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AbstractÐThis article presents various data redistribution methods for block-partitioned linear algebra algorithms operating on dense

matrices that are distributed in a block-cyclic fashion. Because the algorithmic partitioning unit and the distribution blocking factor are

most often chosen to be equal, severe alignment restrictions are induced on the operands, and optimal values with respect to

performance are architecture dependent. The techniques presented in this paper redistribute data ªon the fly,º so that the user's data

distribution blocking factor becomes independent from the architecture dependent algorithmic partitioning. These techniques are

applied to the matrix-matrix multiplication operation. A performance analysis along with experimental results shows that alignment

restrictions can then be removed and that high performance can be maintained across platforms independently from the user's data

distribution blocking factor.

Index TermsÐAlgorithmic blocking, redistribution, block-cyclic decomposition.
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1 INTRODUCTION

IN a serial computational environment, transportable
efficiency is the essential motivation for developing

blocking strategies and block-partitioned algorithms [5],
[19], [32]. An algorithmic blocking factor adjusts the
granularity of the subtasks to maximize the utilization of
hardware resources. In a distributed-memory environment,
load balance is the essential motivation for distributing the
data over a collection of processes according to the block-
cyclic decomposition scheme [1], [12], [29], [21], [11], [17],
[22]. A distribution blocking factor is used to partition an
array into blocks that are then mapped onto the processes.
Optimal values of these algorithmic and distribution
blocking factors often differ for a given algorithm and
target architecture. Despite this fact, most of the parallel
algorithms proposed in the literature assume the values of
these blocking factors to be identical [16], [17], [40], [47].
This assumption simplifies the expression of such algo-
rithms, but limits their flexibility and ease of use. The
application's scope of these algorithms is thus limited in a
way that does not satisfy general purpose library require-
ments. High performance is nevertheless achievable on a
wide range of distributed-memory concurrent computers,
but depends on the chosen value of the distribution and
algorithmic blocking factors. General redistribution
packages [33], [42] can alleviate this constraint at a possibly
high memory cost.

This paper presents and discusses various methods for

redistributing the data into an appropriate form as the

parallel algorithm progresses, so that the algorithmic and

distribution blocking factors can be selected independently.

The data distribution blocking factor is chosen by the user,

and the selection of an efficient and machine specific

algorithmic blocking factor is left to the software library
designer. In this paper, we focus on elementary blocked
linear algebra computations and assume that the user's data
is distributed onto the processes according to the general
block-cyclic decomposition scheme. We show that such
redistribution methods alleviate the alignment restrictions
imposed by the block-cyclic data layout. We analyze the
efficiency and scalability of these methods and illustrate our
study by presenting experimental results on two distrib-
uted-memory concurrent computers.

Algorithmic redistribution methods attempt to reorga-
nize logically the computations and communications within
an algorithmic context. In order to derive such methods,
some properties of the block-cyclic data distribution are first
exhibited in Section 2. Various algorithmic redistribution
methods are then presented and applied to the representa-
tive outer product matrix-matrix multiply algorithm in
Section 3. These techniques are presented within a single
framework, making them suitable for their integration into
a software library. For some of these strategies, little is
known in terms of their impact on efficiency and/or ease of
modular implementation. To our knowledge, few practical
experiments have thus far been reported in the literature. A
scalability analysis of these algorithmic redistribution
methods as well as a number of experimental performance
results are finally presented in Section 4.

2 PROPERTIES OF THE BLOCK-CYCLIC DATA

DISTRIBUTION

Since the data decomposition largely determines the
performance and scalability of a concurrent algorithm, a
great deal of research [21], [24], [26], [30], [11] has focused
on studying various data decompositions [6], [12], [31]. As a
result, the two-dimensional block-cyclic distribution [36]
has been suggested as a possible general purpose basic
decomposition for parallel dense linear algebra software
libraries [18], [29], [38]. This section presents important

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 12, DECEMBER 1999 1201

. The authors are with the Department of Computer Science, University of
Tennessee, Knoxville, TN 37996. E-mail: {petitet, dongarra}@cs.utk.edu.

Manuscript received 12 Mar. 1998; revised 01 June 1999.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 106471.

1045-9219/99/$10.00 ß 1999 IEEE



properties of the two-dimensional, block-cyclic data dis-
tribution. These properties are the basis of efficient
algorithms for address generation, fast indexing techniques,
and communication scheduling.

2.1 Analytical Definition of the Block-Cyclic Data
Distribution

In general, there may be several processes executed by one
processor; therefore, without loss of generality, the under-
lying concurrent computer is regarded as a collection of
processes, rather than physical processors. Consider a P �Q
grid of processes, where ÿ denotes the set of all process
coordinates �p; q� in this grid:

ÿ � f�p; q� 2 f0 . . .P ÿ 1g � f0 . . .Qÿ 1gg:
Consider an M �N matrix partitioned into blocks of size
r� s. Each matrix entry aij is uniquely identified by the
integer pair �i; j� of its row and column indexes. Let � be
the set constructed from all these pairs:

� � f�i; j� 2 f0 . . .M ÿ 1g � f0 . . .N ÿ 1gg
� f��lP � p� r� x; �mQ� q�s� y�;
��p; q�; �l;m�; �x; y�� 2 ÿ� ���g:

with

� � f�l;m� 2 f0 . . . b
Mÿ1
r

P
cg � f0 . . . b

Nÿ1
s

Q
cgg

and

� � f�x; y� 2 f0 . . . rÿ 1g � f0 . . . sÿ 1g:

Definition 2.1. The block-cyclic distribution is defined by the
three following mappings associating to a matrix entry index
pair �i; j�:

. the coordinates �p; q� of the process into which the
matrix entry resides

�ÿ!ÿ
�i; j� 7ÿ! �p; q�:

�
�1�

. the coordinates �l;m� of the local block in which the
matrix entry resides

�ÿ!�
�i; j� 7ÿ! �l;m�:

�
�2�

. the local row and column offsets �x; y� within this local
block �l;m�

�ÿ!�
�i; j�7ÿ!�x; y�:

