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Abstract

Heterogeneous Adaptable Reconfigurable Networked SystemS (HARNESS) is an experimental metacomputing system [L.
Smarr, C.E. Catlett, Communications of the ACM 35 (6) (1992) 45–52] built around the services of a highly customizable
and reconfigurable Distributed Virtual Machine (DVM). The successful experience of the HARNESS design team with the
Parallel Virtual Machine (PVM) project has taught us both the features which make the DVM model so valuable to parallel
programmers and the limitations imposed by the PVM design. HARNESS seeks to remove some of those limitations by taking
a totally different approach to creating and modifying a DVM. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Virtual machine(VM) terminology, borrowed from
PVM [1], refers to the fact that the computing re-
sources on which a system runs can be viewed as a
single large distributed memory computer. The vir-
tual machine is a software abstraction of a distributed
computing platform consisting of a set of cooper-
ating daemon processes. Applications obtain VM
services by communicating with daemon processes
through system-specific mechanisms encapsulated by
a portable API. We define aDistributed Virtual Ma-
chine(DVM) to be a cooperating set of daemons that
together supply the services required to run user pro-
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grams as if they were on a distributed memory parallel
computer. These daemons run on (often heteroge-
neous) distributed groups of computers connected by
one or more networks.

There are three key principles that have guided the
design and implementation of existing distributed vir-
tual machine systems, such as PVM:
1. A simple API, transparent heterogeneity, and dy-

namic system configuration. The simple API al-
lows messaging, virtual machine control, task con-
trol, event notification, event handlers, and a mes-
sage mailbox all to be accessed and controlled us-
ing only about 60 user-level library routines.

2. Transparent heterogeneity makes it easy to con-
struct programs that interoperate across different
machine architectures, networks, programming
languages, and operating systems.
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3. Dynamics allow the virtual machine configura-
tion to change and the number of tasks that make
up a parallel/distributed computation to grow and
shrink under program control. Proponents of PVM
have exploited these features and learned to live
within the boundaries that the system provides.
For example, PVM has always traded off achiev-
ing peak performance for heterogeneity and ease
of use.

Our next-generation environment will focus on
dynamic extensibility while supplying standard MPI
[2,20] and PVM APIs to the user. The ability to adapt
and reconfigure the features of the operating envi-
ronment will enable several significant new classes
of applications. The challenge is to implement a re-
configurable substrate that is simultaneously efficient,
dynamic, and robust. The initial challenges addressed
by the design of the Heterogeneous Adaptable Re-
configurable Networked SystemS (HARNESS) DVM
are the creation and management of the constituent
VM daemons and the core services implemented by
the cooperating set of daemons.

1.1. PVM limitations

In PVM, the initial kernel process (or PVM dae-
mon) that is created is the master, and all subsequent
daemons are started by the master daemon using the
remote shell (rsh) protocol. All system configuration
tables are maintained by the master, which must con-
tinue running in order for the VM to operate. The com-
munication space of the virtual machine is restricted
to the scope of the running set of daemons, therefore,
no PVM messages can flow outside the VM, for ex-
ample, to other VM or outside processes.

The set of services implemented by the PVM ker-
nel is defined by the PVM source code, and the user
has only a limited ability to add new services or to
change the implementation of standard services. For
examples of where such flexibility is needed, consider
that the availability of Myrinet interfaces [3] and Illi-
nois Fast Messages [4] has recently led to new mod-
els for closely coupled PC clusters. Similarly, multi-
cast protocols and better algorithms for video and au-
dio codecs have led to a number of projects focusing
on telepresence over distributed systems. In these in-
stances, the underlying PVM software would need to

be changed or re-constructed for stream data, and this
would not be trivial.

We see a common theme in all popular dis-
tributed computing paradigms, including PVM: each
mandates a particular programming style, such as
message-passing, and builds a monolithic operat-
ing environment into which user programs must fit.
MPI-1, for example, prefers an SPMD-style static
process model with no job control. This maximizes
performance by minimizing dynamics and works very
well in static environments. Programs that fit into the
MPI system are well served by its speed and rich
messaging semantics. PVM, on the other hand, allows
programs to dynamically change the number of tasks
and add or subtract resources. However, programs in
general pay a performance penalty for this flexibil-
ity. Even though MPI and PVM provide very useful
environments, some programs simply are not able to
find the right mix of tools or are paying for unwanted
functionality. Here, the monolithic approach breaks
down and a more flexible pluggable substrate is
needed. This idea is certainly not unique and has been
successfully applied in other areas: the Mach operat-
ing system [5] is built on the microkernel approach,
Linux has ‘plug-in’ modules to extend functionality,
and Horus [6] uses a ‘Lego Block’ analogy to build
custom network protocols. By extending and gener-
alizing these ideas to parallel/distributed computing,
Harness will enable programs to customize their
operating environment to achieve their own custom
performance/functionality tradeoffs.

