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Abstract

Scalable Networked Information Processing Environment (SNIPE) is a metacomputing system that aims to provide a
reliable, secure, fault-tolerant environment for long-term distributed computing applications and data stores across the global
Internet. This system combines global naming and replication of both processing and data to support large-scale information
processing applications leading to better availability and reliability than currently available with typical cluster computing
and/or distributed computer environments. To facilitate this the system supports: distributed data collection, distributed
computation, distributed control and resource management, distributed output and process migration. The underlying system
supports multiple communication paths, media and routing methods to aid performance and robustness across both local
and global networks. This paper details the goals, design and an initial implementation of SNIPE, and then demonstrates its
usefulness in supporting a middleware project. Initial communications performance is also presented. ©1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The beginning of the 21st century will present new
challenges for large-scale applications involving com-
munication with, and coordination of, large numbers
of geographically dispersed information sources, sup-
plying information to a large number of geographically
dispersed consumers. Such applications will require
an environment which supports long-term or continu-
ous, reliable and fault-tolerant, highly distributed, het-
erogeneous, and scalable information processing.

Examples of such applications include:
– Indexing and cataloging the worldwide digital li-

brary, which will have hundreds of millions of doc-
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uments, produced at millions of different locations.
The collection can be expected to have a high rate
of change, both in the number of new documents
issued and in the locations by which the documents
are accessed.

– Monitoring of weather and prediction of catas-
trophic conditions to provide planning and decision
support for emergency relief.

– Semi-automated air-traffic control on a significantly
larger scale, and with greater reliability, than exists
today.

– Large-scale same-day shipping of goods over long
distances, with automatic rerouting to adapt to
equipment failures or weather problems, and load
balancing to accommodate fluctuations in traffic.
The characteristics of such applications include: dis-

tributed data collection, distributed computation (of-
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ten in significant amounts), distributed control, and
distributed output. Many of these applications will re-
quire high reliability and continuous operation, even
though individual nodes or links will fail or otherwise
be unavailable. Such applications will be constructed
out of a wide variety of computational components
(including smart sensors, personal digital assistants,
workstations, and supercomputers), and a wide vari-
ety of communications media (wire, optical fiber, ter-
restrial radio, satellite) with varying degrees of link
reliability, bandwidth, and message loss. The relia-
bility requirement means that such applications must
degrade gracefully rather than fail in the presence of
node or link failures, or with insufficient communi-
cations bandwidth and high message loss rates. Since
some computational resources may not be available on
a continuous basis, applications may have to adapt to
varying computational power. The potential for hostile
attack to such systems requires that they have a high
degree of security, both for authentication of data and
privacy of sensitive information.

To facilitate construction of such systems, we are
developing a new programming environment which
integrates computational, data gathering, data storage,
resource management, and human–computer interac-
tion into a common framework. The framework pro-
vides high availability and reliability through replica-
tion of both data and computational resources and by
careful resource management. This programming en-
vironment, called SNIPE, is based on technology de-
veloped for the Resource Cataloging and Distribution
System (RCDS) [1] and initially the network messag-
ing layers and process control from the Parallel Virtual
Machine (PVM) project [2].

2. SNIPEs origins in RCDS and PVM

The design of SNIPE was greatly influenced by both
the RCDS and PVM projects. Both projects provided
a starting point for both a code base and for concepts,
functions, facilitiesand short comings that could be
learned from.

2.1. Resource cataloging and distribution system

The RCDS is designed to facilitate very scalable and
fault-tolerant access to network-accessible resources

and metadata, and to provide end-to-end authenticity
and integrity guarantees for those resources and meta-
data.