�
�3�

A few particular occurrences of the above definition are

worth mentioning. First, the blocked distribution is

determined by Definition 2.1 with r � dMP e and s � dNQe,
i.e., � � f�0; 0�g. Second, the square block-cyclic distribu-

tion is a special case of Definition 2.1 with r � s. Finally, the

purely scattered or cyclic decomposition is a particular

instance of the square block-cyclic distribution with

r � s � 1, i.e., � � f�0; 0�g.
2.2 Properties of the Block-Cyclic Data Distribution

and LCM Tables

The properties of the block-cyclic data distribution pre-

sented below are centered around the concept of the

k-diagonal of a matrix, which is defined as the set of entries

aij such that iÿ j � k. Indeed, if we consider the matrix

induced by a column and a row vector, the one-dimensional

redistribution operation can be formulated as first; project-

ing the source column vector entries onto the 0-diagonal of

this matrix and second; projecting this 0-diagonal onto the

target row vector. The complexity of such a redistribution

operation is thus closely related to the 0-diagonal of the

induced matrix. This suggests the following definition:

Definition 2. Given a k-diagonal, the k-LCM table (LCMT) is a
two-dimensional infinite array of integers local to each process
�p; q� defined by

LCMTp;ql;m � �mQ� q�sÿ �lP � p�r� k;
for �l;m� in NN2.

The equation for the k-diagonal is thus given by

LCMTp;ql;m � xÿ y; �4�
with �x; y� in �. Blocks owning the k-diagonal entries are
therefore such that

1ÿ s � LCMTp;ql;m � rÿ 1: �5�
In addition the value of LCMTp;ql;m specifies where the
diagonal starts within a block owning diagonals as
illustrated in Fig. 1.

It follows from Definition 2 that the local blocks in
process �p; q� such that LCMTp;ql;m � 0 own matrix entries aij
that are globally below the k-diagonal. The local blocks such
that LCMTp;ql;m � ÿs correspond globally to strictly lower
blocks of the matrix. Moreover, within each process, if the
r� s block of local coordinates �l;m� owns k-diagonal
entries, the block of local coordinates �l� 1;m� owns either
k-diagonals or matrix entries that are strictly below the
k-diagonal. Furthermore, within each process, if the r� s
blocks of local coordinates �l;m� and �l� 1;m� own
k-diagonals, then the block of local coordinates �l;m� 1�
owns matrix entries that are strictly above the k-diagonal.

Similarly, the local blocks in process �p; q� such that
LCMTp;ql;m � 0 own matrix entries aij that are globally above
the k-diagonal. The local blocks in process �p; q� such that
LCMTp;ql;m � r correspond globally to strictly upper blocks of
the matrix. Moreover, within each process, if the r� s block
of local coordinates �l;m� owns k-diagonal entries, the block
of local coordinates �l;m� 1� owns either k-diagonals or
matrix entries that are strictly above the k-diagonal.
Furthermore, within each process, if the r� s blocks of
local coordinates �l;m� and �l;m� 1� own k-diagonals, then
the block of local coordinates �l� 1;m� owns matrix entries
that are strictly below the k-diagonal.
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Let L � lcm�P r;Q s� and g � gcd�P r;Q s� be respec-

tively the least common multiple and greatest common

divisor of the quantities Pr and Qs. The index pairs �i; j�,
�i� L; j�, �i; j� L�, and �i� L; j� L� refer to array entries

that are residing in the same process �p; q�. The distribution

pattern has therefore a periodicity of length L along the k-

diagonal. A block of order L is referred to as an LCM-block

in what follows. Each process owns exactly L=P � L=Q
entries of such an LCM-block. This larger partitioning unit

has been originally introduced in the restricted context of

square block-cyclic mappings in [15], [16]. The meaningful

part of the LCM tables to be considered in each process is

thus of size L=�Pr� � L=�Qs�.
Fig. 2 shows an LCM-block for a given set of distribution

parameters P , r, Q, and s. The corresponding 1-LCM tables

are shown in Fig. 3. Each of these tables is associated to a

distinct process of coordinates �p; q� as indicated in the

upper left corner of each table. Examine, for example, the

table corresponding to process �0; 0�. The value of the LCM

table entry �0; 0� is 1. Since this value is greater than

ÿs � ÿ3, and less than r � 2, it follows that this block �0; 0�
owns 1-diagonals. Moreover, within this block this diagonal

starts in position �LCMT 00
00 ; 0� � �1; 0�. The distribution

periodicity within this process is illustrated by the block

of local coordinates �3; 2� which is such that

LCMT 00
00 � LCMT 00

32 � 1:

One can also verify that a block of local coordinates �l;m� in
this table corresponds to a strictly lower (respectively

upper) block in the original LCM-block if and only if
LCMT 00

lm � ÿs (respectively LCMT 00
lm � r). These same

remarks apply to all of the other LCM tables shown in

Fig. 3.

Property 1. The number of r� s blocks owning L consecutive

k-diagonals is given by

L�r� sÿ gcd�r; s��
r s if gcd�r; s� divides k;

L�r� s�
r s otherwise:

8<:
Proof. Because of Inequality 5, one can assume that 0 � k <

gcd�r; s� by simply renumbering the processes with
appropriate relative coordinates. Consider, then, a

square array of size lcm�r; s�. If gcd�r; s� divides k (i.e.,
k is zero), there is exactly one r� s subblock such that its

�rÿ 1; sÿ 1� entry belongs to the k-diagonal: there is

obviously one, namely the right bottom subblock; there is
exactly one by definition of the least common multiple of

r and s. If gcd�r; s� does not divide k, such a subblock
does not exist: if it did, one could have chosen k to be

zero, by considering the next block owning k-diagonals,

which is a contradiction. In other words, if gcd�r; s� does
not divide k, the k-diagonal never cut the right lower

corner of a r� s subblock; otherwise, the k-diagonal cut

the right lower corner of exactly one r� s subblock.
In this lcm�r; s� array, the column edges of the r� s

subblocks will be cut exactly lcm�r; s�=s, that is
r=gcd�r; s� times by the k-diagonal. Similarly, the row
edges of the r� s subblocks will be cut exactly
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lcm�r; s�=r, that is s=gcd�r; s� times by the k-diagonal.
Therefore, when gcd�r; s� divides k, there are exactly �r�
s�=gcd�r; s� ÿ 1 blocks of size r� s owning lcm�r; s�
consecutive k-diagonals; otherwise, there are exactly �r�
s�=gcd�r; s� such blocks. Finally, there are exactly
L=lcm�r; s� such blocks in an LCM block. To see that
L=lcm�r; s� is indeed an integer, one may observe that
this quantity can be rewritten as ��uQ�P r� �t P �Q s�=g
with u and t in ZZ. tu

Property 1 quantifies the complexity of general redis-

tribution operations as a function of the distribution

parameters, namely the perimeter r� s of the r� s
partitioning unit and the quantities gcd�r; s� and

g � gcd�P r;Q s�.
Property 2. A necessary and sufficient condition for every

process to own k-diagonal entries is given by r� sÿ
gcd�r; s� � g if gcd�r; s� divides k and r� s � g otherwise.

