clients may run on Unix and
Windows 95/NT.

We have developed a suite of server routines that are
very easy to install as part of any uniprocessor server.
These correspond to standard computations from dif-
ferent fields, such as linear algebra, FFTs, optimiza-
tion, curve fitting, iterative methods, etc. We have also
developed servers that run any of the ScaLAPACK [4]
routines on any parallel processing environment that
supports PVM or MPI. It is a straightforward task to
embed other software into a server. Finally, we have
also developed servers composed of a collection of
workstations managed by Condor [5]. These are de-
scribed in Section 5.1.

Though NetSolve is still a prototype, its potential for
providing easy access to large computational resources
has already attracted early users within the scientific
community. Below are two illustrations of such early
deployments:
• Image processing with NetSolve: Researchers at the

ICG institute at Graz University of Technology,
Austria, currently use NetSolve to make sophisti-
cated image processing functions available for re-
mote execution to a large community of users (See
[6]).

• Neuro-science with NetSolve: At the Computa-
tional Neurobiology Lab of the Salk Institute, the
NetSolve prototype is being integrated into MCell,
which is a software that performs three dimensional
Monte Carlo simulations of cellular microphysi-
ology for biologists and biochemists. MCell sim-
ulations require solutions to extremely large data
parallel problems in multidimensional parameter

spaces. NetSolve is ideal for this kind of problem.
Due to NetSolve’s ability to serve up a vast array
of computational resources, including the 256 node
Cray T3E located at the San Diego Supercomputer
Center, integration of MCell with NetSolve is ex-
pected to enable MCell simulations that previously
took two weeks to run to finish in an afternoon.

3. Transparent fault-tolerance and load balancing

As mentioned earlier, the computational resources
on a grid may be vast, but due to distributed own-
ership and the nature of loosely connected systems,
their availability may be quite variable. Privately
owned workstations may be available for computa-
tion one minute, then revoked by the owner the next.
Shared machines may exhibit variable load, or may
have set schedules for exclusive use. Under these con-
ditions, issues of fault-tolerance and load-balancing
become especially important. There has been a vast
amount of research on embedding fault-tolerance and
load-balancing into parallel and distributed comput-
ing platforms. Approaches that have been explored
include user-transparent checkpointing and migration
libraries (e.g. [5,7–9]), programming paradigms that
facilitate the task of fault-tolerance or load balancing
(e.g. [10,11]), or modified algorithms for perform-
ing certain specific computations in a fault-tolerant
manner (e.g. [12–14]). While the effectiveness of
these techniques has been demonstrated experimen-
tally, none of them have made a large impact on the
scientific computing community because using them
requires far too much end user involvement.

All the types of fault-tolerance and load balanc-
ing listed above fit seamlessly into NetSolve’s struc-
ture. We divide fault-tolerance and load balancing into
inter-server and intra-server categories. For exam-
ple, the agent may keep tabs on the progress of a
server. If the server is not progressing at a reason-
able pace, then the agent (or client) may instruct an-
other server to perform the computation. With a little
more effort, the agent may be able to instruct another
server to actually continue the computation using the
current state of the old server. These are examples
of inter-server techniques for fault-tolerance and load
balancing. Intra-server techniques are possible as well.
For instance, servers of all kinds may employ trans-
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parent or non-transparent techniques to render them-
selves resilient to faults. Servers composed of multi-
ple machines may implement local load balancing to
make themselves more efficient.

The important point about the use of all such tech-
niques within the NetSolve framework is that they are
totally transparent to the end user. Thus, by employ-
ing NetSolve, a user can reap the benefits of research
on fault-tolerance and load balancing without actually
incorporating it into their code. In fact, they may reap
these benefits without even knowing it! In this way,
NetSolve can make a major contribution in the area of
deployingsupport for fault-tolerance.