RCDS accomplishes this by replicating the re-
sources and metadata at a potentially large number of
(perhaps geographically dispersed) locations. The set
of locations for a resource are maintained in a highly
distributed and replicated location registry. Simi-
larly, the metadata for a resource (a list of attribute
“name=value” pairs called assertions) are maintained
in a separate distributed and replicated registry, which
is indexed by the resource’s Uniform Resource Iden-
tifier (URI) such as a Uniform Resource Locator
(URL) or Uniform Resource Name (URN). The meta-
data for a resource is self-defining and can contain
elements from arbitrary schema or data models. Sub-
sets of metadata can also be cryptographically signed,
using a variety of algorithms, and the signatures pro-
vided to RCDS clients. Authentication of resources is
accomplished by the use of cryptographic hash func-
tions (such as MD5 or SHA) which are signed by the
providers of the information, and made available to
clients along with the resource’s other metadata.

A primary design goal of RCDS was to facilitate
world wide web access to very large and geograph-
ically distributed populations on the scale of the
Internet – potentially millions of users accessing
the same resource at the same time. Scalability and
fault-tolerance were therefore paramount in RCDS’s
design. In replicated databases there are inherent
tradeoffs between consistency among replicas and
resource availability in the presence of node and link
failures [3–5]. When the semantics of the application
permit, higher availability can be obtained by using
a consistency model which sacrifices strict atomicity
and serializability [6].

With its clean separation between replication of data
and metadata, RCDS provides a substrate upon which
to implement consistency models of various strengths,
according to the needs of the application.

2.2. PVM

PVM is a library and runtime system that transforms
heterogeneous networks of workstations (NOWs)
and massively parallel supercomputers (MPPs) into a
scalable virtual parallel computer. PVM provides an
easy-to-use programming interface for several high
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level languages. It has facilities for process creation
and monitoring, inter-process message passing, mul-
ticast message passing, and asynchronous signal de-
livery. It has a simple facility for global registration of
well-known services. It allows tasks to detect and re-
cover from failures of other tasks. It is very portable,
having been adapted to a wide variety of architec-
tures and operating systems. PVM has been widely
embellished, for example, to add security [7] and
management of computational resources [8,9], and
SNIPE also borrows technology from these efforts.

The PVM system has proven to be highly useful
for supporting large-scale distributed scientific appli-
cations. However, PVM has limited flexibility, scal-
ability, fault tolerance, and security compared to what
is needed for critical information analysis applications:
– PVM allows practical scalability to tens of hosts.

While larger configurations are possible, limitations
in PVM’s resource management and internal state
management tend to make such configurations un-
reliable and inefficient.

– PVM can tolerate slave failures but not failure of
its master host. It also cannot tolerate link failures
during host table updates. It can tolerate network
partitionings only in the sense that hosts that have
been disconnected can rejoin the virtual machine
for new computations.

– The PVM resource manager uses centralized deci-
sion making. This would be a bottleneck for a very
large virtual machine. If the single resource man-
ager fails, the default built-in allocation scheme will
make inefficient use of computational resources.
PVM lacks a global name space. Process names are

valid only within a single “virtual machine.” While it
is possible for new PVM processes to join an existing
virtual machine, a process can only be a member of
one virtual machine at a time. This limits PVM’s ap-
plicability for data gathering and visualization appli-
cations, where the data gathered might need to be sup-
plied to multiple computational processes, or the data
presented derived from multiple computational pro-
cesses, which are not specifically determined and con-
figured in advance. PVM provides insufficient security
for large or widely distributed applications. PVM lacks
built-in facilities for process migration or checkpoint-
ing, though it does have low-level system hooks to
support condor-based projects [10] such as Co-Check
[2,11]. PVM also lacks facilities for redundant data
storage. While it is possible for PVM process to run

code that is loaded from other network nodes, PVM
provides no protection for its hosts against malicious
or errant behavior from downloaded code.

3. SNIPE and its components

SNIPE originally used the message passing, task
management, and resource management aspects of
PVM, together with a modified form of RCDS as a
framework for replication of resource registries and
globally-accessible state.