1.2. The HARNESS approach

HARNESS defines kernel creation in a much more
flexible way than existing monolithic systems, view-
ing a DVM as a set of components connected not by
shared heredity to a single master process, but by the
use of a shared registry which can be implemented
in a distributed, fault tolerant manner. Any particular
kernel component, thus, derives its identity from this
robust distributed registry.

Flexibility in service components comes from the
fact that the HARNESS daemon supplies DVM ser-
vices by allowing components which implement those
services to be created and installed dynamically. Thus,
the daemon process, while fixed, imposes only a min-
imal invocation structure on the DVM.
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The HARNESS distributed registry service is used
to hold all DVM state. When components are added
to the DVM at invocation or runtime, this information
is added to the registry. Similarly, the components of
two DVMs can be merged en masse by merging their
respective registries, and some set of components can
be split from a DVM by creating a new registry for
them and deleting their entries from the old one. These
notions of merging and splitting are quite general, but
their practicality will be determined by the ease with
which a resilient system enabling such dynamic re-
configuration can be built.

When adding a component or set of components to
a DVM, the services may be of a kind that already ex-
ists within the DVM or they may be entirely new. The
addition of a new component can define a new service,
or may replace the implementation of a previously de-
fined service by taking its place in the registry. Such
extensibility and reconfigurability allows us to con-
sider the new components to be a kind of plug-in, much
as operating systems have configurable device drivers
and Web browsers have plug-ins for displaying new
object types. The addition of a new component may
even require applications to load new libraries to make
use of them, and we consider such reconfiguration to
be a user level component of the plug-in. HARNESS
will support a call-back feature from kernel compo-
nents to the user’s HARNESS runtime system to en-
able such reconfiguration to be performed automati-
cally. Thus, a plug-in can be defined as a modification
to the HARNESS DVM which is composed of a ker-
nel module and/or an application library which seam-
lessly replace or extend existing system functionality
and which can be configured through calls to other
system components and changes to the registry.

2. Design objectives

The HARNESS DVM allows a distributed set of
resources to be flexibly managed and exploited for
high performance computation. The most important
design criteria for HARNESS are:
1. Flexible management of the components which

make up one or more DVMs.
2. The ability to dynamically modify and extend

DVM services (reconfigurable via plug-ins).
3. The ability of applications (or tools) to collaborate

within a DVM.

4. Management of interactions between multiple
DVM users.

HARNESS differs from distributed operating sys-
tems in that it is not based on a native kernel that
controls the fundamental resources of the constituent
computers. Instead, it is built on an operating envi-
ronment kernel that can be implemented as a process
running under some host operating system. The set of
user level kernels is said to form a DVM, borrowing
the terminology of PVM.

The need for dynamic reconfigurability of the en-
vironment (‘pluggability’)is a challenging design ob-
jective that affects the system architecture at every
level. At the lowest levels (kernel loading of executable
components and an environment of data bindings), we
choose very flexible mechanisms for the loading of
system components and for the maintenance of system
state. These mechanisms make pluggability possible
by placing as few limitations as possible on the evo-
lution of the system as it executes. The key features
of these low level mechanisms are as follows:
1. The use of flexible naming schemes for the dy-

namically changeable sets of system elements.
2. Minimal set of core functions.
3. Few restrictions on the types of extensions per-

mitted.
These flexible mechanisms do not define a plug-

gable system, but merely enable the creation of one.
The HARNESS implementation will include default
system components that together constitute a complete
working system. It will also include additional re-
source management and communication components
to provide flexible functionality not possible in exist-
ing systems like PVM. The more difficult challenge is
the creation of system components that can make use
of this flexible infrastructure. The general problem of
dynamic system configuration is a very difficult one
that we do not claim to solve. The additional system
structures that may have to be created and conven-
tions that must be adopted to achieve overall system
reconfigurability remain to be empirically determined
by component designers.