4. Inter-server paradigms

If a server fails or is not progressing fast enough,
then it is logical for the agent to detect this and move
the computation to another server. In this section, we
discuss different levels of inter-server fault-tolerance
that will be explored, and how they fit into the Net-
Solve framework.

4.1. The current approach

The first level of inter-server fault-tolerance is im-
plemented in the current NetSolve prototype. The
agents periodically collect information about the
servers and their status. If a server that is currently
executing a computation becomes unavailable, then
the agent selects a new server to take over the com-
putation. Currently, this involves simply having the
client contact the new server, and start the computa-
tion anew. The agents use a variety of mechanisms
for determining server availability, including stan-
dard Unix calls such asuptime to determine server
load. We have also incorporated the Globus Heart
Beat Monitor [15] into the agents to perform reliable
failure detection. We plan to integrate the efforts of
the Network Weather Service [16] into the NetSolve
agents as well.

4.2. Integrated storage services

A simple way to improve upon the current model is
to have the new server query the old server, and if the
old server is alive but overloaded, then the old server

can send the state of the computation to the new server,
which resumes processing from that point. This can
be done in a generic manner as in Condor [5], or it
can be done in a more application-specific manner, as
in the PUL library [11].

This simple method is a good first step, and in-
deed provides more fault-tolerance than most currently
used software for scientific computation. However, it
is limited by the fact that the failed server must some-
how provide its state to the new server. To address
this problem, we introduce a new class of server to
the NetSolve framework, calledstorage servers. At a
high level, storage servers, just like regular servers,
are managed by the agents. However, their job is not
to compute, but to hold data.

Storage servers will store checkpoints of the com-
putations running on other servers. Very simply, when
a computation server decides it should save its state,
it selects a storage server with the help of a NetSolve
agent, and sends its checkpoint to the storage server.
The storage server may store the data in any way that
it chooses – in physical memory or on secondary stor-
age. If the storage server needs to make some guaran-
tees about availability, it may replicate the data. Note
that the storage server does not need to be concerned
with the format of the checkpoint data or with what the
data means. If an agent detects that a server has failed
or is not performing a computation quickly enough,
then it selects a new server to resume the computation
from the most recent checkpoint in the associated stor-
age server. This removes any dependency on the old
server, which may not be able to respond to queries
from the new server. When the computation is finished,
the server or the agent may notify the relevant storage
servers so that they may discard their checkpoints.

Thus, the concept of inter-server fault-tolerance
fits nicely within the framework of NetSolve. One
may view storage servers as computation servers that
merely hold data and do not perform computations.
The management of all the servers is still performed
by the agents, which, as in the non-fault-tolerant case,
are not concerned with the actual computations or
checkpoint files. Instead they provide a repository
for information about servers and a broker for the
resources of servers. As discussed below in Section
5.3, this design of inter-service fault-tolerance allows
for interesting interactions of inter-and intra-service
fault-tolerance.
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A first prototype of storage servers has already been
developed and will be distributed with the next Net-
Solve software release.

5. Intra-server fault-tolerance

NetSolve’s logical separation of clients and servers
and its dynamic access to heterogeneous resources
make it an ideal testbed that can use real applications
to compare the performance of different techniques
for fault-tolerance and load balancing. In this section,
we present different techniques for fault-tolerance and
load-balancing that we are considering implement-
ing within NetSolve. These are termed intra-server
techniques because they are implemented within one
server. We also discuss the mixing of intra-server and
inter-server techniques for fault-tolerance.

5.1. The current approach

Currently, NetSolve allows a pool of workstations
managed by Condor [5] to act as a NetSolve server.
Condor provides transparent checkpointing and restart
so that computations may be moved from loaded/failed
machines to idle/available machines. As such, it is able
to make use of idle cycles in a shared workstation
environment. Employing Condor is a significant first
step towards intra-server fault-tolerance. However, it
has the following limitations:
• Condor can only migrate jobs between machines of

the same architecture.
• Condor can only migrate jobs within its server.
• Condor only works with serial (non-parallel) pro-

grams.
• Condor never completely migrates off of its orig-

inal ‘host’ machine. In particular, system calls are
always forwarded to and executed by the original
host machine.
In the following sections, we describe the ap-

proaches that we take for fault-tolerance and load
balancing that attempt to alleviate these limitations.