During development some of PVMs shortcoming al-
ready indicated previously led to the development of a
separate non-PVM based communications sub-library
within SNIPE. This library was based initially upon
the UDP and TCP Internet protocols. Some of the
PVM code base has been maintained, in particular the
General Resource Manager (GRM) [9] has been mod-
ified to allow for redundant resource management pro-
cesses. Also some of the PVM daemons task startup
and signal handling code has been retained.

These facilities have been used as a substrate
onto which support for secure execution, check-
point/restart, and migration of mobile code have
been added. The resulting tools (servers and run
time libraries) are intended to facilitate construction
of very large decision support networks, combining
data gathering, computational, data storage, resource
management, and human-interaction nodes into a co-
herent framework. This system contains seven major
components: metadata servers, file servers, per-host
SNIPE daemons, client libraries, resource managers,
“playgrounds”, and consoles.

3.1. Metadata servers

The RCDS based resource catalog servers (RC/
Metadata servers) are used to store and provide ac-
cess to metadata needed for communication between
SNIPE processes. This ability to store data which
is commonly held internally by distributed systems,
in the SNIPE RC servers has allowed for rapid pro-
totyping and implementation of the SNIPE system.
This facility has also proven useful to SNIPE user
applications as it allows them to share data without
the creation of many temporary small files which are
usually required. Automatic time stamping of meta-
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data by the RC servers also helps temporally dis-joint
tasks communication by allowing them to decide for
themselves the age and therefore relevance of any
metadata previously stored.

Such metadata includes:
– Information about SNIPE hosts (URI-to-address

mappings, host architecture and operating system,
network configuration, permissions and public
keys).

– Location and authentication information (public
keys and certificates) for SNIPE processes that
require global visibility.

– Location information for distributed services which
provide service at multiple locations.

– Routing information for multicast groups.
In addition, SNIPE metadata may contain name-to-

address bindings for replicated files, including data
files consumed or produced by computational nodes,
checkpoint files, and mobile code. Finally, the meta-
data can contain signed descriptions of mobile code,
allowing playgrounds to verify the codes authenticity
and integrity and to identify the resources and access
rights needed for that code to operate.

Because RCDS resources are named by URLs or
URNs, SNIPE processes and their metadata are ad-
dressable using a widely-deployed global name space.
Instead of having isolated virtual machines as in the
current PVM environment, any SNIPE process can
potentially communicate (subject to access control re-
strictions) with any other process. Thus data gathering
nodes and visualization/control nodes can communi-
cate with a variety of computational tasks, not just
those in a particular virtual machine.

3.2. File servers

RCDS file servers will be used to replicate files
that are used by SNIPE processes, including data files,
mobile code, and checkpoint files, and provide access
to these files. Replication daemons on these servers
communicate with one another, creating and deleting
replicas of files according to local policy, redundancy
requirements, and demand. Name-to-location binding
for these files is maintained by metadata servers, which
are informed as replicas are created and deleted. Ac-
cess to the files themselves is provided by ordinary file
access protocols such as HTTP, FTP, NFS, or CIFS.

3.3. SNIPE daemons

Each SNIPE daemon mediates the use of resources
on its particular host. SNIPE daemons are responsible
for authenticating requests, enforcing access restric-
tions, management of local tasks, delivery of signals to
local tasks, monitoring machine load and other local
resources, and name-to-address lookup of local tasks.
Task management includes starting local tasks when
requested, monitoring those tasks for state changes
and quota violations, and informing interested parties
of changes to the status of those tasks (exit, suspend,
checkpoint).

3.4. Client libraries

The SNIPE client libraries provide interfaces for re-
source location, communications, authentication, task
management, and access to external data stores. Re-
source location allows the client to obtain information
about named resources (hosts, processes and data files)
including location, characteristics, public keys, certifi-
cates, etc. Communication includes message passing,
routing (especially between different types of network
media), fragmentation, data conversion (e.g. between
different host architectures), and optionally encryp-
tion, as well as the ability to use different kinds of
media (IP, ATM, Myrinet, etc.). Task management in-
cludes the ability to initiate tasks (either directly or
via a resource manager) and monitor changes in those
tasks.