3. Architecture

The key architectural features of HARNESS are
these:
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1. The kernel is implemented as a set of core func-
tions for loading and running components either
locally or remotely. Each component is imple-
mented as a set of calls, processes or threads.

2. A HARNESS daemon is composed of a kernel and
a set of required components. The daemon is an
event-driven HARNESS application that responds
to requests from a local application or a remote
daemon to execute one of its functions. The re-
quired components provide message passing, the
ability to start processes or threads, the ability to
add to the system registry, and the ability to start
other kernels.

3. A HARNESS DVM is composed of a set of co-
operating daemons which together present the ba-
sic services of communication, process control,
resource management, and fault detection.

4. A robust registry service is implemented for stor-
ing data in a form accessible to any component or
application in the DVM.

5. Mechanisms are provided for the dynamic man-
agement of system components, constituting a
DVM, through operations on the registry service.

3.1. The HARNESS Kernel

The HARNESS kernel is designed for modularity
and extensibility. The kernel itself is a container into
which components can be loaded and run. The ker-
nel API is minimal, implementing only a handful of
operations on components:

VMcontext=registerUser(arg-list)
status=load(VMcontext, component,
flags)
status=unload(VMcontext,
component)
status=run(VMcontext, component,
arg-list)
status=stop(VMcontext, component)
msg=getvminfo(VMcontext, key)

where
• VMcontext is a binding of a particular virtual ma-

chine ID and a user. This construct allows the ker-
nel to be able to determine authorization and scope
of the other operations. This ability becomes even
more important when multiple virtual machines
(with multiple users) are merged together.

• Status returns an error code if the function fails and
a handle to the component if it succeeds.

• Component is an identifier of a component. Initial
implementations use URIs as component names.

• Getvminfo returns a message associated with the
registry entry tied to key, an example query is to
list components currently loaded at a particular
kernel.
The most basic service provided by a DVM is an

abstract communication method among programs,
tools, and virtual machine components. Depending
upon the facilities required and the programming
environment to be supported in a given HARNESS
configuration, different communication components
might be used. By default a reliable, ordered delivery
of untyped messages to identifiable end-points will be
supplied by the communication components within
the executing DVM. By rigidly defining inquiry and
service interfaces, the HARNESS kernel can deter-
mine if requested components meet the requirements
of other components in the protocol stack. The re-
search challenge in this regard will be to evolve a
methodology for the semantic definition of the inter-
faces that each plug-in will provide, in a manner that
permits interchange and negotiation.

Layered on low-level communication (but at a
functionally equivalent level in the application in-
terface) are the machine configuration and process
control components. For machine configuration, mod-
ule functionality consists primarily of initialization
functions and architecture reconciliation with the rest
of the DVM. Our initial HARNESS resource man-
agement component will provide a means to add and
delete hosts, and to detect host failures within a single
DVM. Additional functionality will be developed to
add the capability of merging two DVMs based on
direct user input, or based on a configuration file that
specifies access restrictions.

Process management components will constitute
the infrastructure for spawning application task units,
and for naming and addressing tasks in the dynamic
DVM. Process control modules, similar to ones used
in PVM, are under development to provide functions
for spawning and terminating groups of tasks across
the DVM, using a simple load-balancing algorithms
for task placement.
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Fig. 1. Distributed registry and client usage.

4. The HARNESS registry service

The key organizing construct used by kernel com-
ponents is that of a robust shared registry that maps
names to values encoded in a standard format. This
registry is used for sharing information between sys-
tem elements (components and applications) and par-
ticularly for system configuration. The registry is im-
plemented by a core component that must be present
in at least one kernel. The HARNESS registry is mod-
eled after the PVM 3.4 message mailbox facility [7].

Some uses of the registry in the configuration of the
HARNESS system include using it to store:
1. the list of hosts which constitute a DVM,
2. the components which must be present in order for

a kernel to participate in the current DVM (system
level plug-ins),

3. the list of libraries which applications must load
to participate (user level plug-ins),

4. the list of the dynamic groups of tasks that con-
stitute parallel applications.

In this sense, the HARNESS registry is similar to
the configuration files in the Unix etc. directory, or the
Microsoft Windows registry.

The PVM equivalent to the registry are tables kept
within the address space of the master PVM daemon,
leading to a centralized model which is not robust to
the failure of the master. In HARNESS, we require
that the registry be robust, meaning that it must be
implemented in a distributed, fault tolerant manner as
shown in Fig. 1. Because of the scope of uses for the
registry within HARNESS, we made a design choice

regarding the consistency of replicas which specifies
that updates to the HARNESS state are seen in the
same order everywhere in the system.