5.2. Co-ordinated checkpointing and rollback
recovery

The most straightforward scheme for providing
fault-tolerance for parallel programs is to employ

co-ordinated checkpointing and rollback recovery. At
set intervals (determined by parameters such as pro-
gram size, storage speed, etc. [17]), the processors
involved in a computation save their computation
states to stable storage. This is called a co-ordinated
checkpoint. Following a failure of any or all compo-
nents, an equal number of processors use the states
on stable storage to restart the computation from the
point of the checkpoint. Several checkpointing li-
braries have been written for performing co-ordinated
checkpointing on various parallel computing plat-
forms. For example, MIST [7] and CoCheck [9]
provide transparent checkpointing for PVM and MPI
programs on networks of workstations, CLIP [8]
provides semi-transparent checkpointing for Intel
Paragon programs, and the PUL-library [11] provides
non-transparent checkpointing for a certain class of
parallel applications. Here, transparency refers to the
amount of programmer involvement necessary to get
checkpointing to work.

As a first step, we will add non-transparent
co-ordinated checkpointing as a basic method for
intra-server fault-tolerance. The reason for making it
non-transparent is because doing so facilitates making
the checkpoints platform-independent, and therefore
the processor configuration following a failure does
not need to be constrained by the configuration at
the time of checkpointing. For example, the program
may restart on a different number of processors or on
processors of differing architectures.

We have already developed a prototype of a Net-
Solve server for the ScaLAPACK package that per-
forms portable checkpointing and rollback. We will
then attack other parallel server packages. Obviously,
the next step is to employ the storage servers described
in Section 4.2 to store the checkpoints so that the ap-
plications may be restored on any server, not just the
server with failed processors.

5.3. Diskless checkpointing techniques

One way to improve the performance of co-ordinated
checkpointing is to remove stable storage from the
protocol. This is called diskless checkpointing [14].
Here, the co-ordinated checkpoint is stored in the
memory of the application processors and combined
with error correcting coding and some extra check-
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pointing processors so that the loss of a limited num-
ber of processors may be tolerated. These techniques
have already been embedded into some of the ScaLA-
PACK routines and have demonstrated excellent per-
formance [14]. There are three interesting research
directions for diskless checkpointing in NetSolve.

First, we will incorporate the above code into the
ScaLAPACK servers. Note that the structure of Net-
Solve allows us to embed such application-specific
fault-tolerant techniques into the servers so that users
may take advantage of them without any knowledge
of the underlying fault-tolerant concepts. This would
be a breakthrough in bringing complex research con-
cepts into more mainstream use.

Second, there are novel ways in which we can
leverage diskless checkpointing to mix intra-and
inter-server fault-tolerance. For example, instead of
storing the error correcting coding in checkpointing
processors within a server, we may store them at
the storage servers, which may facilitate the migra-
tion of the application to another server, or perhaps
free the server from having to allocate checkpointing
processors altogether.

Finally, by incorporating diskless checkpointing
into the server applications, we may discover in-
teresting new fault-tolerant paradigms. This was
done with the right-looking matrix factorizations of
ScaLAPACK, which did not perform as well as some
of the other ScaLAPACK algorithms when diskless
checkpointing was employed. The result was a new
paradigm for fault-tolerant matrix algorithms called
checksum and reverse computation [18]. We anti-
cipate that there will be many more opportunities to
explore new fault-tolerant paradigms within individ-
ual server applications. These may be based on some
combination of checkpointing, algorithm-based fault
tolerance [13] or backward assertion [12] techniques.