3.5. Resource managers

Resource managers are tasked with managing re-
sources and monitoring the state of the resources they
manage. Such resources can include hosts, processes,
and file servers. A resource manager may manage re-
sources for several hosts at once. For the sake of re-
dundancy, any host may be managed by multiple re-
source mangers. Resource management functions in-
clude allocating resources as needed from those avail-
able, attempting to adhere to resource allocation goals,
and enforcing restrictions on the use of resources. De-
pending on configuration, resource management may
either be “passive” (allowing a process to reserve re-
sources on a particular host, without actually provid-
ing the access to those resources), or “active” (where
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the resource manager acts as a proxy for the requester,
allocating resources on its behalf). In the latter mode,
a resource manager may actually suspend, kill, or (if
the code is mobile) migrate processes between hosts.
Resource managers are also responsible for clarifying
requests for resources, selecting the actual resources
in response to a request. Finally, resource managers
may also be used to manage RCDS metadata servers
according to demand.

3.6. Playgrounds

A “playground” runs under the supervision of a
SNIPE daemon and facilitates the secure execution of
mobile code. It is a trusted environment which safely
allows the execution of such code within an untrusted
environment.

The playground is responsible for downloading the
code from a file server, verifying its authenticity and
integrity, verifying that the code has the rights needed
to access restricted resources, enforcing access restric-
tions and resource usage quotas, and logging access
violations and excess resource use. It also provides a
run time environment for the untrusted process which
generally allows it access to the functions of the SNIPE
client library, but which enforces access restrictions.

While SNIPE playgrounds are capable of support-
ing native code, we anticipate that most mobile code
will be written in a machine-independent language
such as Java, Python, or Limbo, or some other lan-
guage specifically designed to allow controlled execu-
tion of untrusted code. Implementations of such lan-
guages may also be able to arrange the allocation of
program storage, in a way that facilitates checkpoint-
ing, restart, and migration. When possible, the play-
ground provides hooks for checkpointing, restart, and
process migration for use by resource managers.

3.7. Consoles

A SNIPE console is any SNIPE process which com-
municates with humans. Communication can be via a
character-based or graphical user interface. A SNIPE
process can also function as an HTTP server, allowing
text and graphical output and forms and mouse-click
input from any web browser. A SNIPE-based HTTP
server can register a binding between a URN or URL
and its current location, allowing a web browser to

find it even though it may migrate from one host to an-
other, or if the HTTP server is replicated across mul-
tiple hosts. SNIPE will make use of standards for In-
ternet resource registration, as those standards are de-
veloped. In the meantime, a proxy server is available
which allows any web browser to resolve the URI of
any RCDS-registered resource (including SNIPE files
and processes).

Just as in PVM, there can be multiple SNIPE con-
soles for any particular application. However due to
the highly distributed nature of SNIPE, and the fact
that there is no SNIPEvirtual machineapart from the
entire Internet, there is no way to list all SNIPE pro-
cesses. The state of each process in a process group
is maintained as metadata associated with that process
group, which can be queried by any process with ap-
propriate credentials. Similarly, the SNIPE processes
which were initiated by the SNIPE daemon on any
particular host are registered in metadata associated
with that host.

4. SNIPE security model

Authentication is accomplished using public key
cryptography. Each principal’s public key is stored as
an attribute of that principal’s RC metadata. A signed
subset of RC metadata serves as a key certificate. Be-
fore a client will consider a signed statement to be
valid, the key certificate must itself be signed by a
party whom that client trusts for that particular pur-
pose.

In general, each client or service may determine its
own requirements for which parties to trust for which
purposes. However, certain trust relationships within
SNIPE are very common. Since a resource manager
must be trusted by the resources that it manages, it
is convenient if the resource manager also serves as a
certificate authority for users that have permission to
use the managed resources, and realms of hosts from
which those users may access the resources.