The HARNESS registry is an internal tuple space
implemented by a distributed set of kernel compo-
nents. Tasks can use standard routines to encode an ar-
bitrary data item in an architecture-neutral format and
then place it into the registry with an associated name.
Copies of this data item can be retrieved by any client
that knows the name. And if the name is unknown or
changing dynamically, then the registry can be queried
to find the list of names active in the registry.

The four functions that make up the HARNESS
registry API are:

index=putinfo(name,itembuf, flag)
recvinfo(name, index, flag)
delinfo(name, index, flag)
getreginfo(pattern, names[],
struct info[])

The flag defines the properties of the stored data
items, such as who is allowed to delete this item, in-
cluding control over multiple instances of data items,
such as usingputinfo() to overwrite an existing mes-
sage instance.

While the tuple space could be used as a
distributed-shared memory, similar to the Linda [8]
system, the granularity of the message-box implemen-
tation is better suited to large grained data storage.

Beyond HARNESS system configuration, there are
many potential registry uses, including the following:
1. A visualization tool spontaneously comes to life

and finds out where and how to connect to a large
distributed simulation.

2. A scheduling tool retrieves information left by a
resource monitor.

3. A new team member learns how to connect to an
ongoing collaboration.

4. A debugging tool retrieves a message left by a
performance monitor that indicates which of the
thousands of tasks is most likely a bottleneck.

Many of these capabilities are directly applicable
to the HARNESS environment, and some approach
to having persistent messages will be a part of the
HARNESS design.

The addition of communication contexts, message
handlers, and message boxes to the parallel virtual ma-
chine environment allows developers to take a big leap
forward in the capabilities of their distributed applica-
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tions. HARNESS is a useful tool for the development
of much more dynamic, fault tolerant distributed ap-
plications, but as illustrated above, it is also a testbed
for software and features that will make up the next
generation heterogeneous distributed computing envi-
ronment.

4.1. Merging and splitting DVM

Important HARNESS design goals include the abil-
ity to merge two DVMs to create a single DVM and
the ability to split an existing DVM into distinct, func-
tional sub-environments. Understanding a DVM as be-
ing defined by its registry, this amounts to judicious
manipulation of the registry.

The implementation will need to address issues of
communication in the merged DVM and configuration
of the combined system:
• Can merging and splitting of the environment occur

at any time, or is explicit synchronization with the
components and even applications of the constituent
machines necessary?

• What view does each resource in a merged environ-
ment hold of the Environment? Is this view sym-
metric amongst resources in distinct groupings?

• What restrictions are placed on utilization of re-
sources in complementary groupings?

• What are the semantics of merging and splitting,
and are they uniform across the extent of a DVM?
Can merging and splitting be asymmetric?

• Once two DVMs have merged, can one or both re-
tain its original registry, or do both have the new
merged registry? How are the registries effected
upon splitting of the environments?

• Who in the merged resource pool has the
authority to split a conglomerate DVM into
sub-environments?

• How can a subsidiary DVM be created, perhaps
having the identity of one of the constituent in a
merging of DVM (splitting)?

• How will an environment be made aware of other
environments?

• After handshaking, what protocols are to be used
so that individual components (computational re-
sources, processes and the like) may have uninhib-
ited communication with any or all components of
the complement?

• How will the combined environment be reconfig-
ured to reestablish all necessary system properties?
If some module is required in every kernel of one
environment, will it automatically be loaded on ev-
ery kernel of the other? Might new modules be
needed to bridge existing elements of the two envi-
ronments?
For insight on dealing with these issues, approaches

taken by other systems such as PVM, Legion [9],
Globus [10], and IceT [11] provide initial prototypes
for this merging of environments.

Once the two systems are joined together in com-
munication and sufficiently configured for function-
ality, there is an additional and unique facility of
HARNESS, viz. HARNESS will provide seamless
process creation on any host in the combined re-
source pool. Here, the issue is how a process which
is part of one virtual environment is to be ferried
across distributed environmental boundaries for ex-
ecution on a possibly foreign operating system or
architecture. There have been some preliminary re-
sults at implementing this cross-environment func-
tionality in IceT. IceT, in an early prototype, uti-
lizes aspects of portability found in the Java pro-
gramming language to port both Java-based and
c/fortran processes across system boundaries.
However, the applicability of IceT’s process lo-
cation, process creation, and security implemen-
tations relative to the more broadly-defined goals
and objectives of HARNESS have yet to be deter-
mined.