Proof. The condition is sufficient: remark that gcd�r; s�
divides g. If gcd�r; s� divides k (note that this will always

be the case if gcd�r; s� � 1), then
r� s

gcd�r; s� ÿ 1 is the

number of multiples of gcd�r; s� in the interval

Ip;q � �p rÿ �q ÿ 1� s . . . �p� 1� rÿ q s�:
The number of multiples of g in the interval Ip;q is

g
gcd�r;s�.

Thus, the inequality

r� s
gcd�r; s� ÿ 1 � g

gcd�r; s�
is a sufficient condition for a multiple of g to be in this

interval Ip;q. Otherwise, when gcd�r; s� does not divide k,

(5) can be rewritten as

p rÿ q sÿ s < m Q sÿ l P r� k < p rÿ q s� r: �6�

For any given process of coordinates �p; q�, there must
exist a t 2 Z such that m Q sÿ l P r � t g verifying
Inequality 6. Moreover, the interval of interest Ip;q is of
length r� sÿ 1. A sufficient condition for all processes
to have k-diagonals is given by r� sÿ 1 � g. Since
gcd�r; s� 6� 1 and gcd�r; s� divides g, this sufficient
condition can be equivalently written as r� s � g.

The condition is necessary: suppose there exists a
process �p; q� having two distinct blocks owning
k-diagonals. Then, r� sÿ gcd�r; s� � g if gcd�r; s�
divides k, and r� s � g otherwise. There are two
multiples of g in some interval Ip;q. Otherwise, each
process owns at most one r� s block in which
k-diagonals reside. Therefore, the number of blocks
owning k-diagonals is equal to the number of processes
owning these diagonals. The result then follows from
Property 1. tu

Property 3. The number of processes owning k-diagonal entries is
given by

P Q max
r� sÿ gcd�r; s�

g
; 1

� �
if gcd�r; s� divides k, and by

P Q max
r� s
g

; 1

� �
otherwise.

Proof. The result follows from the fact that Lg � �Pr��Qs�
and Properties 1 and 2. tu

Properties 2 and 3 say that the distribution of the

k-diagonals essentially depends on the perimeter of the r�
s partitioning unit as opposed to its shape. In other words,

restricting the data decomposition to a square block-cyclic

mapping does not affect in any way the problem of locating

the k-diagonals, and consequently the complexity of

redistribution operations. To reduce this complexity, it is

necessary to choose small values of the distribution

parameters r and s.
The end of this section aims at determining the

probability that the quantities r� sÿ gcd�r; s� or r� s are

greater or equal to g, that is, the probability that every

process owns k-diagonals entries. It is difficult to analyti-

cally compute the probability that all processes will own

k-diagonal entries. However, it is likely that this probability,

if it exists, converges rapidly [41]. It is possible to rely on a

computer to enumerate all 4-tuples in a finite and practical

range such that the quantities r� sÿ gcd�r; s� or r� s are

greater or equal to g. The results are presented in Fig. 4. In

practice, i.e., for a finite range of values �1 � P; r;Q; s � n�,
there is almost no difference between the finite ratios of all

4-tuples verifying these inequalities over �1::n�4.
Fig. 4 does not prove the existence of the limit, and

therefore, of the probability. However, if it exists, its value is

very close to one. In other words, if one picks random

distribution parameters, it is very likely that all processes in

the grid will own k-diagonals. Fig. 4 also shows that the
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ratios of distribution parameters such that k-diagonals are

evenly distributed tends towards one. More interesting is

the fact that this function R increases very rapidly

(R� 10 � � :88, R� 20 � � :90, R� 50 � � :93). Therefore, it is

very likely that all processes in the grid will own

k-diagonals.

3 ALGORITHMIC REDISTRIBUTION METHODS

This section presents different kinds of blocking strategies

for distributed-memory hierarchies. Most of these algorith-

mic redistributed operations can be expressed in terms of

locating diagonals of a distributed matrix. All of these

techniques are therefore presented within a single frame-

work. For some of these strategies, little is known in terms

of their impact on efficiency and/or ease of modular

implementation. To our knowledge, few practical experi-

ments have thus far been reported in the literature.
The same example operation called a rank-K update is

used to illustrate the differences between all blocking

strategies presented below. This operation produces an

M �N matrix C by adding to itself the product of an M �
K matrix A and a K �N matrix B:

C  C �AB:
The physical blocking strategy uses the distribution

blocking factors as a unit for the computational blocks. In

other words, the computations are partitioned accordingly

to the data distribution parameters. No attempts are made

to either gather rows or columns residing in distinct

processes, or scatter rows or columns residing in a single

process row or column. It is assumed that the distribution

parameters have been determined a priori, presumably by

the user. Ideally, this choice has been influenced by its

performance implications. Most of the parallel algorithms

presented in the literature [2], [6], [9], [10], [17], [18], [22],

[25], [26], [27], [31], [37], [48] rely on this strategy. The

algorithm performing the rank-K update operation using a

physical blocking strategy is relatively easy to express.