Before the resource manager will grant access to a
resource, it must have two verifiable certificates. One
is a signed statement from the user, granting a partic-
ular process on a particular host, access to the desired
resources. The second is a signed statement from the
requesting host indicating that the resources are re-
quested by that process. The first certificate is verified
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by checking the user’s key certificate to see whether
it is signed by a party that the resource manager trusts
to grant access to the indicated resources; the second
certificate is verified by checking the requesting host’s
key certificate. If both certificates are verifiable, and
if the requester has permission to access the requested
resources, the resource manager then issues its own
signed statement authorizing use of the requested re-
sources by that process, and transmits that statement
to the hosts where the resources reside. These pro-
cesses are designed to obviate the need for exposure
of any user’s public keys. Ideally, the user exposes his
public key only to a single trusted host, which issues
limited authorizations for access to specific resources.
Similarly, a host’s public key is never transmitted to
any other host.

For the sake of efficiency some of the verification
transactions are optimized. For example, rather than
having the resource manager separately sign each re-
source authorization that is transmitted to a managed
resource, the resource manager may instead maintain
an authenticated connection with each of its managed
resources, which is able to detect connection hijacking,
and transmit the resource authorization without signa-
tures. Similarly if a particular client host frequently
makes requests of a particular resource manager, the
client host can establish a secure connection with the
resource manager (on behalf of its user) and avoid the
need to separately sign each request.

Plans are to provide privacy using the Transport
Layer Security protocol [5] with the slight modifica-
tion that the TLS certificates may be signed RC meta-
data in addition to X.509v3 format.

5. Implementation details

5.1. Host environment

SNIPE nodes can vary in power from personal dig-
ital assistants to supercomputers. The only minimum
requirement is an Internet Protocol (IP) implemen-
tation, though other protocols can be used – either
via a gateway (for non-IP capable hosts), or between
IP-capable hosts that also share a faster communi-
cations medium. While all SNIPE host environments
provide communications and therefore the ability to
access and manipulate SNIPE-registered resources, a

preemptive multitasking operating system with rea-
sonable security is generally required for implemen-
tation of SNIPE file servers, daemons, resource man-
agers, and playgrounds. Due to a lack of computa-
tional resources, less powerful host environments may
lack some security features and thus be restricted on
how they access other SNIPE entities.

5.2. RC data structures

The metadata servers hold shared and private data
for each SNIPE component and allows for a very open
and flexible system, where little is hidden in internal
data structures. This enables rapid prototyping of new
components and fast modification of existing ones.

The following section lists the types of metadata
used by the main SNIPE components as an illustration
of the types of metadata that can be stored within
SNIPE.

5.2.1. Host metadata
A host is a resource on which processes can be

spawned. It may have one or more CPUs, and one or
more network interfaces. There may be restrictions on
the use of certain CPUs and/or interfaces, which are
enforced by the host daemon. The actual management
of host resources may be performed by the host dae-
mon or one or more broker processes.

So the RCDS metadata for a host includes:
– The distinguished URL for the host.
– The number and types of CPUs available on that

host.
– The number and types of network interfaces avail-

able on the host.
– The data formats supported by the host.
– The protocols supported by the host daemon.
– The URL of the host daemon.
– The URLs of any brokers which manage this host’s

resources.
– Authentication credentials – public keys and key

certificates to be used to authenticate the host to
potential clients.
The network interface metadata includes such

things as protocol (IPv4, IPv6, Myranet, raw ATM),
addresses, per-message latency, and bandwidth. For
IP networks, the netmask is also included; for non-IP
networks, a “net name” (which is shared by all hosts
on that network, but otherwise globally unique) is
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included. This information is used by the message
routing library to choose an efficient path to the
destination, taking advantage of fast, private, and/or
non-IP networks where available. It is also used to
determine where to establish multicast routers.