5.4. Distributed shared memory and other
programming paradigms

There are some problems that lack the regular struc-
ture of (for example) dense matrix operations, and
map more naturally to the shared memory paradigm
of parallel programming [19,20]. Since NetSolve does
not constrain the server, such programs may employ
shared memory solutions in the servers without the end
user being aware of it. The use of shared memory has

implications for fault-tolerance and load balancing.
In particular, checkpointing strategies may take ad-
vantage of the replication and redundancy inherent in
shared memory systems to achieve better performance.
This has been explored by researchers for transpar-
ent runtime libraries that implement distributed shared
memory [21–24], and for programs that make explicit
use of data structures with shared memory semantics
[25,26].

Relatedly, there has been research on fault-tolerant
shared tuple spaces [27] and other models of paral-
lel programming such as farming [28], master-slave
[29], and coarse-grained dataflow [30] that are more
restrictive than general message passing, and facili-
tate the addition of fault-tolerance and computation
migration. A great strength of NetSolve is that if a
server functionality maps well to one particular pro-
gramming paradigm, then the server may implement
that paradigm, and thereby allow that functionality to
have fault-tolerance and load balancing embedded in
it rather seamlessly.

We anticipate implementing a few fault-tolerant
servers with some of these programming paradigms.
There are three obvious benefits to such imple-
mentations. First, they will add to the number of
deployable fault-tolerant servers available with Net-
Solve. Second, they will enable us to compare
the performance and tradeoffs of using traditional
fault-tolerant strategies, (such as co-ordinated check-
pointing on message-passing architectures) and using
fault-tolerant strategies that make use of a specialized
programming paradigm. Finally, these implementa-
tions may serve as examples for other researchers to
implement their own fault-tolerant servers for differ-
ent applications.

Extending these ideas to inter-server fault-tolerance
is also an interesting avenue for research. For example,
storage servers may be employed to mirror the state
of shared memory, or perhaps to back up a shared tu-
ple space. Similarly, storage servers may implement a
remote memory service [31], which may improve the
performance of inter-server checkpointing and migra-
tion.

5.5. Migration issues

There are three other research issues in migration
that we will explore in the context of NetSolve. First
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is architecture independent checkpointing. Above, we
describe a scheme where checkpointing is embedded
directly into an application, giving it the ability to
checkpoint and restart on differing computational plat-
forms. There are other ways of duplicating this func-
tionality, such as using a preprocessor to automate
the task of embedding type program information into
the checkpoint [32] employing restricted languages
that may embed architecture independent checkpoint-
ing into the compiler and runtime system [33] or em-
ploying special checkpointable data structures [25].
While prototype implementations of the above tech-
niques have been promising, the structure of NetSolve
allows us to test their use with real applications, com-
pare their performance and deploy them. We anticipate
that by exploring these concepts in the framework of
NetSolve, we will gain a better understanding of how
to write easy-to-deploy and efficient code for archi-
tecture independent checkpointing.

Second, the use of privately owned resources as Net-
Solve servers is an important issue. Specifically, the
CPU capacity of most workstations is rarely utilized
by their owners. Separate studies have shown that if
a computation may be structured so that it only uses
idle cycles of privately owned machines, an enormous
amount of computation may be performed [34–36].
The issue of using privately owned resources has been
touched upon in NetSolve by the Condor servers, but
ideally the brokering of such resources should be per-
formed by the NetSolve agents, and then the migration
co-managed by the servers and the agents. We plan
to leverage off the similar efforts of CARMI [37] and
Globus [38] so that NetSolve can tap into the process-
ing capacity of privately owned workstations.

Finally, the function of the NetSolve agent is closely
related to that of a class of systems known as Object
Request Brokers, most notably Object Management
Group’s CORBA [39]. These brokers allow a server
to register an interface and facilitate clients in finding
and attaching to these interfaces. The objective of such
systems are to create an infrastructure for the construc-
tion of distributed enterprise level applications.