Strong alignment and distribution assumptions are made

on the matrix operands. In particular, the distribution

blocking factors used to decompose the columns of A and

the rows of B must be equal. Moreover, the rows of A

(respectively the columns of B) must be aligned to the rows

(respectively columns) of C. The pseudocode for this

algorithm is given below.

for kk � 1; K; NBdis

kb � min�K ÿ kk� 1; NBdis�
Broadcast Â � A�:; kk : kk� kbÿ 1�
within process rows;
Broadcast B̂ � B�kk : kk� kbÿ 1; :�
within process columns;
C  C � Â � B̂;

end for

It is possible to take advantage of communication pipelines

in both directions of the process grid. However, the data

allocation imposes that the source process of the broadcasts

changes at each iteration in a cyclic fashion. That is, a given

process broadcasts all of its columns of A or rows of B in

multiple pieces of size proportional to the value of the

distribution blocking factor NBdis. The smaller this value is,

the larger the number of messages and the lower the

possible data reuse during each computational phase. In

other words, the performance degrades as the value of the

distribution blocking factor is decreased. If the value of this

factor is very large, the communication computation over-

lap decreases, causing a performance degradation. How-

ever, high performance and efficiency can still be achieved

for a wide range of blocking factors. This has been reported

in [2], [21], [40], [47], [14].
Three alternatives to the physical blocking strategy are

first presented in this section. Then, a few other related

applications of those methods are outlined. The originality

of the algorithms presented here is their systematic

derivation from the properties of the underlying mapping.

These blocking strategies are expressed within a single

framework using LCM tables. The resulting blocked

operations are appropriate for library software. They

indeed feature potential for high performance without any

specific alignment restrictions on their operands. This says

that the antagonism between efficiency and flexibility is not

a property of the block-cyclic mapping, but merely a

characteristic of the algorithms that have been thus far

proposed to deal with a distributed-memory hierarchy.

3.1 Aggregation and Disaggregation

The aggregation or algorithmic blocking strategy operates on a

panel of rows or columns that are globally contiguous. The

local components of this panel before aggregation are also

contiguous. The size of this panel is an algorithmic blocking

factor. Its optimal value depends on the target machine

characteristics. If this logical value is equal to the distribu-

tion blocking factors, then aggregation and physical block-

ing are the same. Otherwise, a few rows or columns that are

globally contiguous and residing in distinct processes, are

gathered into a single process row or column, and this
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panel becomes the matrix operand. This strategy is

particularly efficient when the distribution blocking factor

is so small that Level 3 BLAS performance cannot be

achieved locally on each process. Obviously, the aggrega-

tion phase induces some communication overhead. How-

ever, this must be weighted against the local computational

gain. The problem is then to determine an algorithmic

blocking factor NBalg that keeps this overhead as low as

possible and simultaneously optimizes the time spent in

local computation. The feasibility and performance char-

acteristics of this approach have been previously illustrated

for the numerical resolution of a general linear system of

equations and the symmetric eigenvalue problem [12], [7],

[28], [43], [44] for the purely scattered distribution.

Similarly, it is sometimes beneficial to disaggregate a panel

into multiple panels in order to overlap communication and

computation phases. When applicable, this last strategy also

presents the advantage of requiring a smaller amount of

workspace. The pseudocode of the rank-K update opera-

tion using aggregation follows.

for kk � 1; K; NBalg

kb � min�K ÿ kk� 1; NBalg�;
Aggregate Â � A�:; kk : kk� kbÿ 1�;
Broadcast Â within process rows;
Aggregate B̂ � B�kk : kk� kbÿ 1; :�;
Broadcast B̂ within process columns;
C  C � Â � B̂;

end for

The aggregation and disaggregation techniques attempt

to address the cases where the physical blocking strategy is

not very efficient (i.e., for very small or large distribution

blocking factors). In both techniques, the consecutive order

of matrix columns or rows is preserved. It is therefore

possible to use these techniques for algorithms that feature

dependent steps, such as a triangular solve or the LU

factorization with partial pivoting. The disaggregation

technique, however, can only be applied efficiently for

operations that do not feature any dependence between

steps, such as a matrix-multiply. The disaggregated data

remains consecutively ordered. Therefore, it cannot sig-

nificantly improve the load imbalance caused by consecu-

tive allocation and consecutive elimination [38].

3.2 LCM Blocking

The LCM blocking strategy operates on a panel of rows or

columns that are locally contiguous. The size of this panel is

also an algorithmic blocking factor. Its optimal value

depends on the target machine characteristics. However,

rows or columns that may not be locally contiguous are

packed according to an external criterion, typically the
distribution parameters of another operand.

Consider the rank-K update operation illustrated in

Fig. 5. The LCM blocking strategy proceeds as follows: One

is interested in finding the columns of A residing in a

particular process column q and the rows of B residing in a

particular process row p that could be multiplied together in

order to update the matrix C. In Fig. 5, these columns of A

and rows of B are indicated in gray. To accomplish this, one
can consider the virtual matrix, denoted VM in the figure,

defined by the column distribution parameters of A and the

row distribution parameters of B. Locating the 0-diagonals

of this VM in the process of coordinates �p; q� exactly solves

the problem as illustrated in the figure. This can be realized

by using LCM tables. As opposed to the physical blocking
strategy, this technique does not assume the distribution

equivalence of the columns of A and rows of B as suggested

in Fig. 5. Moreover, the packing of these columns of A and

rows of B is a local data copy operation (i.e., without

communication overhead). For a given q, one just needs to

go over all process rows, and thus treat all of the columns of
A residing in this process column q. This algorithm can be

regarded as a generalization of the physically blocked

version. It presents, however, some advantages. First, as

mentioned above, it does not assume an equivalent

distribution of the columns of A and rows of B. Second,

the communication overhead of the physically blocked
variants has been partially replaced by a local data copy

into a buffer that was needed, anyway. The communication

pipeline stages in the row direction have been shortened.

The cost of this pipeline startup has also been reduced by

having the process column emitting the broadcasts remain-

ing fixed as long as possible. Furthermore, this operation

can also be logically blocked by limiting the number of
columns of A in process column q and corresponding rows

of B in the process row p that will be locally packed and

broadcast at each step. The pseudocode for the LCM

blocking strategy is given below.

for q � 0; Qÿ 1

for p � 0; P ÿ 1

npq � number of 0-diagonals process
�p; q� owns;
Process column q packs and broadcasts
those npq columns of A within process rows;
Process row p packs and broadcasts those
npq rows of B within process columns;
Perform local matrix-matrix multiply;

end for
end for
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This approach presents the advantage that the cost of the
gathering phase is put on the processor as opposed to the
interconnection network. However, it cannot be used for
algorithms where each step depends on the previous one.
Typically, the LCM blocking strategy is well-suited for
multiplying two matrices, where each contribution to the
resulting matrix entries can be added in any order. The
LCM blocking strategy is a typical algorithmic redistribu-
tion operation, since it rearranges both logically and
physically the communication and computation phases for
increased efficiency and flexibility.