5.2.2. File server metadata
A file server is a host which is capable of spawning

“file sinks”, which accept data from SNIPE processes
to be stored in files, and make that data available to
other processes. The files thus stored may be repli-
cated to other locations, and made available by multi-
ple protocols such as http and ftp. The RCDS metadata
for a file server includes:
– A URL for that file server.
– The protocols via which data are accepted.
– The protocols via which data are provided.

A single host may provide both computational and
file storage services, in which case both kinds of meta-
data are used.

5.2.3. Process metadata
A process runs on one or more hosts and provides

computational or other services. The process meta-
data allows other processes to monitor it or commu-
nicate with it. The process also has a “notify list” of
other processes which wish to be notified if a process
changes state. This metadata includes:
– The distinguished URN for that process.
– The supervisor LIFN [13] for the process.
– The communications addresses for the process (in-

cluding interface characteristics such as netmask or
net name).

– The “notify list” for that process. Each member of
the notify list is a URN of another process.

5.2.4. Multicast group metadata
A multicast group is a named group of processes,

to which one can send a message as if it were a
single process. The actual routing of multicast mes-
sages is performed by host daemons which elect them-
selves as multicast routers on a per-group basis. The
RCDS metadata for a multicast group exists to allow
other hosts to find the multicast routers for a particu-
lar group, and thus join or leave the group. (It should
be noted here, that this type of Multicast group is not
designed for high performance of closely coupled pro-
cesses as in MPI for example, but rather for reliable

group communication across the Internet. Although a
high performance multicast protocol has been tested,
see Section 6.).

Multicast group metadata includes:
– The name of the multicast group (a URN or URL).
– The URLs of multicast routers for the group.
– A “notify list” of processes that wish to be notified

if the set of multicast routers changes.

5.3. Unicast message routing

Unicast message routing is performed using the
RCDS metadata for the destination process, and the
RCDS metadata for the host on which that process
currently resides. If the source and destination are on
a common private network or common IP subnet, the
message is sent using the fastest of those. Otherwise,
the message is sent using the host’s normal IP routing.

5.4. Multicast message routing

Multicast messages are sent to one or more host
daemons which are acting as routers for that particular
multicast group. Each router is responsible for relaying
messages to a subset of the processes in the group, and
to other routers which have not received the message.
Whenever a process joins a multicast group, its host
daemon heuristically determines (based on the pres-
ence or absence of other routers in the group, and the
networks to which those routers are attached) whether
it should become a router for that group.

For the sake of fault-tolerance, each process wish-
ing to participate in a multicast group may register
its membership in the group with multiple multicast
routers. Each router which adds itself to the group also
registers itself with more than half of the other routers
for that group, and any message sent to that group is
initially sent to more than half of the routers for that
group. This is intended to ensure that there is at least
one path from the sending process to each recipient
process.

5.5. Spawning processes

A request to spawn a process is made relative to a
particular host, or more generally, to a set of resources
named by a URL (of which a URL for a host is a
special case). The request is accompanied by a speci-
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fication of the program to be run and the environment
which the program requires. For instance, the program
may require direct access to a particular network or
resources, it may run only on certain CPU types, it
may require a certain amount of memory or CPU time
or local disk space. If the program must be run on
a particular host, that is also part of the environment
specification.

If the RC metadata for a host contains a list of
brokers, the request to spawn is sent to one of the
brokers for that host. Otherwise, the request is sent
to the host daemon. The host daemon may handle the
request itself, or refer the request to a broker.

Whichever host daemon or broker actually the pro-
cess will also create a distinguished URL for the pro-
cess and associate the per-process RC metadata with
that URL. This makes the new process globally visible
so that other processes can find it and communicate
with it.