Merging of environments will be prefaced by the
need to gain information on where and how to hand-
shake with outside environments. For storing such in-
formation, the Resource Catalog (RC) will be used
(see Section 6). An environment wishing to attach to
another would query the RC server for information on
listening ports, communication protocols, module con-
figuration, and security restrictions. With this informa-
tion, the environments may initiate contact, share state
information, and update their registries and the RC
server to reflect the new state of the system. The state
information which is passed between environments in-
cludes information about the components of the com-
putational resources enrolled in the respective envi-
ronments. Information about the computational com-
ponents is in tableau form, with provides information
for each resource, such as ‘operating system,’ ‘archi-
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tecture,’ ‘modules loaded,’ ‘modules available,’ ‘host
name,’ ‘listening ports,’ and ‘accessibility levels’.

Splitting a DVM into distinct, yet functional,
sub-environments is much more of a challenge. As
such, splitting functionality will be incorporated
into the distributed environment vis-a-vis a ‘split-
ting plug-in’. This splitting plug-in defines which
of the entities will be allowed to secede from the
environment, which entities will have the authority
to sub-divide resources, what to do with messages
intended for resources recently split apart, etc. For
example, one might configure the splitting module to
hold messages sent to split-off resources in a message
box which would be passed along once the sub-DVMs
rejoin (re-merge), or to disallow secession of groups
involving local networked resources and nonlocal
resources.

5. Configuring HARNESS: communication

As distributed computing has developed, it has be-
come clear that most monolithic systems can not ef-
ficiently handle all the desired communication styles.
Extensibility of the core system is essential to achieve
critical performance and provides a practical method
to manage multiple communication styles. Because
messaging is extremely important for system perfor-
mance and evaluation, the lowest layers must be able
to be swapped out for different scenarios. For exam-
ple, send/receive message passing is quite different
from one-sided communication semantics. Low-level
performance can be significantly affected if support
for both is automatically installed even though not
needed by an application. The inefficiency comes from
the fact that incoming messages need to be checked
among different communication methods to determine
the correct handling sequence. If a particular mes-
sage style (e.g., a put) is never used, then eliminating
this as a checked-for style can produce a reduction in
overhead. On MPPs, for example, it is unnecessary
to fragment messages or provide reliable transmission
because it is usually guaranteed by the message sys-
tem. On the other hand, communicating over a WAN
requires fragmentation, timeouts/retries, and connec-
tion failure monitoring. A user should be able to write
a distributed application and have the runtime system
select which method(s) are needed for the particular

run. The key to success will be to design plug-in com-
munication stacks (similar to those found in Horus
[6]) that can be traversed quickly and efficiently. To
get optimum performance, it may require the user to
use strongly-typed messaging like MPI. However, run-
time configurability can still give significant advan-
tages without requiring users to dramatically change
code. For example, one may desire to encrypt certain
communication links only if the virtual machine spans
several domains. Runtime configurability will allow
an encrypted link to be installed without user code
modification. The next generation DVM will have to
strike a better balance among performance (or the abil-
ity to optimize performance), extensibility, and inter-
operability. Due to the large body of research on com-
munication methods, this lowest level of pluggability
is probably the most straightforward goal to achieve.

6. Name resolution

While HARNESS focuses on the management of
distributed resources within a DVM, in today’s com-
puting environment it is also necessary to deal with
network resources outside of the DVM. PVM did not
support any access to outside resources, leaving each
application process to implement such access inde-
pendently. HARNESS is more general than PVM, al-
lowing for the communication with and assimilation
of resources outside the DVM.

The goal of the HARNESS system is to provide a
scalable and robust name resolution service such as
the resolution scheme implemented by the Resource
Catalog [12]. The Resource Catalog is a simple, highly
available, and very scalable distributed resolution ser-
vice.

By resolution service, we mean a service for map-
ping a resource name onto a set of attributes or char-
acteristics of a resource, which are sometimes called
metadata. A resolution service differs from a direc-
tory service such as X.500 [13], in that a resolution
service maps a name onto its associated attributes,
while a directory service is intended to allow searching
of the attributes themselves to identify matching re-
sources. Common resolution services include the Do-
main Name System (DNS) [14] used in the Internet
and the Network Information Services (NIS) used on
UNIX systems. In contrast to these, the Resource Cat-
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alog was designed to be simple, flexible, efficient, re-
liable, fault-tolerant, secure, and very scalable.