3.3 Aggregated LCM Blocking

The aggregated LCM blocking strategy is a hybrid scheme that
combines the aggregation and LCM blocking strategies. In
the aggregation scheme described earlier, the blocks to be
aggregated were globally contiguous. It is, however,
possible to use the same strategy for the local blocks
obtained via LCM blocking. Furthermore, disaggregated
LCM blocking is also possible, as previously noted. This
more elaborate algorithmic blocking method maintains the
local computational granularity even if the number of
diagonals residing in a process is or becomes too small. The
algorithm goes as follows: A process of coordinates �p; q� is
considered, and the number of diagonals npq that process
owns are handled by chunks of size NBalg. If npq is a
multiple of NBalg, then the algorithm proceeds to the next
process in the grid, either �p� 1; q� or �0; q � 1�. Otherwise,
if �p� 1; q� is the next process, the remaining rows of B in
process �p; q� are sent to the process �p� 1; q�, and the LCM
blocking method proceeds to this process, taking into
account the remainder of the previous step. If �0; q � 1� is
the next process, this last procedure is applied to the
remaining rows of B and columns of A. This algorithm
therefore maintains the local computational granularity at a
low communication overhead.

3.4 Redistribution and Static Blocking

The above framework can be used to tackle the run-time
array redistribution problem when those arrays are dis-
tributed in a block-cyclic fashion over a multidimensional
process grid. Solving this redistribution problem requires
that 1) we generate the messages to be exchanged, and 2) we
schedule these messages so that communication overhead is
minimized. A comparative survey of the available literature
can be found in [50].

Thus far, most of the focus regarding the run-time array
distribution problem has been on the message generation
phase [13], [34], [4], [46], and only a few papers deal with
the communication scheduling phase [33], [42], [49], [39]. It
turns out that the properties of the block-cyclic distribution
presented in this paper can be used to further study this
scheduling problem as it is shown in [20]. Moreover, the
message generation phase can also be addressed with the
help of the LCM tables. Figs. 6 and 7 illustrate this fact in the
one-dimensional case. X (respectively Y ) is a M �N one-
dimensional array distributed over P (respectively Q)
processes with a distribution blocking factor of r (respec-
tively s). These figures show the global and local view of
the redistribution mapping, as well as the M �M dis-
tributed matrix induced by X and Y . Locating the diagonals
of this matrix using LCM tables naturally provides a
possible message generation algorithm. These figures also
show that the general complexity of the redistribution
problem is related to the number of processes in the P �Q
grid owning diagonals. Furthermore, the transpose and
shift operations can be handled similarly within this
framework. Finally, this approach can be generalized to
handle the multidimensional case and the problem of
accessing array entries with a nonunit stride [41]. It follows
that efficient algorithms for the re-alignment of block
cyclically distributed operands can also be expressed using
the LCM tables and the above properties. In other words,
flexible and efficient basic linear algebra kernels for
distributed-memory concurrent computers can be ex-
pressed within the same framework.

LCM tables can be also used to derive another
algorithmic blocking method, called the static blocking
strategy hereafter, which deals only with purely local
computational phases. It is assumed that the operation
has reached a stage where the operands have already been
redistributed if necessary by other techniques. Only local
remaining computations need to be performed. It may,
however, be the case that a local output operand has to be
redistributed subsequently. Within this context, the sym-
metric rank-K update operation C  C �AAT is easy to
describe. C is an N �N symmetric matrix for which only
the upper or lower triangle should be referenced, and A is a
matrix of dimension N �K. The matrix A has been
replicated in every process column and the matrix AT

replicated in every process row. The distributed matrix C is
partitioned into diagonal and strictly upper or lower LCM
blocks, as shown in Fig. 8. This figure shows the LCM
block-partitioned matrices A and C, and the r� s, r�K
and K � s blocks of these matrices that reside in the process
of coordinates �p; q�. The arrangement of these blocks in
process �p; q� is also represented and denoted by the local
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arrays in process �p; q�. Depending on their relative position
to the diagonal, the r� s blocks of C are identified by a
different shade of color. It is usually easy to deal with the
strict upper or lower part using the BLAS matrix-matrix
multiply. The diagonal LCM-block, however, requires
particular attention.

Fig. 8 shows that the local update can be expressed in
terms of symmetric rank-K updates and matrix-matrix
multiplies. The LCM tables provide the necessary informa-
tion to organize the local computation in such a way that
one can take advantage of the high efficiency of the matrix-
matrix multiply kernel [8], [51]. A similar approach has
been proven highly efficient for GEMM-based BLAS im-
plementations [19], [32]. The static blocking strategy, even
in its simplest form, imposes strong restrictions on the
alignment and distribution of the operands. This is, never-
theless, the last opportunity for a large operation to logically
rearrange the computations. This suggests that an efficient
implementation of the symmetric rank-K update when
N � K would use the LCM blocking strategy to replicate A
over C, and the static blocking technique to perform the
local update. The algorithmic blocking factors for both
phases can be chosen independently.

The use of physical blocking in conjunction with static
blocking can lead to a comprehensive and scalable dense
linear algebra software library. Existing serial software such
as LAPACK [5] can be reused. The ScaLAPACK [11]
software library is the result of this reasoning. As suggested
above, if one limits oneself to static and physical blocking,
strong alignment restrictions must be met by the matrix
operands. It is argued that these restrictions are reasonable
because 1) general redistribution software is available, 2) the
user is ultimately responsible for choosing the initial data
layout, and 3) the majority of practical cases are covered by
this approach.

4 PERFORMANCE ANALYSIS AND EXPERIMENTAL

RESULTS

A theoretical model of a distributed-memory computer is
presented early in this section. It is an abstraction of
physical models that provides a convenient framework
for developing and analyzing parallel distributed, dense
linear algebra algorithms without worrying about the
implementation details or physical constraints. The model
is then applied to the algorithmic blocking strategies
presented in Section 3 in order to analyze their scalabil-
ity. Finally, a number of experimental results are presented
and summarized.