5.6. Process migration

General process migration is facilitated by the mi-
grating process initiating its own migration. After mi-
gration the process updates RC servers with its new lo-
cation and also informs other SNIPE tasks on its notify
list that it has moved. The original process maybe re-
quired to act as a relay or redirect for a short period de-
pending on the communication subsystem characteris-
tics of other communicating peers. Any processes that
do not notice its migration will be unable to establish
communication with the original task and will find its
new location (or pending location) via the RC servers.
Processes with open communications are guaranteed
no loss of data while migration is in progress. Tem-
porary storage of state is provided by the SNIPE file
servers.

Some programming environments are designed to
make it easy for a process to be migrated from one
host to another without explicit code in the program
to perform that operation. For such programming en-
vironments, the details of process migration may be
arranged by the host daemon rather than the process
itself.

5.7. Replicated processes

Several kinds of replicated processes are supported
by SNIPE:

– If several computational processes are run concur-
rently, provided with the same input, and expected
to produce the same result, a multicast group can
be created to provide input to all of those pro-
cesses. SNIPE metadata can then be created for the
new pseudo-process, consisting of all of the pro-
cesses in the group, and with the multicast group
listed as the communications URL. All data sent
to the pseudo-process will then be transmitted to
each member of the group. However, if multiple
processes send data to that multicast group, there is
no assurance that each of those replicated processes
will receive the data in the same order.

– If it is desirable to provide a service at multiple loca-
tions, using multiple protocols, or at multiple hosts,
a LIFN can be created for that service, and each of
the service locations (URLs) associated with that
LIFN. Any process attempting to communicate with
that service will then see multiple service locations
(URLs) from which to choose.

5.8. Playgrounds

A process may be executed on a host subject to cer-
tain restrictions. The host daemon is responsible for
enforcing those restrictions. If the restrictions are se-
vere, the host daemon may execute the process within
a playground. A playground is an environment which
enforces restrictions that cannot easily be provided via
the normal operating system. It may, for instance, limit
access to local files, or to the machine’s network in-
terfaces, or the amount of cpu time or memory used.

A playground may provide a restricted environment
for the execution of “native” programs, or it may pro-
vide an environment for the execution of programs be-
lieved to be “safe”, such as Java bytecode, safe-tcl,etc.
In either case the playground is responsible for verify-
ing the authenticity and integrity of the program, and
checking the credentials of the process making the re-
quest to ensure that the process has the appropriate
permissions.

Implementation of playgrounds varies widely from
one platform to another, and not all platforms are ca-
pable of imposing the restrictions which may be re-
quired without modification to the operating system.
Native code playgrounds are complex to implement
and difficult to verify. A playground’s capabilities are
therefore advertised as RCDS metadata, which can be
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used by a process or resource manager in scheduling
mobile code.

5.9. File servers, sinks, sources and I/O

SNIPE file servers provide the ability for SNIPE
processes to store data in files and retrieve the data
from those files, using the normal message passing
routines used to send messages between processes.
– A “file sink” process reads SNIPE messages sent to

it and stores them into a file.
– A “file source” process reads a file consisting of

SNIPE messages and sends them to a SNIPE ad-
dress.
Opening a file for writing thus consists of spawn-

ing a file sink process which will store its output in
such a way that it can be accessed by another process
via its URN or URL. Opening a file for reading is im-
plementing by spawning a file source process which
reads a particular file (named by a URN or URL) and
transmits that to a particular SNIPE address.

SNIPE file servers can also be used to access or-
dinary data files via URLs and LIFNs, and to export
data to files which can then be accessed by external
programs using common protocols such as HTTP.

6. Current implementation status and testbed

As of spring 1998, the SNIPE system consisted of
the following components:
– RC/Metadata servers: based on RCDS using SUN

RPC with authentication based on MD5 hashed
shared secrets.

– SNIPE communications module: which supported
a selective re-send UDP protocol as well as TCP/IP
and an experimental multicast protocol for ethernet.
Performance figures for 100M-bit ethernet and 155
M-bit ATM are given in Fig. 1. The module pro-
vided system buffering of messages so that migrat-
ing or temporarily unavailable tasks did not result
in lost messages and/or data. The system also pro-
vided the ability to switch routes/interfaces as links
failed without user applications intervention (unless
it effected a required QoS for example).