Because it is designed as a near-universal architec-
ture, CORBA suffers from a combination of generality
and structure. Clients and servers can be implemented
in any programming language, but all interfaces are
defined using object-oriented constructs. Since even
OO languages have diverse type systems, CORBA

defines its own in the form of the Interface Definition
Language (IDL), and requires every language to map
IDL to its own constructs. As a result, the CORBA
user must make use of extensive mapping tools and
invest significant effort just to connect to the system.

The Java world seeks to overcome the generality of
CORBA by creating single-language solutions. These
solutions make use of the fact that client and server
are both implemented in Java to eliminate the need for
an IDL. They make use of remote call mechanisms
such as Sun’s Remote Method Invocation (RMI) to
pass complex structures transparently between client
and server. Unfortunately, Java is not currently an ap-
propriate standard for the world’s high performance
software.

NetSolve takes a very practical approach: the in-
terface is modeled after the Fortran type system, and
mappings are defined for other programming lan-
guages. Because Fortran’s type system is so simple,
these mappings are generally straightforward. Be-
cause so much of the software interfacing to Netsolve
is written in C andfortran, there are few software
barriers in porting a large body of single-processor
code to Netsolve. While this framework does not have
the potential to ease the task of brokering complex
objects as in CORBA or HORB, it does not enforce
a programming paradigm (e.g. object-oriented pro-
gramming) that would get in the way of porting the
large body of code that is implemented in C andfor-
tran. To put it simply, NetSolve is a tool that works
without getting in the way. It is an open research area
to investigate how more complex brokering paradigms
fit into the NetSolve framework.

5.6. Related grid-oriented software

As grid-based computing has begun to emerge, ap-
proaches to grid-oriented software that are both simi-
lar to and different from NetSolve’s are under devel-
opment. Ninf [40], is a project that bears similarities
to NetSolve, and abridgehas been developed so that
NetSolve and Ninf can share resources and clients.
The Network-Enabled Optimization Server (NEOS)
[41] is in some ways comparable to NetSolve. The
differences, however, are significant. First, NEOS ad-
dresses a specific field of computational science (op-
timization), whereas NetSolve, can integrate virtually
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any processing of user data. Second, NetSolve’s soft-
ware architecture allows it to be deployed on any scale
with great flexibility as opposed to NEOS which is
centralized at the Argonne National Laboratory. Third,
NetSolve provides several more user interfaces than
NEOS, including amatlab and two Java interfaces.

Other than Condor, the two leading middleware sys-
tems for creating computational grids are Globus [38]
and Legion [42]. They address somewhat different
audiences. NetSolve targets any scientist or engineer
and provides them with a high level service. By con-
trast, both Globus and Legion are built on their own
lower level directory and communication services, and
therefore are significantly more elaborate to deploy.
However, both Globus and Legion can be accommo-
dated by the NetSolve model (as agents/servers). As
they gain maturity, we intend to review the current
NetSolve design/implementation and to gradually
integrate new components from these systems. As
mentioned in Section 4.1, we have already integrated
the Globus Heart Beat Monitor into NetSolve. Anal-
ogous investigations of the integration of NetSolve
with Legion’s approach to grid computing are also
underway.

6. Conclusions

NetSolve is an environment for networked com-
puting whose goal is to deliver the power of com-
putational grid environments to users who have need
of processing power, but are not expert computer
scientists. It achieves this goal with its three-part
client–agent–server architecture. In order to deliver
the full capacity of grid resources, NetSolve must deal
with the potential for these resources to be unstable,
which means that fault-tolerance and/or computation
migration must be employed. We have described how
the current version of NetSolve addresses these is-
sues, and how NetSolve will evolve to address them
more completely. The most significant impact of this
research is in NetSolve’sdeployabilityof techniques
for fault tolerance and migration. Specifically, by in-
corporating primitives for inter-server fault-tolerance
within the NetSolve model, and by developing
fault-tolerant software for NetSolve servers, we can
deliver fault-tolerance and migration to end-users
without any burden on the end user.
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