4.1 The Machine Model

Distributed-memory computers consist of processors that
are connected using a message passing interconnection
network. Each processor has its own memory, called the
local memory, which is accessible only to that processor. As
the time to access a remote memory is longer than the time
to access a local one, such computers are often referred to as
Non-Uniform Memory Access (NUMA) machines [36]. The
interconnection network of our machine model is static,
meaning that it consists of point-to-point communication
links among processors. This type of network is also

referred to as a direct network as opposed to dynamic
networks. The latter are constructed from switches and
communication links. These links are dynamically con-
nected to one another by the switching elements to
establish, at run time, the paths between processors'
memories. The interconnection network of the machine
model considered here is a static, two-dimensional P �Q
rectangular mesh with wraparound connections. It is
assumed that all processors can be treated equally in terms
of local performance, and the communication rate between
two processors is independent from the processors con-
sidered. In the two-dimensional mesh, each processor has
four communication ports; however, the model assumes
that a processor can send or receive data on only one of its
ports at a time. This assumption is also referred to as the
one-port communication model [36].

The time spent to communicate a message between two
processors is called the communication time Tc. In our
machine model, Tc is approximated by a linear function of
the number L of items communicated. Tc is the sum of the
time to prepare the message for transmission � and the time
� L taken by the message of length L to traverse the
network to its destination, i.e.,

Tc � �� � L:
This approximation of the communication time assumes
that any two processors are equidistant from a commu-
nication point of view (cut-through or worm-hole routing).
This approximation is reasonable for most current distrib-
uted-memory, concurrent computers. Finally, the model
assumes that the communication links are bidirectional, that
is, the time for two processors to send each other a message
of length L is also Tc. A processor can send and/or receive a
message on only one of its communication links at a time.
In particular, a processor can send a message while receiv-
ing another message on the same or different link at the
same time.

Since this paper is only concerned with a single, regular
local operation, namely the matrix-matrix multiplication,
the time taken to perform one floating point operation is
assumed to be a constant 
 in our model. This very crude
approximation summarizes in a single number all the steps
performed by a processor to achieve such a computation.
Obviously, such a model neglects all the phenomena
occurring in the processor components, such as cache
misses, pipeline startups, memory load or store, floating
point arithmetic, etc. that may influence the value of 
 as a
function of the problem size, for example. Similarly, the
model does not make any assumption on the amount of
physical memory per node. This machine model is a very
crude approximation that is designed specifically to
illustrate the cost of the dominant factors to our particular
case. More realistic models are described, for example, in
[36] and the references therein.

4.2 Scalability Analysis

The rank-K update operation produces an M �N matrix C
by adding to itself the product of an M �K matrix A and a
K �N matrix B,
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C  C �AB:
In the following, we assume for simplicity that M � N � K.
The number of floating point operations is assumed to be
equal to 2N3. All three matrices are distributed onto the
same square process grid. Moreover, we also assume that
the matrix operands are distributed according to the square
block-cyclic data distribution (see Definition 2), and that the
distribution blocking factors are the same for all operands.
Therefore, no realignment phase is necessary to be
performed. This distribution blocking factor is denoted by
NBdis in the following.

Four algorithms are considered, denoted by PHY, AGG,
LCM, and RED. PHY denotes the physically blocked
variant, AGG identifies the aggregation algorithm, and the
LCM blocking algorithm is denoted by LCM. Finally, a
fourth variant RED is considered where the matrices A and
B are completely redistributed beforehand. For the algo-
rithmic blocking variants AGG and LCM, the algorithmic
blocking factor is denoted by NBalg. Parallel efficiency,
E�n; p�, for a problem of size n on p processors is defined in
the usual way [24] by

E�n; p� � 1

p

Tseq�n�
T �n; p� ; �7�

where T �n; p� is the runtime of the parallel algorithm, and
Tseq�n� is the runtime of the best sequential algorithm. An
implementation is said to be scalable if the efficiency is an
increasing function of n=p, the problem size per processor
(in the case of dense matrix computations, n � N2, the
number of words in the input). The parallel runtime and
efficiency on our machine model for the four algorithms
PHY, AGG, LCM, and RED are computed below as a
function of the local computational speed 
, the commu-
nication parameters � and �d (the time for a floating point
number to traverse the network), and the total number of
processors p.

The key-factor of this performance analysis is to model
the cost of a sequence of broadcasts on a ring [2], [47] where
the source either remains the same or is incremented by one
after each broadcast. In the physical blocking strategy, the
source process of the broadcast sequence is incremented at
each step. The parallel runtime of the physically blocked
variant algorithm is given by
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TPHY �N; p� � 2N3 


p
1� 2




p�

NBdis N2
�

���
p
p

�d

N

� �� �
when

N

NBdis
� ���

p
p

. A similar analysis for the physical

blocking variant can also be found in [2], [47]. The

aggregation blocking strategy essentially performs a se-

quence of accumulations followed by a ring broadcast. For

the sake of simplicity, it is assumed that k blocks of the

same size are aggregated (k � 2). In practice, the blocks are

only approximately of the same size. k is clearly bounded

above by
���
p
p

. In addition, the algorithmic blocking factor

NBalg is used to partition the communication and computa-

tion. It follows that the estimated execution time on our

machine model for the aggregation strategy is given by

TAGG�N; p� � 2N3 


p
1� k




p�

NBalg N2
�

���
p
p

�d

N

� �� �
when

N

NBalg
� ���

p
p

. In the LCM blocking strategy, one looks

at the diagonals of the virtual distributed matrix induced by

the columns of A and rows of B residing in all process

column and row pairs. It is assumed in this section that each

process in the grid owns a number of diagonals that is pro-

portional to NBalg. With these assumptions, the estimated

execution time of the LCM blocking strategy is given by

TLCM�N; p� � 2N3 


p
1� 3

2 


p�

NBalg N2
�

���
p
p

�d

N

� �� �
when

N

NBalg
� ���

p
p

. Finally, the parallel run time of the RED

variant is obtained by adding to the quantity TPHY �N; p�

computed above the approximated time to redistribute two

square matrices of order N , that is 2 � p�� N2 �d
p �.