– Simple SNIPE daemons that start and monitor
tasks and resources. These daemons provide asyn-
chronous messaging and signal delivery.

Fig. 1. Bandwidth in MegaBytes/Second offered to SNIPE client
applications on various media.

– SNIPE resource managers that can select resources
based on user application requests and system load-
ing.

– SNIPE file servers. Currently no support is offered
for automatic duplication of updates when writing
to or modifying a duplicated file. Duplicated file
reading/access is supported via location of closest
resource daemons.
SNIPE testbeds have been running at the University

of Tennessee since autumn 1997 and due to replica-
tion have maintained an almost perfect level of avail-
ability. SNIPE testbeds have also extended to the Uni-
versity of Reading, UK and the Aeronautical Systems
Center, Major Shared Resource Center (ASC MSRC),
Wright-Patterson AFB, in support of an across MPP
inter-MPI application system.

6.1. PVMPI/MPIconnect: a SNIPE application

PVMPI [14,15] is a software system from the Uni-
versity of Tennessee that allowed different vendor im-
plementations of MPI-1.1 [16] to inter-operate almost
transparently. Its original aim was to allow different
sub-sections of an application to execute on different
MPPs that suited each sub-task and utilized the ven-
dors optimized MPI implementations on each, while
still inter-operating across MPPs without having to use
a non-optimal implementation such as socket based
MPICH-p4.

The PVMPI system suffered from the need to pro-
vide access to a PVM daemonpvmdat all times. On
many MPP systems that enforce the use of a batch
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queuing job control system on top of their native
run-time systems as inPBS-POE[17] it was not pos-
sible to provide con-current access to both a PVM
daemon and the MPI application.

Thus PVMPI was modified intoMPI Connect, a
new system based upon PVMPI that used SNIPE for
name resolution and across host communication in-
stead of utilizing PVM. This system proved easier to
maintain (no virtual machine to disappear) and also of-
fered a slightly higher point-to-point communication
performance.

7. Related work

Metacomputing frameworks have been popular for
nearly a decade, when the advent of high end worksta-
tions and ubiquitous networking in the late 1980s en-
abled high performance concurrent computing in net-
worked environments [18,19].

Both Legion [20] and Globe [21] are metacomput-
ing systems based on an Object Oriented view of the
world, where processes, files and resources are all
considered instances of known object classes. In both
systems themethodsavailable to access and manip-
ulate objects are rather fixed, although both systems
have well designed security and object location ser-
vices. Their main disadvantages compared to SNIPE
are their relative size which can lead to problems of
availability and ultimately performance.

Globus [22] is a metacomputing infrastructure
toolkit built upon the Nexus [23] communication
framework. The Globus system is designed around a
toolkit that consists of the pre-defined modules per-
taining to communication, resource allocation, data,
etc. much like components in SNIPE. In fact the com-
munications in SNIPE is much like Nexus and the
Metacomputing Directory Service (MDS) has similar
aims to the RC servers in SNIPE. A major difference
between MDS and SNIPE RC servers is MDS is
based on LDAP, a protocol originally designed for use
with X.500 [24] The RC servers are based on a true
master-master update data model and are inherently
more scalable.

8. Conclusion

SNIPE has provided a useful vehicle for experi-
menting with a number of issues in current metacom-

puting research, such as global naming of tasks, files,
resources. As well as multiple communication path al-
location and management, and a number of different
security models.

Although SNIPE is designed as an experimental
system to try various research modules on, it in itself
has proved useful in producing metacomputing appli-
cations and middleware. Its most attractive features
are its small size, speed and openness. It enforces no
virtual machine, and hides little internal data, and as
such allows for very rapid inclusion of new modules,
tools and services. When used across the Internet its
strong security, scalability and robust communications
allow the construction of reliable high quality appli-
cations in an unreliable Internet.
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