The Resource Catalog is distributed in that the set
of resource characteristics are maintained by an arbi-
trary number of servers on an arbitrary number of net-
work hosts. Each server contains the resource meta-
data for each of the resources in a well-defined sub-
set of the resource name space. The metadata for any
resource may be replicated across several servers to
improve scalability and availability. Updates to a re-
source’s metadata may be made to any of the servers
that maintains that resource’s metadata, using a dis-
cipline that ensures that any client will see all of the
updates from any one source in the same order. Mul-
tiple parties may update the metadata for a single re-
source (given the proper permission and security cre-
dentials). Each party’s updates to a particular resource
characteristic are kept separate and returned together
in the same response; no party’s updates may override
another’s.

The resource names used by the Resource Cata-
log are in the form of Uniform Resource Identifiers
(URIs). URIs are a slight generalization of Uniform
Resource Locators (URLs), and the set of URLs is a
subset of URIs. URLs are generally understood to re-
fer to a particular location of a resource (e.g., a spe-
cific file on a specific host), less can be assumed about
a URI: it is merely the name of a resource. Rather
than parsing a URL to determine a particular proto-
col, host, port, and filename; an application submits a
URI to the Resource Catalog to determine information
about that resource. Various kinds of information may
be returned, for example, the current location(s) of the
resource, the owner of the resource, the permissions
associated with the resource, the public key to be used
when securely communicating with the resource, the
date that the resource was last modified.

The metadata for a resource consists of a set of
assertions. Each assertion is a characteristic consist-
ing primarily of a name, which is a NUL-terminated
string, and a value, which is an opaque string of octets.
A type field is also provided to aid applications that
might wish to display or otherwise interpret the data.
Each assertion also contains the identity of the party
that made the particular assertion about the resource,
the date and time at which the assertion was made,
the serial number of that assertion (i.e., the number
of times that party had changed the value associated

with the assertion). Finally, each assertion contains a
time-to-live field and an expiration date that can be
used to determine the amount of time that metadata is
cached.

HARNESS uses the Resource Catalog to store in-
formation about DVMs (including the set of hosts in
the DVM, and the means by which other DVMs, or
external processes, can communicate with the DVM),
individual hosts (including host characteristics, public
keys, and other information used during negotiation
of network connections with that host), mobile pro-
cesses (including their current location and contact in-
formation), and plug-ins (their current locations, host
requirements, and digital signatures).

7. Results

The HARNESS system is based on the ability to
perform three operations
1. Plug-in new features or functionality into the ker-

nel of a DVM.
2. Have two independently started applications dis-

cover each other and cooperate.
3. Merge two DVM together.
We have demonstrated each of these capabilities in

separate DVM prototypes and our effort in HARNESS
is to incorporate all these capabilities into a single
compact system.

Version 3.4 of PVM has three specific plug-in in-
terfaces – one for task scheduling, one for task cre-
ation, and one for adding hosts to a virtual machine.
These plug-ins allow these three capabilities to be dy-
namically replaced with user written modules during
runtime. Several groups both industrial and academic
use these plug-in interfaces to integrate their own soft-
ware into the virtual machine environment supplied
by PVM. The goal of HARNESS is to now general-
ize this result and create an environment where nearly
every feature in a DVM can be replaced with a user
supplied version and where new features previously
not available in the DVM can be added. We have a
working prototpe of this generalized plug-in interface
running at Emory University.

We have spent the last two years working on a re-
mote computational steering environment called Cu-
mulvs [15]. In Cumulvs any number of independent
‘viewer’ applications can spontaneously come to life,
discover if there are any distributed applications run-
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ning on the DVM that are Cumulvs enabled, and at-
tach to their applications. Once attached these ‘view-
ers’ can extract data for viewing, or change physical
parameters inside the running application. These capa-
bilities, which fall under the second class of operations
needed in HARNESS, are made possible by the addi-
tion of message-box features in PVM 3.4. It is these
same features we plan to leverage in the HARNESS
project. One major change needed for HARNESS is
to make this registry both robust, and able to guaran-
tee a consistent order of updates across the distributed
copies.