Table 1 summarizes the estimated parallel efficiency for

each variant studied in this Section. The LCM blocking

variant features a slightly higher efficiency than the

physical blocking strategy. This theoretical analysis also

explains why one expects to observe better performance for

the physical strategy than the aggregation variant when a

ªgoodº value of the distribution blocking factor NBdis is

selected. The physical blocking algorithm is thus scalable in

the sense that if the memory use per process (N
2

p ) is

maintained constantly, this algorithm maintains efficiency.

The physical block size NBdis can be used to lower the

importance of the latency �. The aggregation algorithm is

also scalable. The value of k is a constant that only depends

on the ratio between the algorithmic NBalg and distribution

NBdis blocking factors. This formula shows the commu-

nication overhead induced by the aggregation strategy in

terms of the number of messages, as well as the commu-

nication volume. When the distribution blocking factor is

larger than the algorithmic blocking factor, the physical

blocks are split into smaller logical blocks. Therefore, the

estimated execution time of the disaggregation variant is

always less than the estimated execution time of the

aggregation method. The LCM blocking variant is also

scalable for aligned matrix operands. This variant is slightly

more efficient than the physical and aggregation strategies.
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It should be noted, however, that our machine model

assumes that the local data copy operation is free. In

reality, such an assumption depends on the target ma-

chine, and may affect the results presented in Table 1. The

RED algorithm, however, is not scalable because of the

latency term.

4.3 Experimental Performance Results

The purpose of this section is to illustrate the general

behavior of algorithmically redistributed operations as

opposed to presenting a collection of particular perfor-

mance numbers. The presentation style aims at facilitating

the comparison of the different blocking strategies for a set

of illustrative and particular cases. Experimental perfor-

mance results are presented in Table 2 below for two

distinct distributed-memory concurrent computers, namely

the Intel XP/S Paragon and the IBM Scalable POWER-

parallel System [3], [45].
Table 2 contains the specifications of the experiments

that have been performed. In all of the experiments, the

matrix operands were square of order N . The values of

N used for all experiments are 100, 250, 500, 1,000,

1,500, 2,000 and 3,000. Due to memory size constraints, it

was not always possible to perform the experiments for all

of these values. Results are reported on a 4� 4 Intel XP/S

Paragon and a 4� 8 IBM SP. Each experiment has been

given an encoded name of the form XX_A#. XX identifies

which target machine the experiment was run on, either XP

for the Intel XP/S Paragon or SP for the IBM SP. # is a

number or a string distinguishing each experiment. For

each experiment, the distribution parameters of the matrix

operands A, B, and C are the same. All of our experiments

were performed in double precision arithmetic. The local

rank update operation was performed by calling the

appropriate subprogram of the vendor-supplied BLAS.

The communication operations were implemented by

explicit calls to the Basic Linear Algebra Communications

Subprograms (BLACS). The BLACS [23] are a message

passing library specifically designed for distributed linear

algebra communication operations. The computational

model consists of a one- or two-dimensional grid of pro-

cesses, where each process stores matrices and vectors. The

BLACS include synchronous send/receive routines to send
a matrix or submatrix from one process to another, to

broadcast submatrices, or to compute global reductions
(sums, maxima, and minima). There are also routines to

establish, change, or query the process grid. The BLACS
provide an adequate interface level for linear algebra

communication operations. The performance of our algo-
rithms is measured in Mflops/s. This is appropriate for

large, dense linear algebra computations, since floating
point dominates communication.

The matrix operands used for our experiments were dis-
tributed in such a way that no realignment phase was nec-

essary, as explained in Section 4.2. Experimental perfor-
mance results for nonaligned operands have been reported

in [41]. Different values of the distribution blocking factor
have been used. A machine dependent value of the

algorithmic blocking factor NBalg used by the AGG and

LCM variants has first been determined for each platform
and used for all of the experiments. On our Intel XP/S

Paragon, we found that a reasonable value for this
algorithmic blocking factor was 14. On the IBM SP, the

value of 70 has been selected.
Fig. 9 shows the performance of the physical blocking

(PHY), aggregation (AGG), and the LCM blocking (LCM)
strategies using the value of NBalg as the distribution

blocking factors for the three matrix operands. According to
the conclusions of the previous section, the performance of

the three variants is almost identical on each platform with
a slight advantage to the LCM blocking variant. In the rest

of this section, the performance curves shown in Fig. 9 are
considered as a reference. The combined maximum of these

curves has been replicated on all of the other plots
presented. This maximal curve is hereafter always repre-

sented as a bold solid line. Ideally, one would like to
observe no difference between the performance obtained

for this ªgoodº physical layout and the performance
achieved by distributions induced by other distribution

blocking factors.
Fig. 10 shows the performance results obtained by the

physical blocking strategy. The physical blocking variant
uses the distribution blocking factors as the computa-
tional unit. When the distribution parameters are very
small, the performance is dramatically degraded because
of the local performance of the rank-k update for small
values of k. This is the difference that one should expect
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when using Level 1 or 2 BLAS based algorithms on such
computers, as opposed to Level 3 BLAS based algo-
rithms. Very large distribution parameters increase the
load imbalance, which is characterized by the ragged
curves. For the experiment SP_A200 and N � 1; 500, each
processor has almost the same amount of data. However,
for N � 2; 000, some processes have three times as much
work to perform than others.

Fig. 11 shows the performance results obtained for the
aggregation strategy. The dependence of the performance
from the physical distribution parameters is largely
decreased. The performance results are pushed towards
the result of reference. For very small values of the
distribution parameters, one expects a large performance
improvement compared to the physical blocking strategy.
This aspect is particularly evident for both target platforms.
The aggregation phase induces some communication over-
head that somewhat limits the potential of this strategy.
This phenomenon is not particularly well illustrated on the
Intel XP/S Paragon, due to the high speed of the inter-
connection network compared to the local computational
performance. However, on the IBM SP, the performance of

Experiment SP_A1 has been improved, but remains lower
than the reference performance because of its less favorable
communication-computation performance ratio.

Fig. 12 shows the performance results obtained for the
LCM blocking strategy. The LCM blocking variant de-
couples the performance results from a poor choice of the
distribution blocking factor. The LCM results are slightly
better than the ones shown above for the aggregation
variant. In particular, the performance results observed
for experiments XP_A1 and SP_A1 have been considerably
improved. On the Intel XP/S Paragon, the performance
obtained for very small distribution blocking factors is now
superior to the performance observed for distribution
blocking factors slightly larger than NBalg (XP_A40).
On the IBM SP, there is virtually no performance differ-
ence between experiments SP_A1 and SP_A20. The impact
of the less favorable communication-computation perfor-
mance ratio of this particular machine is somewhat hidden
by the algorithmic blocking strategy. This relatively low
ratio is, however, the reason for the performance difference
between the reference case and the experiments SP_A1 and
SP_A20. The LCM blocking strategy builds panels of NBalg

rows and columns with less communication overhead,
because it essentially determines and regroups the columns
of A and rows of B that belong to a given process column
and process row pair. This phase is communication free.
These results show that for aligned data and uniform data
distributions, the performance difference due to various
distribution blocking factors is no more than a few
percentage points from the reference, as previously defined.

Fig. 13 shows the performance results when the matrix
operands A and B are aligned but redistributed (RED) for
efficiency reasons. To perform the complete redistribution
of a two-dimensional block-cyclically distributed matrix,
the appropriate component of the ScaLAPACK [11] soft-
ware library [42] has been used. Even if these plots show the
performance obtained for the same experiments as above,
one could argue that complete redistribution (RED) should
only be used for the extreme cases. A major feature of
redistributing the entire matrix operands A and B at once is
the large memory cost required by this operation. This
increases the chances of the possible use of virtual memory
by a large factor. Fig. 13 illustrates the dramatic perfor-
mance consequences of using virtual memory on the Intel
XP/S Paragon. On this particular machine, the complete
redistribution beforehand leads to lower performance than
the one obtained by the LCM blocking variant. In other
words, the cost of redistributing when needed beforehand
is larger than the cost induced by the algorithmically
redistributed LCM strategy. In both variants, the amount of
computation is performed at the same speed. On the
IBM SP, the complete redistribution beforehand leads to
slightly higher performance than the LCM blocking
strategy. The lower total number of redistribution messages
of the complete redistribution strategy takes better advan-
tage of the low communication-computation performance
ratio of this machine. It is clear that the IBM SP may need to
use virtual memory for sufficiently large problem sizes.
However, the nodes of the machine we used for our
experiments each had at least 128 Megabytes of physical
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memory. It was not feasible to estimate the impact of the

use of virtual memory in a reasonable amount of time.
For the aligned experiments on both platforms, it is

legitimate to use algorithmic redistribution variants. By

doing so, one can obtain high performance and efficiency

independently from the distribution parameters. Moreover,

the performance numbers obtained by the aggregation and

LCM blocking techniques show a slight superiority for the

latter. However, both techniques are complementary in the

sense that it is not always possible to use the LCM blocking

strategy as mentioned in Section 3.1. In order to address the

problems induced by badly balanced computations, it is

always possible to redistribute the matrix operand C, even

if this somewhat contradicts the ªowner's computeº rule.

The larger the operands, the more benefits one should

obtain from a complete redistribution. However, the

amount of memory necessary to perform such an operation

grows with the number of items to be redistributed. This

prevents the redistribution of the largest operands. Such an

argumentation was at the forefront of our motivation for

developing algorithmically redistributed operations that

require a much smaller amount of memory.

5 CONCLUSION

Most of the parallel algorithms for basic linear algebra
operations proposed in the literature thus far focus on
the naturally aligned cases and rely on the physical
blocking strategy to efficiently use a distributed memory
hierarchy. This restricted interest prevents one from
providing the necessary flexibility that a parallel software
library requires to be truly usable. These restrictions also
considerably handicap the ease-of-use of such a library,
since one often needs to reformulate general operations to
match obscure alignment restrictions that are difficult to
document and to explain. In this paper, we presented
various algorithmic redistribution methods that can be
efficiently used to address this problem. These techniques
were systematically derived from properties of the under-
lying mapping. Such a feature is particularly attractive from
the software library design point of view. Furthermore, this
approach can be extended to the more general family of
Cartesian mappings [9] by generalizing the definition of an
LCM table, as shown in [41]. Such a generalization is
convenient to allow for the specification of submatrix
operands where the upper left corner is not aligned on
block boundaries [35].
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The performance results presented in this paper show
that when the matrix operands are aligned, the algorithmi-
cally redistributed operations based on the aggregation and
the LCM blocking strategies are competitive in terms of
performance with the beforehand complete redistribution
variant (RED). For a variety of distribution and machine
parameters, one can thus afford to redistribute the matrix
operands ªon the flyº without a significant performance
degradation. This conclusion must be refined when the
matrix operands have to be redistributed before the aligned
operation can take place [41]. Nevertheless, for concurrent
computers featuring slow communication performance
compared to their computational power, it is necessary
to preserve the possibility of redistributing the data before-
hand despite the high memory cost. This problem can be
resolved in two ways: 1) It is conceivable to redistribute the
operands in two steps. At each step the same workspace can
be reused and only part of the computation performed. This
approach is viable, even if it is problematic from a software
point of view to estimate at run-time the amount of usable
memory on each process. 2) Redistribution in place is also
possible, assuming enough memory has been initially
allocated. The redistribution methods presented in this

paper also apply to networks or clusters of workstations
and PCs. The efficiency of such methods clearly depends on
the connectivity and performance of the network. When the
nodes of such a computer are heterogeneous in terms of
computational power, redistribution methods can still be
efficiently utilized if the performance imbalance is com-
pensated by allocating distinct number of processes on
each node.

Algorithmic redistribution methods can alleviate natural
alignment restrictions at a low, sometimes negligible,
performance cost for basic operations and various block-
cyclic distributions. In addition, these techniques consider-
ably reduce and often completely remove the complicated
dependence between the performance of parallel basic
linear algebra operations and the physical distribution
parameters. Indeed, it says that these algorithms facilitate
the implementation of a general purpose and flexible
parallel software library of basic linear algebra subpro-
grams. These algorithms have been shown to achieve high
performance independently from the actual block-cyclic
distribution parameters. Efficiency and flexibility are not
antagonistic objectives for basic dense linear algebra
operations, but merely a characteristic of the algorithms
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Fig. 13. Performance of the RED variant on a 4� 4 Intel XP/S Paragon
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that have been so far proposed to deal with a distributed

memory hierarchy.
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