IceT [11], developed to be the computation frame-
work for the Collaborative Computing Framework
project at Emory University, has demonstrated the
capability to merge two DVM. We plan to leverage
both the experience and software technology devel-
oped for IceT in the HARNESS system. The IceT
system serves as a prototype and proof of concept
that multiple DVM can be merged together in tempo-
rary cooperative environments. The next challenge for
HARNESS development in this area is how to merge
the multiple distributed registries. Another challenge
in HARNESS is how to integrate this capability,
which brings multiple users and administrative do-
mains, with the other plug-in features in HARNESS.

8. Related work

Metacomputing frameworks have been popular
for nearly a decade, when the advent of high end
workstations and ubiquitous networking in the late
80’s enabled high-performance concurrent com-
puting in networked environments [20]. PVM was
one of the earliest systems to formulate the meta-
computing concept in concrete virtual machine and
programming-environment terms, and explore hetero-
geneous network computing. PVM is based on the
notion of a dynamic, user-specified host pool, over
which software emulates a generalized concurrent
computing resource. Dynamic process management
coupled with strongly typed heterogeneous message
passing in PVM provides an effective environment
for distributed memory parallel programs. PVM,
however, is inflexible in many respects that can be
constraining to the next generation of metacomputing
and collaborative applications.

Legion [9] is a metacomputing system that began as
an extension of the Mentat project. Legion can accom-
modate a heterogeneous mix of geographically dis-
tributed high-performance machines and workstations.
Legion is an object oriented system where the focus is
on providing transparent access to an enterprise-wide
distributed computing framework. As such, it does not
attempt to cater to changing needs and it is relatively
static in the types of computing models it supports as
well as in implementation.

The Globe project [16] is related to Legion in that
it deals with distributed objects that are used to build
large-scale distributed systems. Local object repre-
sentatives hide details like replication and mobility.
Local objects have a standard internal structure that
makes it easier to reuse code components. One of
Globe’s major features is a hierarchical distributed
location service that adapts dynamically to different
usage patterns.

The model of the Millennium system [17] being
developed by Microsoft Research is similar to that
of Legion’s global virtual machine. Logically there
is only one global Millennium system composed of
distributed objects. However, at any given instance it
may be partitioned into many pieces. Partitions may
be caused by disconnected or weakly-connected oper-
ations. This could be considered similar to the HAR-
NESS concept of dynamic joining and splitting of
DVMs.

Globus [10] is a metacomputing infrastructure
which is built upon theNexus[18] communication
framework. The Globus system is designed around
the concept of a toolkit that consists of the pre-defined
modules pertaining to communication, resource allo-
cation, data, etc. Globus even aspires to eventually
incorporate Legion as an optional module. This mod-
ularity of Globus remains at the metacomputing sys-
tem level in the sense that modules affect the global
composition of the metacomputing substrate.

SNIPE [19] is to metacomputing systems as Unix is
to operating systems. It is a distributed systems testbed
that provides much of the functionality of systems like
PVM without the rigid definition of a virtual machine.
It provides process control like PVM based on dae-
mons and resource managers. Communication based
on both socket and message based abstractions are
built on a layered substrate similar to that of Nexus.
Naming, registry and resource information storage is
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built using a modified version of RCDS that provides
global naming based on URIs. Many of the lessons
learnt building SNIPE will go towards the naming,
registry, resource discovery and multi-path communi-
cations sections of Harness research.

The above projects envision a much wider-scale
view of distributed resources and programming
paradigms than HARNESS. HARNESS is not being
proposed as a world-wide infrastructure, but more
in the spirit of PVM, it is a small heterogeneous
distributed computing environment that groups of col-
laborating scientists can use to get their science done.
HARNESS is also seen as a research tool for exploring
pluggability and dynamic adaptability within DVMs.

9. Conclusions

The account we have given of HARNESS both mo-
tivates the need for a next generation DVM model
and presents primitive mechanisms that address key
requirements of this new model. HARNESS’ modular
kernel architecture supports a level of flexibility in the
set of system components that is not available under
monolithic operating environments such as PVM and
MPI. HARNESS’ system registry allows distributed
control of the system configuration in order to en-
able the dynamic addition of new components and li-
braries, as well as the merging and splitting of dis-
tinct virtual machines. These flexible mechanisms do
not fully define how dynamic reconfiguration will pro-
ceed, but merely make such a reconfigurable DVM
possible. The more difficult challenge is the creation
of system components that can make use of this flex-
ible infrastructure, and that is the enterprise in which
we are now engaged.
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